JPH06252037A - Method of preventing contamination of wafer surface and method of forming resist pattern - Google Patents

Method of preventing contamination of wafer surface and method of forming resist pattern

Info

Publication number
JPH06252037A
JPH06252037A JP3723593A JP3723593A JPH06252037A JP H06252037 A JPH06252037 A JP H06252037A JP 3723593 A JP3723593 A JP 3723593A JP 3723593 A JP3723593 A JP 3723593A JP H06252037 A JPH06252037 A JP H06252037A
Authority
JP
Japan
Prior art keywords
film
coating film
forming
layer
resist pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3723593A
Other languages
Japanese (ja)
Inventor
Takeshi Shibata
剛 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3723593A priority Critical patent/JPH06252037A/en
Publication of JPH06252037A publication Critical patent/JPH06252037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Fouling (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide an excellent pattern to reduces the effects of a wafer and to form a highly reliable electrode wiring layer by forming a coating film on a wafer at first and then a carbon-containing coating film on the surface of the coating film and eliminating the coating film after the formation. CONSTITUTION:A silicon wafer 1 is prepared. A borophosphosilicate glass(BPSG) film 2 is deposited by an ordinary CVD method so that a 80mum thick film may be formed on the wafer 1. Then, a 5wt.% aqueous solution of a maleic anhydride and acrylic acid copolymer (mean molecular weight 10000) is applied by spin-coating so that a film of 20mum thickness may be formed, thereby forming a coating film 3 on the BPSG film 2. During this operation, the transfer of the wafer between the BPSG film deposition and the coating film formation is carried out in a nitrogen atmosphere so that the wafer is not exposed to the air. Then, the coating layer 3 is removed by cleaning the surface of the wafer for 30 secondes, thereby exposing the surface of the BPSG film 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係わり、特に基板表面汚染の防止方法およびレジストパ
タ−ンの形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for preventing substrate surface contamination and a method for forming a resist pattern.

【0002】[0002]

【従来の技術】集積回路の製造においては、半導体の基
板上に微細なパタ−ンを形成し、このパタ−ンをマスク
として基板をエッチングする方法がとられる。このパタ
−ンの形成工程は、通常次のような構成になっている。
すなわち、まず半導体等の基板上に樹脂および感光剤を
含む溶液を塗布し、これを乾燥してレジスト膜(感光性
樹脂膜)を形成する。次いで、このレジスト膜に対し選
択的に光等のエネルギ−線を照射する露光処理を行い、
その後現像処理によって前記基板上にレジストパタ−ン
を形成する。このレジストパタ−ンの形成に際しては、
露光光に対する感度およびドライエッチング耐性に優れ
たフェノ−ル系樹脂を用いるレジストが多い。
2. Description of the Related Art In the manufacture of integrated circuits, a method of forming a fine pattern on a semiconductor substrate and etching the substrate by using this pattern as a mask is used. The pattern forming process usually has the following structure.
That is, first, a solution containing a resin and a photosensitizer is applied onto a substrate such as a semiconductor and dried to form a resist film (photosensitive resin film). Then, the resist film is subjected to an exposure treatment for selectively irradiating energy rays such as light,
After that, a resist pattern is formed on the substrate by a developing process. When forming this resist pattern,
Many resists use a phenolic resin that is excellent in sensitivity to exposure light and dry etching resistance.

【0003】ところで現在、集積回路の集積度は2〜3
年で4倍というスピ−ドで高集積化しているが、これに
伴い、回路素子のパタ−ンも年々微細化し、しかもその
寸法精度の厳密なコントロ−ルが必要になってきてい
る。現在はフェノ−ル系樹脂のレジストとして、例えば
ノボラック樹脂とナフトキノンジアジド化合物からなる
ポジ系レジストがよく用いられているが、高い解像性の
要求と感度向上の面から最近では酸の触媒反応を利用す
る化学増幅レジストへの期待が強くなってきている。こ
の化学増幅レジストは例えばポジ型の場合、主に樹脂と
光酸発生剤とから構成され、このうち樹脂として、元来
アルカリ可溶性であったフェノ−ル系樹脂の水酸基を適
当な保護基(例えばエステル結合等)でブロックしてア
ルカリ不溶性にしたものが用いられる。このようなレジ
ストに露光を行うと、露光部で発生した酸がその後のベ
−ク工程で、前記エステル結合を攻撃して保護基の離脱
反応を生じせしめ、その結果ベ−ス樹脂の水酸基が発現
して露光部がアルカリ可溶性となる。そしてこの反応は
酸を触媒として連鎖的に進行するため、きわめて高感度
になる。またこのタイプのレジストは遠紫外線領域にお
いても高い光透過率を持っている。
At present, the degree of integration of integrated circuits is 2-3.
It is highly integrated at a speed of four times a year, but along with this, the pattern of circuit elements is becoming finer year by year, and moreover, it is necessary to strictly control the dimensional accuracy. Currently, as a resist for a phenol resin, for example, a positive resist composed of a novolak resin and a naphthoquinonediazide compound is often used, but recently, from the viewpoint of demand for high resolution and improvement in sensitivity, an acid catalytic reaction has been performed. Expectations for chemically amplified resists to be used are increasing. In the case of, for example, a positive type, this chemically amplified resist is mainly composed of a resin and a photo-acid generator. Among them, as the resin, the hydroxyl group of the phenol-based resin which was originally alkali-soluble is used as a suitable protective group (for example, What is blocked with an ester bond) to make it alkali-insoluble is used. When such a resist is exposed, the acid generated in the exposed portion attacks the ester bond in the subsequent baking step to cause the elimination reaction of the protective group, and as a result, the hydroxyl group of the base resin is changed. When exposed, the exposed part becomes alkali-soluble. Since this reaction proceeds in a chain using an acid as a catalyst, the sensitivity becomes extremely high. Further, this type of resist has a high light transmittance even in the deep ultraviolet region.

【0004】一方、上述したように化学増幅レジストは
きわめて高感度である反面、パタ−ニング段階において
下地からの影響を強く受けるという欠点がある。すなわ
ち下地となる被処理基板等の表面に微量の塩基性物質、
例えばアンモニア等が存在すると、露光により発生した
酸が失活してその触媒としての効力を失うため、レジス
ト膜の底部が現像液に溶けにくくなり、レジストパタ−
ンの形状が劣化する。極端な場合には、レジスト膜と下
地界面に難溶化層が形成されてしまう。また、下地の基
板をエッチングする際の寸法変換差を大きくするため、
パタ−ン寸法を高精度に制御することが困難となる。化
学増幅レジストを用いる現状のプロセスにおいて、下地
からの影響を軽減するための有効な方法はいまだ見出さ
れていないのが実情である。
On the other hand, as described above, the chemically amplified resist has extremely high sensitivity, but on the other hand, it has a drawback that it is strongly influenced by the base in the patterning step. That is, a small amount of basic substance on the surface of the substrate to be processed, which is the base,
For example, in the presence of ammonia or the like, the acid generated by exposure is deactivated and loses its effectiveness as a catalyst, so that the bottom portion of the resist film becomes difficult to dissolve in the developing solution and the resist pattern is formed.
Shape deteriorates. In an extreme case, a poorly soluble layer will be formed at the interface between the resist film and the underlying layer. Also, in order to increase the dimensional conversion difference when etching the underlying substrate,
It becomes difficult to control the pattern size with high accuracy. In the current process using a chemically amplified resist, the actual situation is that no effective method for reducing the influence from the base has been found yet.

【0005】また、前記アンモニアは表面処理や拡散と
いった工程で、被処理基板等の表面に付着する場合があ
り、雰囲気中に水分が含まれていると、この水分と反応
してアンモニア水(NH4 OH)となり、既に形成され
ている、或いはその後形成される電極配線層(アルミニ
ウム層等)の表面の汚染や腐食の原因となる。さらに、
アンモニアは高温で分解され、金属やシリコン等の半導
体と反応して、アミド、イミド、または窒化膜を形成し
てしまい、電極配線の抵抗値やコンタクト抵抗の値が高
くなる等の問題があった。
Further, the ammonia may adhere to the surface of a substrate to be processed in a process such as surface treatment or diffusion. If the atmosphere contains water, the ammonia reacts with the water and ammonia water (NH 4 OH), which causes contamination or corrosion of the surface of the electrode wiring layer (aluminum layer or the like) already formed or formed thereafter. further,
Ammonia is decomposed at a high temperature and reacts with a semiconductor such as metal or silicon to form an amide, imide, or nitride film, which causes a problem that the resistance value of the electrode wiring or the contact resistance value increases. .

【0006】[0006]

【発明が解決しようとする課題】このように化学増幅レ
ジストを用いる従来の技術の工程では、下地からの影響
(特に塩基性物質の影響)を受けてレジストパタ−ンの
形状が劣化し、極端な場合には、レジスト膜と下地界面
に難溶化層が形成されてしまうという問題があった。
As described above, in the process of the conventional technique using the chemically amplified resist, the shape of the resist pattern is deteriorated due to the influence from the base (in particular, the influence of the basic substance), and In this case, there is a problem that a poorly soluble layer is formed at the interface between the resist film and the base.

【0007】また、例えば、表面処理や拡散といった工
程で、付着するアンモニアは雰囲気中に水分が含まれて
いる場合、この水分と反応してアンモニア水となり、電
極配線層(アルミニウム層等)表面の汚染や腐食の原因
となる。さらに、アンモニアは高温で分解され、金属や
シリコン等の半導体と反応してアミド、イミド、または
窒化膜を形成してしまい、電極配線の抵抗値やコンタク
ト抵抗の値が高くなる等の問題があった。
Further, for example, in the surface treatment or diffusion process, when the attached ammonia contains water in the atmosphere, it reacts with the water to become ammonia water, and the surface of the electrode wiring layer (aluminum layer etc.) It causes pollution and corrosion. Further, ammonia is decomposed at a high temperature and reacts with a semiconductor such as metal or silicon to form an amide, imide, or nitride film, and there is a problem that the resistance value of electrode wiring or the contact resistance value increases. It was

【0008】本発明は前記実情を鑑みてなされたもの
で、下地からの影響を低減して良好なレジストパタ−ン
を得たり、信頼性の高い電極配線層を形成するための基
板表面汚染の防止方法およびレジストパタ−ンの形成方
法を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and it is possible to prevent the contamination of the substrate surface for reducing the influence from the base to obtain a good resist pattern and forming a highly reliable electrode wiring layer. An object of the present invention is to provide a method and a method for forming a resist pattern.

【0009】[0009]

【課題を解決するための手段】そこで本発明は、基板上
に被処理層を形成した後に、この被処理層の表面に炭素
を一成分とする被覆膜を形成し、この後、前記被覆膜を
除去することを特徴としている。ここで前記被覆膜とし
ては、例えば水溶性の高分子膜を用いることができ、特
に塩基性物質に対して吸着機能を持つ酸性の高分子膜で
あれば一層効果的である。また前記被処理層としては、
例えば各種金属膜、シリサイド膜、酸化膜、窒化膜(S
iN膜、TiN膜等)およびスパッタカ−ボン等の反射
防止膜があげられる。
Therefore, according to the present invention, after a layer to be treated is formed on a substrate, a coating film containing carbon as a component is formed on the surface of the layer to be treated, and then the substrate to be treated is formed. The feature is that the covering film is removed. As the coating film, for example, a water-soluble polymer film can be used, and particularly an acidic polymer film having a function of adsorbing a basic substance is more effective. Further, as the layer to be treated,
For example, various metal films, silicide films, oxide films, nitride films (S
Examples of the antireflection film include an iN film, a TiN film) and a sputter carbon.

【0010】さらに本発明は、まず基板上に被処理層を
形成した後に、この被処理層の表面に炭素を一成分とす
る被覆膜を形成し、この後、前記被覆膜を除去すること
により前記被加工層の表面を露出せしめ、次いでこの被
加工層の表面にレジスト膜を形成し、さらにこのレジス
ト膜を露光し、現像することを特徴としている。ここで
前記被覆膜を除去するにあたっては、純水および水溶液
で除去する、または酸素を含むプラズマ雰囲気中に暴露
する等の方法を用いることができる。
Further, according to the present invention, first, a layer to be treated is formed on a substrate, then a coating film containing carbon as a component is formed on the surface of the layer to be treated, and then the coating film is removed. This exposes the surface of the layer to be processed, forms a resist film on the surface of the layer to be processed, and then exposes and develops the resist film. Here, in removing the coating film, a method such as removal with pure water and an aqueous solution or exposure to a plasma atmosphere containing oxygen can be used.

【0011】[0011]

【作用】本発明者が鋭意研究した結果、レジストパタ−
ンの形状を劣化させる主要因は、下地表面に吸着した雰
囲気中の塩基性物質(特にアンモニア)であることが明
かとなっている。
[Function] As a result of earnest research by the present inventor, the resist pattern
It has been revealed that the main factor that deteriorates the shape of the substrate is the basic substance (especially ammonia) in the atmosphere adsorbed on the surface of the base.

【0012】本発明の基板表面の汚染防止方法において
は、基板上に被処理層を形成した後に、この被処理層の
表面に炭素を一成分とする被覆膜を形成するようにして
いるため、この被覆膜に上記塩基性物質を吸収せしめる
ことができ、上述したような被処理層表面への塩基性物
質の吸着による表面汚染を防ぐことができる。従って、
高精度で良好なレジストパターンを得たり、汚染、腐
食、抵抗値の劣化がない信頼性の高い電極配線を形成す
ることができる。特に前記被覆膜として水溶性の高分子
膜を用いれば、比較的簡単な回転塗布法が利用できる。
さらに前記被覆膜として塩基性物質に対して吸着機能を
持つ酸性の高分子膜を用いるようにすれば、表面汚染の
防止に一層効果的である。
In the method of preventing contamination of the surface of the substrate of the present invention, after the layer to be treated is formed on the substrate, a coating film containing carbon as a component is formed on the surface of the layer to be treated. The basic substance can be absorbed in the coating film, and the surface contamination due to the adsorption of the basic substance on the surface of the layer to be treated as described above can be prevented. Therefore,
It is possible to obtain a highly accurate and favorable resist pattern and to form highly reliable electrode wiring free from contamination, corrosion, and resistance value deterioration. In particular, if a water-soluble polymer film is used as the coating film, a relatively simple spin coating method can be used.
Furthermore, if an acidic polymer film having a function of adsorbing a basic substance is used as the coating film, it is more effective in preventing surface contamination.

【0013】さらに本発明のレジストパタ−ンの形成方
法においては、まず基板上に被加工層を形成した後に、
この被加工層の表面に炭素を一成分とする被覆膜を形成
し、この後、前記被覆膜を除去することにより前記被加
工層の表面を露出せしめ、その後ただちにこの被加工層
の表面にレジスト膜を形成するようにしているため、こ
の被覆膜に上記塩基性物質を吸収せしめることができ、
前記被加工層と前記レジスト膜の間に雰囲気中の塩基性
物質が混入することを防ぐことができる。したがって前
記レジスト膜を露光し、現像した後のレジストパタ−ン
形状は極めて良好なものとなる。また純水および水溶液
で処理する、または酸素を含むプラズマ雰囲気中に暴露
する等の方法を用いることにより、前記被覆層を完全か
つ速やかに除去することが可能となる。
Further, in the method of forming a resist pattern of the present invention, after first forming a layer to be processed on a substrate,
A coating film containing carbon as a component is formed on the surface of the layer to be processed, and then the surface of the layer to be processed is exposed by removing the coating film, and immediately thereafter the surface of the layer to be processed. Since the resist film is formed on, it is possible to make the coating film absorb the basic substance,
It is possible to prevent a basic substance in the atmosphere from being mixed between the layer to be processed and the resist film. Therefore, the shape of the resist pattern after exposing and developing the resist film becomes extremely good. Further, by using a method of treating with pure water and an aqueous solution, or exposing to a plasma atmosphere containing oxygen, it becomes possible to completely and quickly remove the coating layer.

【0014】[0014]

【実施例】以下、本発明による基板表面汚染の防止方法
およびレジストパタ−ンの形成方法の実施例について、
図面を参照しながら詳細に説明する。 実施例1 図1は、本発明の一実施例の基板表面汚染の防止方法を
示す工程断面図である。
EXAMPLES Examples of the method for preventing substrate surface contamination and the method for forming a resist pattern according to the present invention will be described below.
A detailed description will be given with reference to the drawings. Embodiment 1 FIG. 1 is a process sectional view showing a method for preventing substrate surface contamination according to an embodiment of the present invention.

【0015】まず、図1(a)に示すごとく、シリコン
基板1を用意し、この基板1上に膜厚が80μmとなる
ようにボロンリンシリケ−トガラス(BPSG)膜2を
通常のCVD法により堆積させた。
First, as shown in FIG. 1A, a silicon substrate 1 is prepared, and a boron phosphorus silicate glass (BPSG) film 2 is deposited on the substrate 1 by an ordinary CVD method so as to have a thickness of 80 μm. It was

【0016】次いで図1(b)に示すごとく、重量平均
分子量10000の無水マレイン酸とアクリル酸共重合
体の5wt%水溶液を膜厚が20μmとなるように回転
塗布し、前記BPSG膜2上に被覆膜3を形成した。こ
のとき、前記BPSG膜堆積工程と被覆膜形成工程の間
の基板搬送は窒素雰囲気中で行い、基板表面が外気と接
触しないようにした。
Then, as shown in FIG. 1 (b), a 5 wt% aqueous solution of maleic anhydride and acrylic acid copolymer having a weight average molecular weight of 10,000 is spin-coated to a film thickness of 20 μm, and then applied onto the BPSG film 2. The coating film 3 was formed. At this time, the substrate was transported between the BPSG film deposition step and the coating film formation step in a nitrogen atmosphere so that the substrate surface did not come into contact with the outside air.

【0017】次に、この基板をアンモニア濃度が5pp
mのクリ−ンル−ム中に3日間放置した。しかる後に図
1(c)に示すごとく、前記基板表面を純水で30秒間
洗浄することにより、前記無水マレイン酸とアクリル酸
共重合体からなる被覆層3を除去し、前記BPSG膜2
表面を露出せしめた。
Next, this substrate is subjected to an ammonia concentration of 5 pp.
It was left for 3 days in the clean room of m. Thereafter, as shown in FIG. 1 (c), the substrate surface is washed with pure water for 30 seconds to remove the coating layer 3 made of the maleic anhydride and acrylic acid copolymer, and the BPSG film 2 is removed.
The surface was exposed.

【0018】その後、前記BPSG膜2表面の吸着アン
モニア量を調べたところ、基板1枚当たり20ngのア
ンモニアが検出された。吸着アンモニアの定量は、前記
基板を100mlの純水中に30分間浸漬して不純物抽
出を行った後、抽出液をイオンクロマトグラフ法で分析
することにより行った。ちなみに比較例として、前記無
水マレイン酸とアクリル酸共重合体からなる被覆膜3を
形成せずに、クリ−ンル−ム中で3日間放置したBPS
G膜表面からは、約700ngのアンモニアが検出され
た。これらの結果から、上記被覆膜3はアンモニアの吸
着防止に極めて有効であることが実証された。この基板
を用いれば、高精度で良好なレジストパターンを得た
り、アルミニウムやタングステン等で電極配線層を形成
する場合、汚染、腐食、抵抗値の劣化がない信頼性の高
い電極配線を形成したりすることができることが確認で
きた。
After that, when the amount of adsorbed ammonia on the surface of the BPSG film 2 was examined, 20 ng of ammonia was detected per substrate. The amount of adsorbed ammonia was quantified by immersing the substrate in 100 ml of pure water for 30 minutes to extract impurities, and then analyzing the extract by ion chromatography. By the way, as a comparative example, BPS was left for 3 days in a clean room without forming the coating film 3 made of the maleic anhydride and acrylic acid copolymer.
About 700 ng of ammonia was detected from the G film surface. From these results, it was proved that the coating film 3 was extremely effective in preventing adsorption of ammonia. By using this substrate, it is possible to obtain a highly accurate and good resist pattern, and when forming an electrode wiring layer of aluminum, tungsten, etc., form a highly reliable electrode wiring without contamination, corrosion, or resistance value deterioration. It was confirmed that you can do it.

【0019】なお本実施例においては被覆膜3を純水洗
浄により除去するようにしたが、これ以外にも例えばテ
トラメチルアンモニウムヒドロキシド水溶液等の塩基性
水溶液で被覆膜3を除去することも可能である。なお、
この水溶液は残存しても、その後のプロセス(特にレジ
ストプロセス)に対しては影響がない。
In this embodiment, the coating film 3 is removed by washing with pure water. However, other than this, the coating film 3 may be removed with a basic aqueous solution such as an aqueous solution of tetramethylammonium hydroxide. Is also possible. In addition,
Even if this aqueous solution remains, it does not affect the subsequent processes (particularly the resist process).

【0020】またシリコン基板上の被処理層は、スパッ
タ法により形成した炭素膜であっても良い。この場合も
上記方法と同様に無水マレイン酸とアクリル酸共重合体
からなる被覆膜を形成し、クリ−ンル−ム中で3日間放
置したところ、炭素膜表面の吸着アンモニア量が被覆膜
を形成しなかったものに比べて20分の1以下に低減す
ることが確認された。このとき使用した炭素膜は、レジ
スト膜をパタ−ン露光する際の反射防止膜として好適に
用いられるものである。 実施例2
The layer to be processed on the silicon substrate may be a carbon film formed by a sputtering method. Also in this case, a coating film made of a maleic anhydride and an acrylic acid copolymer was formed in the same manner as in the above method, and the coating film was left standing in a clean room for 3 days. It was confirmed that the amount was reduced to 1/20 or less as compared with the case where the film was not formed. The carbon film used at this time is preferably used as an antireflection film when the resist film is subjected to pattern exposure. Example 2

【0021】本実施例は、基板を酸素プラズマ雰囲気中
に暴露し、プラズマアッシングにより前記被覆膜3を除
去することを特徴としており、それ以外は、前記実施例
1と同様である。本実施例においても前記実施例1と同
様にBPSG膜の堆積、被覆膜の形成ならびにクリ−ン
ル−ム中での放置実験を行った。この場合にもBPSG
膜表面の吸着アンモニア量が被覆膜を形成しなかったも
のに比べて大幅に低減することが確認された。 実施例3
The present embodiment is characterized in that the substrate is exposed to an oxygen plasma atmosphere and the coating film 3 is removed by plasma ashing. Other than that, it is the same as the first embodiment. Also in this example, as in the case of Example 1, the deposition of the BPSG film, the formation of the coating film, and the leaving experiment in the clean room were conducted. Also in this case BPSG
It was confirmed that the amount of adsorbed ammonia on the film surface was significantly reduced as compared with the case where the coating film was not formed. Example 3

【0022】図2は、本発明の一実施例のレジストパタ
−ンの形成方法を示す工程断面図である。また、図3
は、従来方法により形成したレジストパタ−ンの断面形
状を示す図である。なお、図1と同一部分には同一符号
を付し詳細な説明は省略する。前記実施例1と同様な方
法で、シリコン基板1上にBPSG膜2の堆積(図2
(a))、被覆膜3の形成(図2(b))、ならびにク
リ−ンル−ム中での放置実験を行った。この基板を、ア
ンモニア濃度が1ppb以下のレジスト処理装置内に配
置し、基板表面を純水で30秒間洗浄して前記被覆膜3
を除去し、BPSG膜2表面を露出せしめた(図2
(c))。なおここで、実施例2に示した酸素プラズマ
処理によって、被覆膜3を除去しても良い。
2A to 2D are sectional views showing steps of a method of forming a resist pattern according to an embodiment of the present invention. Also, FIG.
FIG. 6 is a view showing a cross-sectional shape of a resist pattern formed by a conventional method. The same parts as those in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted. The BPSG film 2 was deposited on the silicon substrate 1 in the same manner as in Example 1 (see FIG.
(A)), the formation of the coating film 3 (FIG. 2 (b)), and the standing experiment in a clean room were conducted. The substrate is placed in a resist processing apparatus having an ammonia concentration of 1 ppb or less, and the surface of the substrate is washed with pure water for 30 seconds to remove the coating film 3
Was removed to expose the surface of the BPSG film 2 (see FIG. 2).
(C)). Here, the coating film 3 may be removed by the oxygen plasma treatment shown in the second embodiment.

【0023】その後ただちに前記BPSG膜2表面を非
アミン系のシランカップリング剤で20秒間プライマ−
処理した後、スルホニウム塩系の光酸発生剤とポリ−p
−ヒドロキシスチレンのエステル化合物を含む溶液を回
転塗布し、100℃のホットプレ−ト上で2分間ベ−ク
して膜厚1.0μmのレジスト4膜を形成した(図2
(d))。次に、波長248.4nmのKrFエキシマ
レ−ザを光源とする縮小投影露光装置を用い、マスクを
介して前記レジスト膜4にパタ−ン露光を行った。
Immediately thereafter, the surface of the BPSG film 2 was primed for 20 seconds with a non-amine silane coupling agent.
After the treatment, a sulfonium salt-based photoacid generator and poly-p
A solution containing an ester compound of hydroxystyrene was spin-coated and baked on a hot plate at 100 ° C. for 2 minutes to form a resist 4 film having a thickness of 1.0 μm (FIG. 2).
(D)). Next, the resist film 4 was pattern-exposed through a mask using a reduction projection exposure apparatus using a KrF excimer laser having a wavelength of 248.4 nm as a light source.

【0024】その後、前記基板を110℃のホットプレ
−ト上で1分間ベ−クした後、前記レジスト膜4を2.
38wt%のテトラメチルアンモニウムヒドロキシド水
溶液で80秒間現像することにより、線幅0.4μmの
レジストパタ−ンを形成した(図2(e))。なお、前
記被覆膜3の除去工程から前記現像工程までは、すべて
アンモニウム濃度が1ppb以下の前記レジスト処理装
置内で連続処理によって行なった。図2(e)に示すご
とく、本実施例によれば、線幅0.4μmの微細なレジ
ストパタ−ンを良好な輪郭で形成できた。
Thereafter, the substrate was baked on a hot plate at 110 ° C. for 1 minute, and then the resist film 4 was applied to 2.
By developing with a 38 wt% tetramethylammonium hydroxide aqueous solution for 80 seconds, a resist pattern having a line width of 0.4 μm was formed (FIG. 2 (e)). It should be noted that, from the step of removing the coating film 3 to the step of developing, all were performed by continuous processing in the resist processing apparatus having an ammonium concentration of 1 ppb or less. As shown in FIG. 2E, according to this example, a fine resist pattern having a line width of 0.4 μm could be formed with a good contour.

【0025】また、基板を酸素プラズマ雰囲気に暴露す
ることにより前記被覆膜を除去する以外は、上記と同様
に方法でレジストパタ−ンを形成した場合にも、線幅
0.4μmの微細なレジストパタ−ンを良好な輪郭で形
成できた。
Also, when a resist pattern is formed by the same method as above except that the coating film is removed by exposing the substrate to an oxygen plasma atmosphere, a fine resist pattern having a line width of 0.4 μm is formed. Was formed with a good contour.

【0026】一方、被覆膜による基板面の保護を行わず
に、レジストパタ−ンを形成した従来方法の場合には、
図3に示すごとく、レジストパタ−ンの底部での形状の
劣化(下地との界面における難溶化層)が認められた。
これより本発明のレジストパタ−ンの形成方法が、下地
からの影響を低減する上で極めて有効であることが明か
となった。
On the other hand, in the case of the conventional method in which the resist pattern is formed without protecting the substrate surface with the coating film,
As shown in FIG. 3, deterioration of the shape at the bottom of the resist pattern (a poorly soluble layer at the interface with the base) was observed.
From this, it is clear that the resist pattern forming method of the present invention is extremely effective in reducing the influence from the base.

【0027】なお、上記した実施例1乃至3では、被覆
膜として無水マレイン酸とアクリル酸共重合体膜を用い
たが、ポリビニルアルコ−ル、ポリビニルフェノ−ル、
ポリマレイン酸等の水溶性の高分子膜や、ブチルゴムで
も良い。また、レジストとしては、特に化学増幅レジス
トに対して効果が大きい。さらにまた、本発明の要旨を
逸脱しない範囲で種々変形して実施可能である。
Although the maleic anhydride and acrylic acid copolymer film was used as the coating film in Examples 1 to 3 described above, polyvinyl alcohol, polyvinyl phenol,
A water-soluble polymer film such as polymaleic acid or butyl rubber may be used. Further, as a resist, the effect is particularly great for a chemically amplified resist. Furthermore, various modifications can be made without departing from the scope of the present invention.

【0028】[0028]

【発明の効果】以上詳述してきたように、本発明の基板
表面の汚染防止方法およびレジストパタ−ンの形成方法
下地基板からの影響を受けやすいレジストをパタ−ニン
グする場合に良好な輪郭のパタ−ンを形成できる。
As described above in detail, the method of preventing contamination of the substrate surface and the method of forming the resist pattern according to the present invention has a good contour pattern when the resist which is easily influenced by the underlying substrate is patterned. -Can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施例の基板表面汚染の防止
方法を示す工程断面図
FIG. 1 is a process sectional view showing a method for preventing substrate surface contamination according to a first embodiment of the present invention.

【図2】 本発明の第3の実施例の方法により形成した
レジストパタ−ンの断面形状を示す図
FIG. 2 is a view showing a cross-sectional shape of a resist pattern formed by the method of the third embodiment of the present invention.

【図3】 従来方法により形成したレジストパタ−ンの
断面形状を示す図
FIG. 3 is a view showing a cross-sectional shape of a resist pattern formed by a conventional method.

【符号の説明】[Explanation of symbols]

1シリコン基板 2BPSG膜 3被覆膜 4レジスト膜 1 silicon substrate 2 BPSG film 3 coating film 4 resist film

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 基板上の被処理層の表面に塩基性物質を
吸収する炭素を一成分とする被覆膜を形成し、この後、
前記被覆膜を除去することを特徴とする基板表面汚染の
防止方法。
1. A coating film containing carbon as a component for absorbing a basic substance is formed on the surface of a layer to be processed on a substrate, and thereafter,
A method for preventing substrate surface contamination, comprising removing the coating film.
【請求項2】 前記被覆膜は水溶性の高分子膜であるこ
とを特徴とする請求項1記載の基板表面汚染の防止方
法。
2. The method for preventing substrate surface contamination according to claim 1, wherein the coating film is a water-soluble polymer film.
【請求項3】 前記被覆膜は酸性の高分子膜であること
を特徴とする請求項1記載及び請求項2記載の基板表面
汚染の防止方法。
3. The method for preventing substrate surface contamination according to claim 1, wherein the coating film is an acidic polymer film.
【請求項4】 前記被処理層は金属膜、シリサイド膜、
酸化膜、窒化膜およびスパッタカ−ボン膜であることを
特徴とする請求項1記載の基板表面汚染の防止方法。
4. The processed layer is a metal film, a silicide film,
2. The method for preventing substrate surface contamination according to claim 1, wherein the method is an oxide film, a nitride film or a sputter carbon film.
【請求項5】 基板上の被加工層の表面に炭素を一成分
とする被覆膜を形成する工程と、この被覆膜を除去する
ことにより前記被加工層の表面を露出する工程と、この
被加工層の表面にレジスト膜を形成する工程と、このレ
ジスト膜を露光し、現像する工程とを含むことを特徴と
するレジストパターンの形成方法。
5. A step of forming a coating film containing carbon as a component on the surface of the layer to be processed on the substrate, and a step of exposing the surface of the layer to be processed by removing the coating film. A method of forming a resist pattern, comprising: a step of forming a resist film on the surface of the layer to be processed; and a step of exposing and developing the resist film.
【請求項6】 前記被覆膜は水溶性の高分子膜であるこ
とを特徴とする請求項5記載のレジストパタ−ンの形成
方法。
6. The method of forming a resist pattern according to claim 5, wherein the coating film is a water-soluble polymer film.
【請求項7】 前記被覆膜を純水で除去することを特徴
とする請求項4記載のレジストパタ−ンの形成方法。
7. The method of forming a resist pattern according to claim 4, wherein the coating film is removed with pure water.
【請求項8】 前記基板を酸素を含むプラズマ雰囲気中
に暴露することにより、前記被覆膜を除去することを特
徴とする請求項5記載のレジストパタ−ンの形成方法。
8. The method for forming a resist pattern according to claim 5, wherein the coating film is removed by exposing the substrate to a plasma atmosphere containing oxygen.
【請求項9】 前記被加工層は金属膜、シリサイド膜、
酸化膜、窒化膜およびスパッタカ−ボン膜であることを
特徴とする請求項5記載のレジストパタ−ンの形成方
法。
9. The processed layer is a metal film, a silicide film,
6. The method of forming a resist pattern according to claim 5, wherein the method is an oxide film, a nitride film and a sputter carbon film.
JP3723593A 1993-02-26 1993-02-26 Method of preventing contamination of wafer surface and method of forming resist pattern Pending JPH06252037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3723593A JPH06252037A (en) 1993-02-26 1993-02-26 Method of preventing contamination of wafer surface and method of forming resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3723593A JPH06252037A (en) 1993-02-26 1993-02-26 Method of preventing contamination of wafer surface and method of forming resist pattern

Publications (1)

Publication Number Publication Date
JPH06252037A true JPH06252037A (en) 1994-09-09

Family

ID=12491949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3723593A Pending JPH06252037A (en) 1993-02-26 1993-02-26 Method of preventing contamination of wafer surface and method of forming resist pattern

Country Status (1)

Country Link
JP (1) JPH06252037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090974A1 (en) * 2003-04-08 2004-10-21 Matsushita Electric Industrial Co., Ltd. Electronic device and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090974A1 (en) * 2003-04-08 2004-10-21 Matsushita Electric Industrial Co., Ltd. Electronic device and its manufacturing method

Similar Documents

Publication Publication Date Title
EP0397988B1 (en) Plasma processing with metal mask integration
JP3287569B2 (en) Reduction of metal ion content in top anti-reflective coating for photoresist
US4808511A (en) Vapor phase photoresist silylation process
JP2669581B2 (en) Method for forming positive tone resist image
JP3810309B2 (en) Manufacturing method of semiconductor device
JP5306755B2 (en) Substrate processing liquid and resist substrate processing method using the same
US20100233449A1 (en) Method of forming resist pattern
JPH0642471B2 (en) Pattern formation method
JP3504247B2 (en) Manufacturing method of semiconductor device
US6420271B2 (en) Method of forming a pattern
US5789141A (en) Photolithography of chemically amplified resist utilizing 200°C minimum heat treatment of uncoated substrate
EP0940719A2 (en) Photoresist film and method for forming a pattern thereof
JPH0442231A (en) Pattern forming method
JP2008102343A (en) Developed resist substrate processing liquid and method of processing resist substrate using the same
JP2002198283A (en) Resist pattern formation method
JPH06252037A (en) Method of preventing contamination of wafer surface and method of forming resist pattern
JP2000512394A (en) Method for reducing metal ions in aminochromatic color-forming materials and use of same in the synthesis of bottom metal anti-reflective coating materials containing little metal for photoresists
US6371134B2 (en) Ozone cleaning of wafers
US7087518B2 (en) Method of passivating and/or removing contaminants on a low-k dielectric/copper surface
JP3128335B2 (en) Pattern formation method
US20040106070A1 (en) Method to enhance resolution of a chemically amplified photoresist
US6649525B1 (en) Methods and systems for controlling resist residue defects at gate layer in a semiconductor device manufacturing process
US5213917A (en) Plasma processing with metal mask integration
US7799514B1 (en) Surface treatment with an acidic composition to prevent substrate and environmental contamination
TWI793100B (en) Method of patterning and method of preventing photoresist from poisoning