JPH06253281A - Picture signal orthogonal transformation method - Google Patents

Picture signal orthogonal transformation method

Info

Publication number
JPH06253281A
JPH06253281A JP3582393A JP3582393A JPH06253281A JP H06253281 A JPH06253281 A JP H06253281A JP 3582393 A JP3582393 A JP 3582393A JP 3582393 A JP3582393 A JP 3582393A JP H06253281 A JPH06253281 A JP H06253281A
Authority
JP
Japan
Prior art keywords
bases
base
picture
orthogonal
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3582393A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsuji
裕之 辻
Kazuto Kamikura
一人 上倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3582393A priority Critical patent/JPH06253281A/en
Publication of JPH06253281A publication Critical patent/JPH06253281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Complex Calculations (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To concentrate transformation coefficients onto a base of a low frequency with less calculation processing when signals at an optionally shaped area in a picture are orthogonally transformed. CONSTITUTION:A picture analysis section 2 analyzes input picture data from a terminal 1 and outputs data 21 comprising lateral picture elements (a) and longitudinal picture elements (b) of a square area V surrounding a processing object picture segment W, W shape data 23, and W picture data 24. A base arithmetic operation section 3 calculates aXb sets of bases with respect to the area V and outputs a base picture in which the bases are arranged sequentially from a lower frequency in both longitudinal and lateral directions. A base section 4 applies zigzag scanning to the base picture from a low frequency to select n-set of base objects. A projection transformation section 5 projects the base objects onto the segment W and a base orthogonal section 6 makes orthogonal processing. DCT is applied to the picture data 24 by using the orthogonal bases for bases of the segment W and a transformation coefficient is outputted to a terminal 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像信号を効率よく伝
送または蓄積するための画像符号化方法において、画像
内の任意形状領域の信号を直交変換する画像信号直交変
換方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image signal orthogonal transformation method for orthogonally transforming a signal of an arbitrary shape region in an image in an image coding method for efficiently transmitting or accumulating an image signal.

【0002】[0002]

【従来の技術】画像内の任意形状領域の信号を直交変換
して符号化する方式は、例えば"Coding of Arbitrary
Shaped Image Segments Based on a Generalized
Orthogonal Transform”(M.Gilge,et al,Sign
al Processing:ImageCommunication Vol.1,19
90)に記載されている。ここでは、動画像信号に対し
てフレーム間予測を行い、その予測誤差値がある定めら
れたしきい値以上である任意形状領域Wに対して直交変
換を行い、その変換係数を量子化・符号化する方式が示
されている。更に、この文献には、n画素からなる任意
形状領域Wに対する直交変換基底を求める方法として、
その任意形状領域Wを取り囲む横a画素、縦b画素から
なる方形領域Vでのa×b個の直交変換基底を求め、そ
の直交変換基底を任意形状領域Wに射影して新たにa×
b個の基底を求め直し、それらの基底からn個を選定し
再直交化して直交変換基底を求めることが記述されてい
るが、a×b個の基底を選定する具体的な方法について
は何ら述べられていない。
2. Description of the Related Art A method of orthogonally transforming and coding a signal in an arbitrarily shaped region in an image is, for example, "Coding of Arbitrary".
Shaped Image Segments Based on a Generalized
Orthogonal Transform "(M. Gilge, et al, Sign
al Processing: ImageCommunication Vol.1, 19
90). Here, inter-frame prediction is performed on a moving image signal, orthogonal transformation is performed on an arbitrary shape region W whose prediction error value is greater than or equal to a predetermined threshold value, and the transform coefficient is quantized and encoded. The method of conversion is shown. Further, in this document, as a method for obtaining an orthogonal transformation basis for an arbitrary shape region W consisting of n pixels,
A × b orthogonal transformation bases in a rectangular region V, which is composed of horizontal a pixels and vertical b pixels surrounding the arbitrary shape region W, are obtained, and the orthogonal transformation bases are projected onto the arbitrary shape region W to newly obtain a ×
Although it is described that b bases are recalculated, n bases are selected from these bases, and orthogonal transformation bases are calculated by reorthogonalization, there is no specific method for selecting a × b bases. Not mentioned.

【0003】一方、a×b個の基底からn個の基底を選
定する従来技術としては、例えば”Segment-based Im
age coding by Shape Orthogonal Transform”
(Y.Kato,Picture Coding Symposium’91,1
2.4−1,1991)に記載の方法がある。この方法
は、任意形状領域Wに射影したa×b個の基底を正規化
し、モデル化された画像信号をそれらの基底にもとづい
て変換した際にエネルギー集中度の高くなる基底から順
にn個を選定するというものである。この方法により選
定されたn個の基底を再直交化すると、それらの直交基
底へのエネルギー集中度は大きく偏るため、それによる
直交変換係数を量子化・符号化することにより、画像信
号を効率的に符号化できる。
On the other hand, a conventional technique for selecting n bases from a × b bases is, for example, "Segment-based Im".
age coding by Shape Orthogonal Transform ”
(Y. Kato, Picture Coding Symposium '91, 1
2.4-1, 1991). This method normalizes a × b bases projected on an arbitrary shape region W, and when the modeled image signal is converted based on these bases, n bases are selected in order from the base having the highest energy concentration. It is to select. When n bases selected by this method are re-orthogonalized, the degree of energy concentration on the orthogonal bases is greatly biased. Therefore, the orthogonal transform coefficient is quantized and coded to efficiently convert the image signal. Can be encoded as

【0004】[0004]

【発明が解決しようとする課題】上記従来技術によりa
×b個の基底からn個の基底を選定するためには、まず
画像信号をモデル化し、その信号を用いて各基底に対す
るエネルギー集中度を計算しなければならず、さらに、
その計算を領域の形状が異なるたびに行わなければなら
ず、計算量が非常に膨大となる問題がある。
According to the above conventional technique, a
In order to select n bases from xb bases, the image signal must first be modeled, and the energy concentration degree for each base must be calculated using the signal.
The calculation has to be performed every time the shape of the region is different, which causes a problem that the amount of calculation becomes very large.

【0005】本発明の目的は、少ない計算量でa×b個
の基底からn個の基底を選定し、しかも上記従来手法と
同程度に変換係数を低域の基底へ集中させることができ
る、画像内のn画素からなる任意形状領域の信号の直交
変換方法を提供することにある。
The object of the present invention is to select n bases from a × b bases with a small amount of calculation, and to concentrate the conversion coefficients on the low-frequency bases to the same extent as in the above conventional method. An object of the present invention is to provide a method for orthogonally transforming a signal in an arbitrarily shaped region consisting of n pixels in an image.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、画像内のn画素からなる任意形状領域W
を取り囲む横a画素、縦b画素の方形領域Vでのa×b
個の基底を求め、その直交変換基底を任意形状領域Wに
射影して新たにa×b個の基底を求め直し、それらの基
底からn個を選定し、再直交化して直交変換基底を求め
るにあたり、任意形状領域Wを取り囲む横a画素、縦b
画素からなる方形領域Vでのa×b個の直交変換基底を
求める際に、横方向、縦方向の各々に関して低い周波数
成分を表す基底から高い周波数成分を表す基底の順序に
横a×縦b個の基底を並べ、それらの基底を任意形状領
域Wに射影し直した基底からn個を選定する際に、横a
×縦b個の基底の中で横縦共に最も低い周波数成分を表
している基底から最も高い周波数成分を表している基底
へ向かって単純にジグザグの順序でスキャンをして、上
位n個の基底を選定するようにしたことである。
In order to achieve the above object, the present invention provides an arbitrary shape region W consisting of n pixels in an image.
A × b in a rectangular area V of horizontal a pixels and vertical b pixels surrounding the
Number of bases, the orthogonal transformation bases are projected onto the arbitrary shape region W, a * b bases are newly obtained, n pieces are selected from these bases, and the orthogonal transformation bases are obtained by re-orthogonalization. At this time, a horizontal pixel and a vertical b surrounding the arbitrarily shaped region W
When obtaining a × b orthogonal transformation bases in a rectangular region V made up of pixels, horizontal a × vertical b are arranged in the order of a base representing a low frequency component to a base representing a high frequency component in each of the horizontal and vertical directions. When n bases are arranged and n bases are selected from the bases obtained by reprojecting these bases on the arbitrary shape region W, the horizontal a
× The top n bases are simply scanned in a zigzag order from the base that represents the lowest frequency component in the horizontal and vertical directions to the base that represents the highest frequency component in the b vertical bases. Is to be selected.

【0007】[0007]

【作用】基底を低い周波数成分から高い周波数成分の順
序に並べることは、直交変換基底を求めると同時に容易
に行うことが可能である。また、画像信号は一般に低周
波数成分にエネルギーが集中しているため、最も低い周
波数成分を表している基底から単純にジグザグの順序で
スキャンをして、その上位n個の基底を選定することに
より、画像信号のモデルを用いるまでもなく、上記従来
手法と同程度に各基底へのエネルギー集中度を偏らせる
ことが可能であり、やはり効率的な符号化ができる。
It is possible to arrange the bases in order from the low frequency component to the high frequency component at the same time as obtaining the orthogonal transform base. In addition, since image signals generally have energy concentrated in low-frequency components, by simply scanning in a zigzag order from the basis representing the lowest frequency component and selecting the upper n basis thereof. Even without using a model of an image signal, it is possible to bias the degree of energy concentration in each base to the same extent as in the above-mentioned conventional method, and efficient encoding can be performed.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面により
詳述する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

【0009】図1は画像内の任意形状領域の信号を直交
変換し、その直交変換係数を量子化・符号化する際の、
本発明にかかわる変換基底導出の部分の一実施例を示す
ブロック図である。なお、本実施例では直交変換として
DCTを用いている。図において、1は入力端子、2は
画像解析部、3はDCT基底演算部、4は基底選択部、
5は射影変換部、6は基底直交化部、7は出力端子であ
る。また、21は任意形状領域である対象セグメントW
を取り囲む方形領域Vの縦横の長さを示すデータ、22
は対象セグメントWを構成する画素数を示すデータ、2
3は対象セグメントWの形状を表すデータ、24は対象
セグメントW内に於ける輝度成分等の画像データを示し
ている。以下、順を追って図1の動作を説明をする。
FIG. 1 shows a case where a signal in an arbitrary shape region in an image is orthogonally transformed and the orthogonal transformation coefficient is quantized / encoded.
It is a block diagram which shows one Example of the conversion base derivation | leading-out part which concerns on this invention. In this embodiment, DCT is used as the orthogonal transform. In the figure, 1 is an input terminal, 2 is an image analysis unit, 3 is a DCT basis calculation unit, 4 is a base selection unit,
Reference numeral 5 is a projective transformation unit, 6 is a base orthogonalization unit, and 7 is an output terminal. Further, 21 is a target segment W that is an arbitrarily shaped region
Data indicating vertical and horizontal lengths of a rectangular area V surrounding the
Is data indicating the number of pixels forming the target segment W, 2
Reference numeral 3 indicates data representing the shape of the target segment W, and reference numeral 24 indicates image data such as a luminance component in the target segment W. Hereinafter, the operation of FIG. 1 will be described step by step.

【0010】入力端子1に画像データが送り込まれる。
本例では、フレーム間差分をとった予測誤差画像データ
が送り込まれると想定する。この画像データは画像解析
部2に入り、いくつかのセグメントに分けられるととも
に、各セグメントに対して領域の解析が行われる。この
画像解析部2から、セグメントWを取り囲む方形領域V
の縦横の長さを示すデータ21、セグメントWを構成す
る画素数を示すデータ22、および、セグメントWの形
状を表すデータ23が、領域に関する情報として送り出
される。本例では、画像内に図2のようなセグメントW
が含まれていたと想定する。図2は、対象セグメントW
を取り囲む方形領域Vは横11×縦12の計132画素
からなる領域で、対象セグメントWは67画素からなる
部分領域であることを示している。
Image data is sent to the input terminal 1.
In this example, it is assumed that the prediction error image data obtained by taking the inter-frame difference is sent. This image data enters the image analysis unit 2, is divided into several segments, and the area is analyzed for each segment. From this image analysis unit 2, a rectangular area V surrounding the segment W is displayed.
Data 21 indicating the length and width of the segment W, data 22 indicating the number of pixels forming the segment W, and data 23 indicating the shape of the segment W are sent out as information regarding the area. In this example, the segment W as shown in FIG.
Was included. 2 shows the target segment W
A rectangular area V surrounding 11 is a total of 132 pixels in the horizontal direction and 12 in the vertical direction, and the target segment W is a partial area including 67 pixels.

【0011】データ21はDCT基底演算部3に送り込
まれ、方形領域Vに対するDCT基底が計算される。こ
のDCT基底を求める際に、横方向、縦方向の各々に関
して、低い周波数成分を表す基底から高い周波数成分を
表す基底の順序に、横a×縦b個の基底をならべる。図
3は、図2の例について、方形領域Vの横11×縦12
の計132画素のDCT基底を縦横方向がそれぞれ低域
からの順番になるように並べた様子を表し、ひとつの方
形がそれぞれ基底画像に対応している。
The data 21 is sent to the DCT basis calculation unit 3 and the DCT basis for the rectangular region V is calculated. When obtaining the DCT bases, horizontal a × vertical b bases are arranged in the order of a base representing a low frequency component to a base representing a high frequency component in each of the horizontal and vertical directions. FIG. 3 shows, for the example of FIG.
The DCT bases of a total of 132 pixels are arranged so that the vertical and horizontal directions are arranged in order from the low frequency range, and one square corresponds to each base image.

【0012】こうして得られた基底画像は、対象セグメ
ントWを構成する画素数(図2では67画素)を示した
データ22とともに基底選定部4に渡される。基底選定
部4では、方形領域Vの基底画像について、横縦共に最
も低い周波数成分を表している基底から最も高い周波数
成分を表している基底へ向かってジグザグにスキャン
し、その上位のセグメントWを構成する画素数分の基底
を選定する。本例では、図3の矢線に示したようなジグ
ザクスキャンの順番で、67個の基底候補が選び出され
る。
The base image thus obtained is passed to the base selecting section 4 together with the data 22 indicating the number of pixels (67 pixels in FIG. 2) forming the target segment W. The base selection unit 4 scans the base image of the rectangular region V in a zigzag manner from the base representing the lowest frequency component in the horizontal and vertical directions to the base representing the highest frequency component, and the upper segment W thereof is scanned. Select as many bases as there are pixels to configure. In this example, 67 basis candidates are selected in the zigzag scan order as shown by the arrow in FIG.

【0013】こうして選定された67個の基底候補は射
影変換部5に送られる。射影変換部5では、対象セグメ
ントWの形状を示したデータ23を参照しながら、67
個の基底を該セグメントWに射影する。この射影された
基底は、一般に直交性がくずれているため、さらに基底
直交化部6に送られ、ここで直交化の手続きがなされ
る。直交化は、例えば、Schmidtの方法やHouseholder
の方法によれば良い。
The 67 basis candidates thus selected are sent to the projective transformation unit 5. The projective transformation unit 5 refers to the data 23 showing the shape of the target segment W and refers to 67
Project the bases onto the segment W. Since the orthogonality of the projected base is generally broken, the base is further sent to the base orthogonalization unit 6, where the orthogonalization procedure is performed. For orthogonalization, for example, the Schmidt method or Householder
Method.

【0014】以上のようにして、最終的に得られた67
個の要素からなる直交基底を対象セグメントWの基底と
して用い、画像解析部2から送られてくる該セグメント
W内の輝度成分等の画像データ24に対してDCTを施
す。こうして得られた変換係数が端子7から出力され
る。
As described above, 67 finally obtained.
The orthogonal base composed of these elements is used as the base of the target segment W, and DCT is applied to the image data 24 such as the luminance component in the segment W sent from the image analysis unit 2. The conversion coefficient thus obtained is output from the terminal 7.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
画像内の任意形状領域の信号を直交変換する際、より少
ない計算処理で従来手法と同程度に変換係数を低域の基
底へ集中させることができ、効率的な符号化が可能とな
る。
As described above, according to the present invention,
When orthogonally transforming a signal in an arbitrarily shaped region in an image, the transform coefficients can be concentrated on the low-frequency base to the same extent as in the conventional method with less calculation processing, and efficient encoding is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】任意形状領域Wとそれを取り囲む方形領域Vの
一例を示す図である。
FIG. 2 is a diagram showing an example of an arbitrarily shaped area W and a rectangular area V surrounding it.

【図3】DCT基底を縦横方向にそれぞれ低域から高域
へ並べ、ジグザグスキャンで基底を選定することを説明
する図である。
FIG. 3 is a diagram for explaining arranging DCT bases in the vertical and horizontal directions from a low band to a high band and selecting a base by zigzag scanning.

【符号の説明】[Explanation of symbols]

1 入力端子 2 画像解析部 3 DCT基底演算部 4 基底選定部 5 射影変換部 6 基底直交化部 7 出力端子 1 Input Terminal 2 Image Analysis Section 3 DCT Basis Operation Section 4 Basis Selection Section 5 Projection Transformation Section 6 Base Orthogonalization Section 7 Output Terminal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 画像内の任意形状領域の信号を直交変換
する方法において、画像内のn画素からなる任意形状領
域Wを取り囲む横a画素、縦b画素の方形領域Vに対し
てa×b個の直交変換基底を求め、該a×b個の直交変
換基底を前記任意形状領域Wに射影して新たにa×b個
の基底を求め直し、該新たに求め直されたa×b個の基
底からn個の基底を選定し、該選定されたn個の基底を
再直交化してn個の直交基底を求め、該再直交化された
n個の直交基底を用いて前記n画素からなる任意形状領
域Wの信号を直交変換する方法であって、 前記方形領域Vに対するa×b個の直交変換基底を求め
る際に、横方向、縦方向の各々に関して低い周波数成分
を表す基底から高い周波数成分を表す基底の順序にa×
b個の基底を並べ、 前記a×b個の直交変換基底を任意形状領域Wに射影し
て求め直された新たなa×b個の基底からn個の基底を
選定する際に、該a×b個の基底の中で横縦共に最も低
い周波数成分を表している基底から最も高い周波数成分
を表している基底へ向かってジグザグの順序にスキャン
して上位n個の基底を選定する、 ことを特徴とする画像信号直交変換方法。
1. A method of orthogonally transforming a signal of an arbitrary shape region in an image, wherein a × b is set for a rectangular region V of horizontal a pixels and vertical b pixels surrounding an arbitrary shape region W consisting of n pixels in the image. Number of orthogonal transformation bases are obtained, the a × b orthogonal transformation bases are projected onto the arbitrary shape region W, a × b bases are newly obtained, and the newly obtained a × b pieces are obtained. From the n pixels by selecting n bases from the bases, re-orthogonalizing the selected n bases to obtain n orthogonal bases, and using the re-orthogonalized orthogonal bases. A method of orthogonally transforming a signal of an arbitrary shape region W, wherein when obtaining a × b orthogonal transform bases for the rectangular region V, a base higher than a base representing a low frequency component in each of a horizontal direction and a vertical direction is obtained. The order of bases representing frequency components is a ×
When n bases are selected from new axb bases re-obtained by arraying b bases and projecting the axb orthogonal transformation bases onto the arbitrary shape region W, Of the b bases, the top n bases are selected by scanning in a zigzag order from the base representing the lowest frequency component in the horizontal and vertical directions to the base representing the highest frequency component. An image signal orthogonal transformation method characterized by:
JP3582393A 1993-02-24 1993-02-24 Picture signal orthogonal transformation method Pending JPH06253281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3582393A JPH06253281A (en) 1993-02-24 1993-02-24 Picture signal orthogonal transformation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3582393A JPH06253281A (en) 1993-02-24 1993-02-24 Picture signal orthogonal transformation method

Publications (1)

Publication Number Publication Date
JPH06253281A true JPH06253281A (en) 1994-09-09

Family

ID=12452678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3582393A Pending JPH06253281A (en) 1993-02-24 1993-02-24 Picture signal orthogonal transformation method

Country Status (1)

Country Link
JP (1) JPH06253281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741553B1 (en) * 2000-05-15 2007-07-20 허드슨 소프트 가부시끼가이샤 Image encoding/decoding method, apparatus thereof and recording medium in which program therefor is recorded

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741553B1 (en) * 2000-05-15 2007-07-20 허드슨 소프트 가부시끼가이샤 Image encoding/decoding method, apparatus thereof and recording medium in which program therefor is recorded

Similar Documents

Publication Publication Date Title
US6608865B1 (en) Coding method for video signal based on the correlation between the edge direction and the distribution of the DCT coefficients
JP2005516553A (en) Coder-matched layer separation for compound document compression
US11259045B2 (en) Image encoding device, image decoding device and program
JPH08256266A (en) Image coding system
JPH07170521A (en) Picture processor
US7463782B2 (en) Data encoding with an amplitude model and path between the data and corresponding decoding
JPH0937246A (en) Image processing unit and its method
JP3640318B2 (en) Digital image encoding method and system
JPH0738760A (en) Orthogonal transformation base generating system
US6263115B1 (en) Method and apparatus for encoding a binary shape signal
JPH06253281A (en) Picture signal orthogonal transformation method
US5721544A (en) Encoding method
JPH04223786A (en) Picture compressing device
JP2007151062A (en) Image encoding device, image decoding device and image processing system
JP3305480B2 (en) Image encoding / decoding device
JPH118838A (en) Image signal processing device and its method, and learning method for predictive parameter
JP2861328B2 (en) High efficiency coding device
CN112449187B (en) Video decoding method, video encoding device, video encoding medium, and electronic apparatus
CN102413330B (en) Texture-adaptive video coding/decoding system
US20230039840A1 (en) Picture processing method and apparatus
JP3563837B2 (en) Image encoding device and image decoding device
JPH11103463A (en) Picture encoding method and storage medium
JPH0686260A (en) Orthogonal transform encoding and decoding method
JPH0974562A (en) Image signal encoding method
JPH02266683A (en) Picture processing unit