JPH06251781A - Manufacture of diaphragm for fuel cell having electrode catalyst layer on surface - Google Patents

Manufacture of diaphragm for fuel cell having electrode catalyst layer on surface

Info

Publication number
JPH06251781A
JPH06251781A JP5038528A JP3852893A JPH06251781A JP H06251781 A JPH06251781 A JP H06251781A JP 5038528 A JP5038528 A JP 5038528A JP 3852893 A JP3852893 A JP 3852893A JP H06251781 A JPH06251781 A JP H06251781A
Authority
JP
Japan
Prior art keywords
electrode catalyst
fuel cell
ion exchange
sulfonic acid
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5038528A
Other languages
Japanese (ja)
Inventor
Yasuhide Noaki
康秀 野秋
Hiroyoshi Takarada
博良 宝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5038528A priority Critical patent/JPH06251781A/en
Publication of JPH06251781A publication Critical patent/JPH06251781A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide an easily manufactured and stable diaphragm for a fuel cell by introducing a sulfonic acid group in a fluorine polymer sheet after specific mixed solution is applied on the fluorine polymer sheet and it is dried and heat treatment is carried out. CONSTITUTION:Mixed solution of carbon particles carrying electrode catalyst particulates and fluorine contained sulfonic acid polymer is applied on a fluorine polymer sheet, and it is dried and heat treatment is carried out within a specific temperature range. A sulfonic acid group is introduced in this polymer sheet, and a diaphragm for a fuel cell is obtained. In this diaphragm, electrode catalyst layers 27 are applied on both sides of an ion exchange membrane 26, and the carbon particles 28 carrying the electrode catalyst particulates 29 are contained in the electrode catalyst layers 27, and these are contacted partially with each other, so that mutual electric conductivity can be secured. Proper pores 31 exist between the carbon particles, and play a role as a flow hole of gas to the electrode catalyst layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池を構成する隔
膜上に電極触媒層を有する燃料電池用隔膜の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fuel cell membrane having an electrode catalyst layer on the membrane constituting a fuel cell.

【0002】[0002]

【従来の技術】近年、燃料電池はクリーンな電気エネル
ギー供給源として注目されており、特にその中で、イオ
ン交換膜を用いた燃料電池は、作動温度が100℃以下
と低くても、そのエネルギー密度が高いことから、移動
用の電源として例えば電気自動車の電源や、簡易補助電
源等として期待されている。しかし、現状ではまだ実用
的な電極とイオン交換膜との接合方法は確立されておら
ず、そのため性能も一定していない。
2. Description of the Related Art In recent years, fuel cells have been attracting attention as a clean electric energy supply source. In particular, fuel cells using an ion-exchange membrane have a low operating energy of 100 ° C. or less. Due to its high density, it is expected to be used as a power source for transportation such as a power source for electric vehicles and a simple auxiliary power source. However, at present, a practical method for joining the electrode and the ion exchange membrane has not been established yet, and therefore the performance is not constant.

【0003】燃料電池用隔膜と電極との接合体として必
要な要素の中で特に重要なものは、電極と隔膜との接合
面での電気抵抗が低いこと、隔膜及びスルホン酸ポリマ
ーの電気抵抗が低いこと、過剰なガス透過性を有しない
こと、長期間の使用に対して化学的耐久性や安定性に優
れていること及び物理的な強度が強いこと等が上げられ
る。
Among the elements required for the assembly of the fuel cell membrane and the electrode, particularly important are the low electrical resistance at the interface between the electrode and the membrane, and the electrical resistance of the membrane and the sulfonic acid polymer. It is low, does not have an excessive gas permeability, has excellent chemical durability and stability for long-term use, and has strong physical strength.

【0004】現在用いられている燃料電池用のフッ素系
のイオン交換膜は、イオン交換膜法クロルアルカリ電解
で大量に使用されているものとポリマー構造は類似のも
のであり、例えばデュポン社製のナフィオン(登録商
標)等の酸型のものがよく用いられている。ガス拡散電
極としては、一般的には活性炭のようなカーボン粒子に
微細な白金粒子を担持させたものとテトラフルオロエチ
レン粉末を混合し熱プレス成形した、ガス透過性と適度
な疎水性を持つものが用いられている。このタイプのガ
ス拡散電極としてE−TEK社製の電極が多く使用され
ている。
Fluorine-based ion exchange membranes currently used for fuel cells have polymer structures similar to those used in large quantities in ion exchange membrane chloralkali electrolysis, for example those manufactured by DuPont. An acid type such as Nafion (registered trademark) is often used. As the gas diffusion electrode, generally, carbon particles such as activated carbon on which fine platinum particles are supported and tetrafluoroethylene powder are mixed and hot-pressed, and have gas permeability and moderate hydrophobicity. Is used. Electrodes made by E-TEK are often used as this type of gas diffusion electrode.

【0005】しかし、このフッ素系のイオン交換膜とガ
ス拡散電極の接合体を形成するにあたっては、燃料電池
隔膜であるイオン交換膜とガス拡散電極との接合界面で
の接着状態が不安定なため、水分やイオンの移動抵抗が
高まり、電気抵抗が大きくなる等の不都合が生じやすか
った。更に、電極中に含まれる高価な電極触媒の利用効
率が低いと言う問題もあった。
However, when forming the bonded body of the fluorine-based ion exchange membrane and the gas diffusion electrode, the adhesion state at the bonded interface between the ion exchange membrane, which is the fuel cell diaphragm, and the gas diffusion electrode is unstable. However, inconveniences such as increased movement resistance of water and ions and increased electric resistance are likely to occur. Further, there is a problem that the utilization efficiency of the expensive electrode catalyst contained in the electrode is low.

【0006】そこでイオン交換膜とガス拡散電極を接合
する際には、あらかじめイオン交換膜と類似のイオン交
換樹脂成分の溶液を電極の触媒面に一定量塗布し乾燥さ
せた上で熱プレスにより一体に接合している。イオン交
換樹脂成分の溶液は、例えばデュポン社製のナフィオン
(登録商標)等の酸型のイオン交換樹脂を水とプロパノ
ールやエチルアルコールと言った水と混合可能な有機溶
剤の混合液に約5%溶解したものがよく用いられてい
る。
Therefore, when the ion exchange membrane and the gas diffusion electrode are joined, a predetermined amount of a solution of an ion exchange resin component similar to the ion exchange membrane is applied in advance to the catalyst surface of the electrode, dried, and then integrated by hot pressing. Is joined to. The solution of the ion exchange resin component is, for example, about 5% in a mixed solution of water and an organic solvent such as propanol or ethyl alcohol, which is an acid type ion exchange resin such as Nafion (registered trademark) manufactured by DuPont. A dissolved product is often used.

【0007】しかし、ガス拡散電極にイオン交換樹脂成
分を含んだ溶液を塗布する際の、塗布量や、イオン交換
樹脂成分を含んだ溶液の粘度や濃度、皮膜を形成する際
の乾燥条件等により、電極とイオン交換膜の接合体の燃
料電池作動時の性能にバラツキが生じやすく再現性のあ
る結果は得にくかった。又、電極自体も高価で、大型の
実用的なサイズの電極とイオン交換膜の接合体を得よう
とすれば、多大な労力と手数を必要とし、大量生産には
不向きであった。
However, when the solution containing the ion exchange resin component is applied to the gas diffusion electrode, the coating amount, the viscosity and the concentration of the solution containing the ion exchange resin component, the drying conditions for forming the film, etc. However, it was difficult to obtain reproducible results because the performance of the assembly of the electrode and the ion exchange membrane during fuel cell operation tended to vary. Further, the electrode itself is expensive, and it is not suitable for mass production because it requires a great deal of labor and effort to obtain a large-sized practical size electrode / ion exchange membrane assembly.

【0008】その他には、Mahlon S.Wilson and Shmsho
n Gottesfeld(J.Electrochem.Soc.,Vol.139,February 1
992)に示されるようにガス拡散電極の構成成分であるカ
ーボン粒子に白金微粒子を担持した粉末とイオン交換樹
脂成分を酸型からナトリウム等の塩型に置換したものを
含んだ溶液を混合して、ナトリウム等の塩型に置換した
イオン交換膜上に塗布し乾燥させて、その後160℃〜
190℃でアニーリングして一体化し、更にイオン交換
樹脂成分を塩型から酸型に置換する方法もある。
Other than that, Mahlon S. Wilson and Shmsho
n Gottesfeld (J. Electrochem. Soc., Vol.139, February 1
As shown in 992), a solution containing a powder in which platinum fine particles are supported on carbon particles, which is a constituent component of the gas diffusion electrode, and a solution in which the ion exchange resin component is replaced from an acid type to a salt type such as sodium is mixed. , It is coated on an ion-exchange membrane that has been replaced with a salt type such as sodium, and dried.
There is also a method of annealing at 190 ° C. to integrate them, and further substituting the ion exchange resin component from the salt form to the acid form.

【0009】しかし、この方法でもイオン交換樹脂成分
を含む溶液は、例えばナトリウム等により塩型にすると
溶解しにくく扱いにくい上、ナトリウム等の塩型のイオ
ン交換膜にこのようなイオン交換樹脂成分を含む溶液を
塗布し乾燥させる場合、皮膜が剥離したりヒビができた
りしやすく均質なものは得にくい欠点があった。したが
って、このままの方法で大型のものを大量に製造するこ
とは非常に難しかった。
However, even with this method, the solution containing the ion exchange resin component is difficult to dissolve if it is made into a salt form with, for example, sodium and is difficult to handle, and such an ion exchange resin component is added to a salt type ion exchange membrane such as sodium. When the solution containing the composition is applied and dried, there is a drawback that the film is easily peeled off or cracked, and it is difficult to obtain a homogeneous solution. Therefore, it was very difficult to mass-produce large-sized ones by this method.

【0010】これらの方法は電極触媒の利用率やイオン
交換 膜との接合状態は大幅に改良されてはいる。しか
しいずれもまだ実験室的に手間をかけて作成してゆくレ
ベルにすぎず、大きなサイズでしかも大量に安定した品
質でイオン交換膜と電極との接合体を工業的に得ること
は不可能に近かった。
In these methods, the utilization rate of the electrode catalyst and the bonding state with the ion exchange membrane are greatly improved. However, all of them are still laborious in the laboratory, and it is impossible to industrially obtain a bonded body of an ion exchange membrane and an electrode with a large size and a large amount of stable quality. It was close.

【0011】[0011]

【発明が解決しようとする課題】本発明は、製造が簡単
で且つ安定した品質で大量に生産可能な、イオン交換膜
上に電極触媒層を有した燃料電池用隔膜の製造方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention provides a method for producing a membrane for a fuel cell having an electrode catalyst layer on an ion exchange membrane, which is easy to produce and can be mass-produced with stable quality. Is.

【0012】[0012]

【課題を解決するための手段】本発明者等は大量に製造
しやすく品質も安定したイオン交換膜と電極との接合体
を作成する上で、あらかじめ電極触媒層を有する燃料電
池用隔膜を製造する方法で種々検討した結果、本発明を
完成させたものである。本発明は、電極触媒の微粒子を
担持したカーボン粒子と含フッ素スルホン酸ポリマーと
の混合溶液を、スルホン酸前駆体を有するフッ素系ポリ
マーシート上に塗布し、100℃以下で乾燥した後、1
20℃〜250℃の温度範囲で熱処理し、更にこのスル
ホン酸前駆体を有するフッ素系ポリマーシートにスルホ
ン酸基を導入する、表面に電極触媒層を有する燃料電池
用隔膜製造方法である。
Means for Solving the Problems The present inventors have manufactured a membrane for a fuel cell having an electrode catalyst layer in advance in order to produce a bonded body of an ion exchange membrane and an electrode which is easy to manufacture in a large amount and has stable quality. As a result of various studies by the method described above, the present invention has been completed. In the present invention, a mixed solution of carbon particles carrying fine particles of an electrode catalyst and a fluorinated sulfonic acid polymer is applied on a fluoropolymer sheet having a sulfonic acid precursor, dried at 100 ° C. or lower, and then 1
A method for producing a membrane for a fuel cell having an electrode catalyst layer on the surface, which comprises heat-treating in a temperature range of 20 ° C to 250 ° C, and further introducing a sulfonic acid group into the fluoropolymer sheet having the sulfonic acid precursor.

【0013】燃料電池は、電池に供給される燃料の酸化
により化学的エネルギーを直接電気エネルギー変換する
電気化学装置であり、その構造によりいくつかの種類が
あるが、本発明が利用できるのは、電解質として固体高
分子電解質、特にフッ素系プロトン交換型ポリマーフィ
ルムを用いた燃料電池である。以下本発明においては、
フッ素系プロトン交換ポリマーフィルムのことをイオン
交換膜と言う。
A fuel cell is an electrochemical device that directly converts chemical energy into electrical energy by oxidizing a fuel supplied to the cell, and although there are several types depending on its structure, the present invention can be used. A fuel cell using a solid polymer electrolyte as an electrolyte, particularly a fluorine-based proton exchange polymer film. Hereinafter, in the present invention,
The fluorine-based proton exchange polymer film is called an ion exchange membrane.

【0014】本発明が適用される燃料電池は、一般にイ
オン交換膜をはさんでその両側に電極が接合されてお
り、ガス拡散電極の一方には燃料(例えば水素)が供給
され、もう一方には酸化体(例えば酸素又は空気)が供
給されることにより電極反応を生ずる構造になってい
る。燃料電池内では、電極触媒により供給された燃料が
酸化されプロトン即ち水素イオンを発生し、イオン交換
膜内をイオン伝導によりもう一方の電極に到達し、酸化
体により水を生成する反応が起こっている。
In a fuel cell to which the present invention is applied, electrodes are bonded to both sides of an ion exchange membrane in general, and fuel (for example, hydrogen) is supplied to one of the gas diffusion electrodes and the other is supplied to the other. Has a structure in which an electrode reaction occurs when an oxidant (for example, oxygen or air) is supplied. In the fuel cell, the fuel supplied by the electrocatalyst is oxidized to generate protons, that is, hydrogen ions, and reaches the other electrode by ion conduction in the ion exchange membrane to cause a reaction to generate water by the oxidant. There is.

【0015】イオン交換膜は燃料電池の電極と密接に接
合されており、実質的に電極と一体構造に形成されて用
いられている。したがって、イオン交換膜は燃料電池内
において、水素イオンを伝導するための電解質としての
役割と、燃料と酸化体が加圧下においても直接混合しな
いための隔膜としての役割の両方を備える必要がある。
The ion exchange membrane is intimately bonded to the electrode of the fuel cell, and is used by being substantially formed integrally with the electrode. Therefore, the ion exchange membrane must have both a role as an electrolyte for conducting hydrogen ions in the fuel cell and a role as a diaphragm for preventing the fuel and the oxidant from directly mixing even under pressure.

【0016】このような燃料電池に用いられるイオン交
換膜は、ポリマー主鎖に化学的に結合した複数の酸官能
基を備えたプロトン交換型ポリマーフィルムであり、例
えばスルホン化ポリスチレンであってもよく、実質的に
フッ素化されたスルホン酸ポリマーであっても良い。し
かし耐久性の面から、フッ素化されたスルホン酸ポリマ
ーが使われる場合が多い。
The ion exchange membrane used in such a fuel cell is a proton exchange type polymer film having a plurality of acid functional groups chemically bonded to the polymer main chain, and may be, for example, sulfonated polystyrene. It may be a substantially fluorinated sulfonic acid polymer. However, in terms of durability, fluorinated sulfonic acid polymers are often used.

【0017】本発明においては、まずイオン交換膜とし
てスルホン酸基を導入する前のスルホン酸前駆体を含ん
だ状態の膜状物に、スルホン酸型のイオン交換樹脂成分
を含む溶液に電極触媒粒子を担持させたカーボン粒子粉
末を分散したものを直接塗布し、100℃以下の温度で
乾燥し電極触媒コーティング層を形成させ、更に120
℃〜250℃の温度範囲で熱処理する。このようにする
と、電極触媒を担持したカーボン粒子を含む層が均質で
強固なものとなり剥離や脱落もないものとなる。
In the present invention, first, an electrode catalyst particle is added to a solution containing a sulfonic acid type ion exchange resin component in a film-like material containing a sulfonic acid precursor before introduction of a sulfonic acid group as an ion exchange membrane. A dispersion of the carbon particle powder supporting is directly applied and dried at a temperature of 100 ° C. or lower to form an electrode catalyst coating layer.
Heat treatment is performed in the temperature range of ℃ to 250 ℃. By doing so, the layer containing the carbon particles supporting the electrode catalyst becomes homogeneous and strong, and does not peel or fall off.

【0018】形成した電極触媒層を有する膜状物は、更
にその後、例えばジメチルスルオキシドと苛性カリの混
合液で加水分解し、更に硫酸溶液に浸漬し、酸型のイオ
ン交換膜と電極触媒層の接合体とする処理をしても何ら
影響を受けず非常に都合のよいものであった。しかし、
イオン交換樹脂成分を含む溶液を塗布した後の乾燥の温
度が10℃以下であると、乾燥に時間がかかるので好ま
しくない。又100℃以上の温度で乾燥すると乾燥速度
が早すぎて、コーティングした電極触媒層中に気泡が生
じたりあるいは一部に剥離が生じたりするので好ましく
ない。したがって、乾燥温度は20℃〜100℃が望ま
しく、さらに好ましくは40℃〜80℃の温度範囲であ
る。
The formed film having the electrode catalyst layer is further hydrolyzed with, for example, a mixed solution of dimethylsulfoxide and caustic potash, and further immersed in a sulfuric acid solution to form an acid type ion exchange membrane and an electrode catalyst layer. It was very convenient because it was not affected by the treatment of the joined body. But,
If the temperature for drying after applying the solution containing the ion exchange resin component is 10 ° C. or less, it takes time to dry, which is not preferable. Also, drying at a temperature of 100 ° C. or higher is not preferable because the drying speed is too fast and bubbles are generated in the coated electrode catalyst layer, or peeling is partially generated. Therefore, the drying temperature is preferably 20 ° C to 100 ° C, and more preferably 40 ° C to 80 ° C.

【0019】イオン交換樹脂成分を塗布後十分に乾燥す
れば、温度を100℃以上に上げてもなんらさしつかえ
ない。むしろコーティングした電極触媒層の強度を向上
させるためには、120℃〜250℃の温度範囲で熱処
理するとなお一層有効である。120℃より低い温度で
は十分な強度のコーティング層が得られず、後の処理に
よりコーティング層が剥離したりする場合があり好まし
くない。又250℃より高い温度で熱処理するとコーテ
ィング皮膜の変質等が生じてやはり好ましくない。
If the ion-exchange resin component is applied and then dried sufficiently, it does not matter even if the temperature is raised to 100 ° C. or higher. Rather, heat treatment in a temperature range of 120 ° C. to 250 ° C. is even more effective in order to improve the strength of the coated electrode catalyst layer. At a temperature lower than 120 ° C., a coating layer having sufficient strength cannot be obtained, and the coating layer may be peeled off by a subsequent treatment, which is not preferable. Further, heat treatment at a temperature higher than 250 ° C. is not preferable because the coating film is deteriorated.

【0020】このような方法により如何なる理由で密着
性の優れた電極とイオン交換膜の接合体が得られるかは
明らかではないが、コーティングした電極触媒層のイオ
ン交換樹脂成分が乾燥状態のままでは緻密な構造でな
く、120℃以上で熱処理するとイオン交換樹脂成分が
分子レベルで安定な構造になる可能性があることや膜状
シートにイオン交換基が導入されていないので水分が殆
どないことが原因している可能性もある。
It is not clear for what reason a bonded body of an electrode and an ion exchange membrane having excellent adhesion can be obtained by such a method, but if the ion exchange resin component of the coated electrode catalyst layer remains in a dry state. There is a possibility that the ion-exchange resin component will have a stable structure at the molecular level when heat-treated at 120 ° C or higher, rather than a dense structure, and that there is almost no water because no ion-exchange group is introduced into the membrane sheet. It may also be the cause.

【0021】このような製造方法で工業的に電極触媒層
を有するイオン交換膜を製造する場合、スルホン酸前駆
体を含んだシートの巻き物に例えばスプレー法等により
イオン交換樹脂成分と電極触媒担持カーボン粒子の混合
溶液を塗布し、引き続き40℃〜60℃で乾燥する方法
等を採用することにより連続的に接合体を形成できるの
で非常に能率的で都合がよい。
When an ion exchange membrane having an electrode catalyst layer is industrially produced by such a production method, a roll of a sheet containing a sulfonic acid precursor is applied to an ion exchange resin component and an electrode catalyst supporting carbon by, for example, a spray method. It is very efficient and convenient because a joined body can be continuously formed by adopting a method of applying a mixed solution of particles and then drying at 40 ° C to 60 ° C.

【0022】本発明に用いるスルホン酸前駆体を含む膜
状物シートは、化学的安定性の面から、フッ素系ポリマ
ーであって、次の化学式を繰り返し単位として有するポ
リマーが好ましい。
The film sheet containing the sulfonic acid precursor used in the present invention is preferably a fluorine-based polymer, which has the following chemical formula as a repeating unit, from the viewpoint of chemical stability.

【0023】[0023]

【化1】 [Chemical 1]

【0024】フッ素系ポリマーにイオン交換基を導入し
て得られるイオン交換膜の当量重量は、特に限定されな
いが、1100g/eq〜700g/eqが電気伝導性
の面から好ましい。当量重量が700g/eq以下であ
ると、ポリマーシートを形成する際に強度や製膜性の面
で問題があるので好ましくない。又、本発明に用いられ
る、イオン交換樹脂成分を含む溶液としては、接合に用
いるイオン交換膜と類似の成分であることが望ましく、
例えば次の化学式を繰り返し単位として有するポリマー
であることが好ましい。
The equivalent weight of the ion exchange membrane obtained by introducing an ion exchange group into the fluoropolymer is not particularly limited, but 1100 g / eq to 700 g / eq is preferable from the viewpoint of electrical conductivity. If the equivalent weight is 700 g / eq or less, there is a problem in strength and film-forming property when forming the polymer sheet, which is not preferable. Further, the solution containing the ion exchange resin component used in the present invention is preferably a component similar to the ion exchange membrane used for bonding,
For example, a polymer having the following chemical formula as a repeating unit is preferable.

【0025】[0025]

【化2】 [Chemical 2]

【0026】イオン交換樹脂成分の当量重量としては、
やはり電気伝導性の面からも1100g/eq以下が好
ましい。イオン交換樹脂成分を含む溶液に添加する電極
触媒を担持したカーボン粒子としては特に限定はされな
いが、例えばE−TEK社製の白金微粒子を担持したカ
ーボンでもよいし、別な触媒金属を担持したものであっ
てもよい。しかしこのカーボン粒子は、あまり大きすぎ
るとイオン交換膜上に形成した皮膜に凹凸が大きくな
り、燃料電池セルを形成する際に疎水化層や電流を取り
出すための給電体等を取り付ける場合等に密接な接触が
えられず不都合が生じる場合もある。したがって、カー
ボン粒子の大きさとしては50μm以下、更に好ましく
は10μm以下が都合がよい。しかし、カーボン粒子が
あまりに小さいと、電極触媒層内が蜜になりすぎ、ガス
の流通を阻害する場合があるので、0.1μm以上は必
要であり、更に好ましくは0.5μm以上が望ましい。
ここで言う疎水化層とは、電極反応によって生成した水
分で電極や給電体が濡れるのを防ぐ目的で配置するもの
で、水に濡れにくく且つ電気伝導性の高いもので、実質
的には電極触媒層と一体構造とされ電極として用いられ
るものを言う。しかしこの疎水化層は、運転条件により
なくてもよい場合もある。
As the equivalent weight of the ion exchange resin component,
Also from the viewpoint of electrical conductivity, 1100 g / eq or less is preferable. The carbon particles supporting the electrode catalyst to be added to the solution containing the ion exchange resin component are not particularly limited, but for example, carbon supporting platinum fine particles manufactured by E-TEK may be used, or another catalyst metal may be supported. May be However, if the carbon particles are too large, the coating formed on the ion-exchange membrane will have large irregularities, and they will come into close contact when attaching a hydrophobizing layer or a power-supplying body for taking out current when forming a fuel cell. In some cases, inconvenience may occur due to inability to obtain proper contact. Therefore, the size of the carbon particles is preferably 50 μm or less, more preferably 10 μm or less. However, if the carbon particles are too small, the inside of the electrode catalyst layer may become too thin and hinder the gas flow, so 0.1 μm or more is necessary, and more preferably 0.5 μm or more.
The hydrophobized layer here is disposed for the purpose of preventing the electrode and the power supply body from getting wet with the water generated by the electrode reaction. It is hard to get wet with water and has high electric conductivity, and the electrode is substantially It refers to the one used as an electrode that is integrated with the catalyst layer. However, this hydrophobic layer may not be necessary depending on the operating conditions.

【0027】電極触媒層を形成するためのコーティング
液の組成として考慮することは、溶液中に含まれるイオ
ン交換樹脂成分と電極触媒との混合割合である。イオン
交換樹脂成分の割合が多すぎると、電極触媒間の距離が
大きくなり、場合によっては電気の伝導体であるカーボ
ンどうしの接触が保たれず電気が流れなくなる恐れがあ
ることや、ガスの拡散量も小さくなるので好ましくな
い。電極触媒微粒子を担持したカーボン粒子に対し、イ
オン交換樹脂成分が0.1〜1.0倍の重量となるよう
に混合することが好ましい。しかしこの混合割合は、カ
ーボンへの電極触媒担持量によっても変化するので、特
にこの範囲に限定されるものではない。
What is taken into consideration as the composition of the coating liquid for forming the electrode catalyst layer is the mixing ratio of the ion exchange resin component and the electrode catalyst contained in the solution. If the ratio of the ion exchange resin component is too high, the distance between the electrode catalysts will increase, and in some cases, the electrical conductors, carbon, may not be kept in contact with each other and electricity may not flow, and gas diffusion may occur. The amount is also small, which is not preferable. It is preferable that the ion-exchange resin component is mixed in an amount of 0.1 to 1.0 times the weight of the carbon particles carrying the electrode catalyst fine particles. However, this mixing ratio also changes depending on the amount of the electrode catalyst supported on the carbon, and is not particularly limited to this range.

【0028】本発明において膜状物シートに塗布するイ
オン交換樹脂成分を含む溶液の溶媒は、特に限定されな
いが、例えばイソプロパノール、プロパノール、エタノ
ール、メタノール等に水を加えた混合溶媒を用いること
ができる。イオン交換膜上に形成する電極触媒層の厚み
は、電極触媒へのガス拡散量が十分であること、高価な
電極触媒をできるだけ少なくして利用効率が高いこと等
の条件を満たす必要がある。そのため、あまり電極触媒
層を厚くしすぎると電極触媒を大量に使うために触媒コ
ストが高くなる上、ガスの拡散も不十分となる。したが
って、電極触媒層の厚みとしては200μm以下、好ま
しくは100μm以下が望ましい。しかし、薄すぎても
十分な性能が得られないので、10μm以上は必要であ
る。
In the present invention, the solvent of the solution containing the ion exchange resin component to be applied to the membrane sheet is not particularly limited, but for example, a mixed solvent obtained by adding water to isopropanol, propanol, ethanol, methanol or the like can be used. . The thickness of the electrode catalyst layer formed on the ion exchange membrane needs to satisfy the conditions such that the amount of gas diffused into the electrode catalyst is sufficient, the amount of expensive electrode catalyst is reduced as much as possible, and the utilization efficiency is high. Therefore, if the electrode catalyst layer is too thick, a large amount of the electrode catalyst is used, resulting in high catalyst cost and insufficient gas diffusion. Therefore, the thickness of the electrode catalyst layer is 200 μm or less, preferably 100 μm or less. However, even if it is too thin, sufficient performance cannot be obtained, so 10 μm or more is necessary.

【0029】以上のような電極触媒層を有する燃料電池
用隔膜の構造は、模式的に示すと図3のような構造であ
る。図3において、イオン交換膜26の両側に本発明の
方法により電極触媒層27がコーティングされている。
電極触媒層27には電極触媒微粒子29が担持されたカ
ーボン粒子28が含まれており、カーボン粒子どうしは
互いに一部接しており相互の電気伝導性を確保してい
る。このカーボン粒子28上には、ほぼ均一にイオン交
換樹脂成分30が覆っておりそのため電極触媒微粒子2
9上もイオン交換樹脂成分30によって覆われている。
更にカーボン粒子間には適度な空孔31が存在してい
る。この空孔31は電極触媒層へのガスの流通孔として
の役割を持つものである。
The structure of the fuel cell membrane having the above electrode catalyst layer is shown schematically in FIG. In FIG. 3, the electrode catalyst layer 27 is coated on both sides of the ion exchange membrane 26 by the method of the present invention.
The electrode catalyst layer 27 contains carbon particles 28 carrying electrode catalyst fine particles 29, and the carbon particles are partially in contact with each other to ensure mutual electric conductivity. The carbon particles 28 are covered with the ion exchange resin component 30 almost uniformly, and therefore the electrode catalyst fine particles 2
9 is also covered with the ion exchange resin component 30.
Furthermore, there are appropriate holes 31 between the carbon particles. The holes 31 have a role as gas flow holes to the electrode catalyst layer.

【0030】塗布液の組成は、電極触媒層形成後イオン
交換樹脂成分30によってこの空孔31が完全に満たさ
れたり或はカーボン粒子が相互に接していなかったりし
ないようにする必要がある。その理由は、ガスの流通孔
を閉塞することによりガスの電極触媒への拡散量が少な
くることや電極触媒層の抵抗が高まることにより、燃料
電池として十分な性能が得られない事になるからであ
る。
The composition of the coating solution must be such that the pores 31 are not completely filled with the ion exchange resin component 30 after the formation of the electrode catalyst layer or the carbon particles are not in contact with each other. The reason is that by blocking the gas flow holes, the amount of diffusion of gas into the electrode catalyst is reduced and the resistance of the electrode catalyst layer is increased, so that sufficient performance as a fuel cell cannot be obtained. Is.

【0031】このようにして得られた電極触媒層を有す
る燃料電池用隔膜を用いて燃料電池セルを形成する際
に、隔膜の両面に例えばカーボンとテトラフルオロエチ
レンポリマー粉末とを混合して熱成形した疎水化層を、
熱プレスにより一体に接合する。更にその両側に電気を
取り出すための給電体を密着させてガスの取り入れ口及
び抜き出し口のあるフランジの間に装着して燃料電池本
体を構成する。
When forming a fuel cell using the membrane for a fuel cell having the electrode catalyst layer thus obtained, for example, carbon and tetrafluoroethylene polymer powder are mixed on both sides of the membrane and thermoformed. The hydrophobized layer
Bonded together by hot pressing. Further, a power supply body for extracting electricity is closely attached to both sides of the power supply body and is mounted between the flanges having the gas intake port and the gas extraction port to form the fuel cell main body.

【0032】このようにして、本発明の電極触媒層とイ
オン交換膜の接合体を用いて燃料電池を構成して、酸素
ガス及び水素ガスを原料に電気を取り出すと、従来の電
極とイオン交換膜接合体を用いた場合より、触媒量も少
なくすることが可能であり且つ電気の出力も長期間安定
した出力が得られる。かくして、本発明は電極触媒の微
粒子を担持したカーボン粒子と含フッ素スルホン酸ポリ
マーとの混合溶液を、フッ素系のスルホン酸前駆体を有
するポリマーシート上に塗布し乾燥した後、120℃以
上で熱処理し、更に上記スルホン酸前駆体を有するフッ
素系ポリマーシートにスルホン酸基を導入する方法によ
り燃料電池用隔膜と電極触媒層の接合体を形成するので
工業的に実施しやすく且つ電極触媒を含む層が剥離脱落
しにくい接合体が得られる有用な製造方法である。
In this way, when a fuel cell is constructed using the joined body of the electrode catalyst layer and the ion exchange membrane of the present invention and electricity is taken out from oxygen gas and hydrogen gas as raw materials, ion exchange with the conventional electrode is carried out. Compared with the case of using the membrane assembly, the amount of catalyst can be reduced and the electric output can be stable for a long period of time. Thus, according to the present invention, a mixed solution of carbon particles carrying fine particles of an electrode catalyst and a fluorinated sulfonic acid polymer is applied onto a polymer sheet having a fluorinated sulfonic acid precursor, dried, and then heat treated at 120 ° C. or higher. Further, since a joined body of the membrane for fuel cell and the electrode catalyst layer is formed by the method of introducing a sulfonic acid group into the fluoropolymer sheet having the sulfonic acid precursor, it is easy to carry out industrially and a layer containing the electrode catalyst. Is a useful method for producing a bonded body which is less likely to peel off.

【0033】次に本発明を実施例により説明するが、こ
れのみに限定されるものではない。
Next, the present invention will be described with reference to examples, but the present invention is not limited thereto.

【0034】[0034]

【実施例】【Example】

【0035】[0035]

【実施例1】次の化学式で示される当量重量1000g
/eqで厚み100μm、100cm2 のパーフルオロ
スルホン酸前駆体を含む膜Aを準備した。
Example 1 Equivalent weight 1000 g represented by the following chemical formula
A film A containing a perfluorosulfonic acid precursor having a thickness of 100 μm and a thickness of 100 cm 2 was prepared.

【0036】[0036]

【化3】 [Chemical 3]

【0037】イオン交換樹脂成分を含む溶液としてはデ
ュポン社製のナフィオン溶液を準備し、電極触媒を担持
したカーボン粒子として、E−TEK社製の25Åの白
金粒子を20%担持したものを準備した。5重量%のイ
オン交換樹脂成分を含む溶液87部に対し電極触媒を担
持したカーボン粒子13部を混ぜ合わせ、よく撹拌し、
溶液Bを作成した。
As the solution containing the ion-exchange resin component, a Nafion solution manufactured by DuPont was prepared, and as the carbon particles carrying the electrode catalyst, those carrying 20% of 25 Å platinum particles manufactured by E-TEK were prepared. . 13 parts of carbon particles carrying an electrode catalyst were mixed with 87 parts of a solution containing 5% by weight of an ion exchange resin component and stirred well,
Solution B was prepared.

【0038】溶液Bを室温にて筆で膜Aの片面に1.5
g塗布し、熱風乾燥機で60℃、30分間乾燥させ、つ
いで膜Aのもう一方の面に同様に1.5g塗布し同様に
60℃の温度で乾燥させた。以上のようにして製作した
膜Cのコーティング被覆は強固であり、剥離や気泡やヒ
ビもなかった。次にこの膜Cを120℃の熱風乾燥機中
で10分間熱処理した後取り出し更にスルホン酸型のイ
オン交換基を導入するため、5%ジメチルスルオキシド
と30%KOHを含む溶液において95℃、2時間浸漬
し、ついで純水中で2時間流水洗浄した。更にその後、
8%の硫酸溶液中に100℃で2時間浸漬してスルホン
酸型のイオン交換基を持つ図3に示す燃料電池用隔膜D
を得た。
Solution B was applied to one side of the film A with a brush at room temperature for 1.5 times.
g, and dried at 60 ° C. for 30 minutes with a hot air drier, then 1.5 g was similarly applied to the other surface of the film A and similarly dried at a temperature of 60 ° C. The coating coating of the film C produced as described above was strong and free from peeling, bubbles, and cracks. Next, this membrane C was heat treated in a hot air dryer at 120 ° C. for 10 minutes and then taken out to introduce a sulfonic acid type ion-exchange group, and in a solution containing 5% dimethylsulfoxide and 30% KOH at 95 ° C., 2 It was immersed for a period of time and then washed with running water for 2 hours in pure water. After that,
The fuel cell membrane D shown in FIG. 3 having a sulfonic acid type ion-exchange group after being immersed in an 8% sulfuric acid solution at 100 ° C. for 2 hours.
Got

【0039】上記のスルホン酸基導入処理の間も電極触
媒層に剥離やヒビ割れも生じていなかった。得られた燃
料電池用隔膜Dの両面に、カーボンブラック80部とポ
リ四フッ化エチレンのファインパウダー20部を混合し
て、窒素雰囲気で350℃で熱成形した疎水化層を、2
00℃で熱プレスして一体に接合した。更にその両側に
電気を取り出すための給電体を密着させてガスの取り入
れ口及び抜き出し口のあるフランジの間に装着して燃料
電池本体を構成させた。
No peeling or cracking occurred in the electrode catalyst layer during the above sulfonic acid group introduction treatment. On both sides of the obtained fuel cell membrane D, 80 parts of carbon black and 20 parts of fine powder of polytetrafluoroethylene were mixed and thermoformed at 350 ° C. in a nitrogen atmosphere to form a hydrophobic layer 2
The pieces were joined together by hot pressing at 00 ° C. Further, a power supply body for extracting electricity was closely attached to both sides of the power supply body, and the power supply body was installed between the flanges having the gas inlet and outlet to form a fuel cell body.

【0040】このようにして、本発明の電極とイオン交
換膜の接合体を用いて燃料電池を構成して、55℃、1
atmの条件で酸素ガス及び水素ガスを供給し、その電
池性能を測定した。その結果を図4に示す。本発明の製
造方法で作られた燃料電池用隔膜を用いると燃料電池特
性は十分に高性能であることがわかる。
In this way, a fuel cell is constructed using the bonded body of the electrode of the present invention and the ion exchange membrane at 55 ° C.
Oxygen gas and hydrogen gas were supplied under the conditions of atm, and the battery performance was measured. The result is shown in FIG. It can be seen that the fuel cell characteristics are sufficiently high when the membrane for fuel cell manufactured by the manufacturing method of the present invention is used.

【0041】[0041]

【実施例2】実施例1の膜Aと全く同様の膜で幅1.0
m、長さ50mの膜Eを準備し、実施例1の溶液Bと全
く同様の溶液Fも合わせて準備した。図1の溶液槽1に
溶液Fを入れ、膜Eを送りロール2にセットして、巻取
りロール3から一定速度で巻き取りつつ連続的に膜E上
に電極触媒層を形成した。ロール2から送り出された膜
Eは、スプレー室4においてまず片側に溶液Fを15m
g/cm2 の量が塗布されるようにスプレー塗布を行
い、次に60℃の温風が流れている温風乾燥機5に入り
そこを30分間かけて通過させ巻取りロール3により巻
取った。更に裏側を塗布するため再度送りロール2にセ
ットし、スプレー室4に送りこまれ溶液Fを15mg/
cm2 塗布され、温風乾燥機5に入りそこを前と同様3
0分かけて通過させ再度巻取りロール3に巻取った。両
面塗布し乾燥させた膜Eを図2の送りロール12にセッ
トし熱処理室13に導いた。熱処理室13において、1
50℃の温度で10分間処理された後、イオン交換基を
導入するためケン化槽14に導いた。ケン化槽14には
ジメチルスルオキシド5%、苛性カリ30%を含む溶液
を満たし95℃に保った。ケン化槽14を2時間かけて
通過後、水洗槽15にて純水にて水洗され、巻取りロー
ル16でポリエチレンのスペーサーとともに筒状に巻き
取った。
Example 2 A film exactly the same as the film A of Example 1 and having a width of 1.0
A membrane E having a length of m and a length of 50 m was prepared, and a solution F which was exactly the same as the solution B of Example 1 was also prepared. The solution F was put in the solution tank 1 of FIG. 1, the membrane E was set on the feed roll 2, and the electrode catalyst layer was continuously formed on the membrane E while being wound from the winding roll 3 at a constant speed. The film E sent out from the roll 2 has a solution F of 15 m on one side in the spray chamber 4.
Spray application is performed so that the amount of g / cm 2 is applied, and then the hot air dryer 5 in which hot air of 60 ° C. is flowing is passed therethrough for 30 minutes and wound by the winding roll 3. It was Further, to apply the back side, it is set again on the feed roll 2 and fed into the spray chamber 4 to obtain a solution F of 15 mg /
cm 2 is applied and enters the hot air dryer 5 where it is the same as before 3
It was allowed to pass over 0 minutes and wound again on the winding roll 3. The film E coated on both sides and dried was set on the feed roll 12 in FIG. In the heat treatment chamber 13, 1
After being treated at a temperature of 50 ° C. for 10 minutes, it was introduced into a saponification tank 14 for introducing ion exchange groups. The saponification tank 14 was filled with a solution containing 5% of dimethylsulfoxide and 30% of potassium hydroxide and kept at 95 ° C. After passing through the saponification tank 14 for 2 hours, it was washed with pure water in a water washing tank 15 and wound into a tubular shape with a polyethylene spacer by a winding roll 16.

【0042】巻取りロール16で巻き取った膜Eは、筒
状のまま平衡槽に浸漬した。平衡槽には、100℃の8
%硫酸が満たされており、ここで8時間浸漬後、筒状の
まま純水の満たされたタンク内で洗浄して、最終的に実
施例1の燃料電池用隔膜Dと同様な電極層を有する大型
の燃料電池用隔膜Gが得られた。この間の処理におい
て、接合体表面には、ヒビ割れや剥離等は全く見られ
ず、大量に大きなサイズのものが製造できた。
The film E taken up by the take-up roll 16 was immersed in the equilibrium tank in a tubular shape. Equilibrium tank is 100 ℃ 8
% Sulfuric acid is filled therein, and after immersion here for 8 hours, it is washed in a tank filled with pure water in a tubular shape, and finally an electrode layer similar to the fuel cell membrane D of Example 1 is formed. A large-sized membrane G for fuel cell having was obtained. During the treatment during this time, no cracks or peeling were observed on the surface of the bonded body, and a large size of the bonded body could be manufactured.

【0043】[0043]

【発明の効果】本発明の製造方法によって、電極触媒層
を有する燃料電池用隔膜が工業的に実施しやすく、安定
した品質で大量に生産できる。
Industrial Applicability According to the production method of the present invention, a membrane for a fuel cell having an electrode catalyst layer can be industrially easily implemented and can be mass-produced with stable quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例2の製造工程の説明図である。FIG. 1 is an explanatory diagram of a manufacturing process according to a second embodiment of the present invention.

【図2】本発明の実施例2の製造工程の説明図である。FIG. 2 is an explanatory diagram of a manufacturing process according to a second embodiment of the present invention.

【図3】本発明の、表面に電極を有する燃料電池用隔膜
を模式化して示す断面図と、その部分拡大図である。
FIG. 3 is a cross-sectional view schematically showing a fuel cell membrane having electrodes on the surface of the present invention, and a partially enlarged view thereof.

【図4】本発明の燃料電池用隔膜を用いて燃料電池を構
成し、その出力電流と出力電圧の特性を示すグラフ図で
ある。
FIG. 4 is a graph showing a characteristic of an output current and an output voltage of a fuel cell, which is formed by using the membrane for a fuel cell of the present invention.

【符号の説明】[Explanation of symbols]

1 溶液槽 2 送りロール 3 巻取りロール 4 スプレー室 5 温風乾燥機 6 電極触媒層形成するための塗布液 7 スプレーガン 8 温風入口 9 温風出口 10 塗布液送りポンプ 11 支持ロール 12 送りロール 13 熱処理室 14 ケン化槽 15 水洗槽 16 巻取りロール 17 熱風出口 18 熱風入口 19 反転ロール 20 ケン化液 21 純水 22 ポリエチレンスペーサー 23 電極触媒層を塗布乾燥した膜 24 電極触媒層を熱処理しイオン交換基が導入された
膜 25 支持ロール 26 イオン交換膜 27 電極触媒層 28 カーボン粒子 29 電極触媒微粒子 30 イオン交換樹脂成分 31 空孔 32 ポリエチレンスペーサーロール 33 仕切り板
1 Solution Tank 2 Feed Roll 3 Winding Roll 4 Spray Chamber 5 Warm Air Dryer 6 Coating Liquid for Forming Electrode Catalyst Layer 7 Spray Gun 8 Warm Air Inlet 9 Warm Air Outlet 10 Coating Liquid Feeding Pump 11 Support Roll 12 Feeding Roll 13 Heat Treatment Chamber 14 Saponification Tank 15 Water Washing Tank 16 Winding Roll 17 Hot Air Outlet 18 Hot Air Inlet 19 Inverting Roll 20 Saponification Liquid 21 Pure Water 22 Polyethylene Spacer 23 Membrane after Coating and Drying Electrode Catalyst Layer 24 Membrane with exchange group introduced 25 Support roll 26 Ion exchange membrane 27 Electrode catalyst layer 28 Carbon particles 29 Electrode catalyst fine particles 30 Ion exchange resin component 31 Porosity 32 Polyethylene spacer roll 33 Partition plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電極触媒の微粒子を担持したカーボン粒
子と含フッ素スルホン酸ポリマーとの混合溶液を、スル
ホン酸前駆体を有するフッ素系ポリマーシート上に塗布
し、100℃以下で乾燥した後、120℃〜250℃の
温度範囲で熱処理し、更にこのスルホン酸前駆体を有す
るシートにスルホン酸基を導入する、表面に電極触媒層
を有する燃料電池用隔膜製造方法。
1. A mixed solution of carbon particles carrying fine particles of an electrode catalyst and a fluorinated sulfonic acid polymer is applied on a fluoropolymer sheet having a sulfonic acid precursor and dried at 100 ° C. or lower, and then 120 A method for producing a membrane for a fuel cell having an electrode catalyst layer on the surface, which comprises heat-treating in the temperature range of ℃ to 250 ℃, and further introducing a sulfonic acid group into the sheet having the sulfonic acid precursor.
JP5038528A 1993-02-26 1993-02-26 Manufacture of diaphragm for fuel cell having electrode catalyst layer on surface Withdrawn JPH06251781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5038528A JPH06251781A (en) 1993-02-26 1993-02-26 Manufacture of diaphragm for fuel cell having electrode catalyst layer on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5038528A JPH06251781A (en) 1993-02-26 1993-02-26 Manufacture of diaphragm for fuel cell having electrode catalyst layer on surface

Publications (1)

Publication Number Publication Date
JPH06251781A true JPH06251781A (en) 1994-09-09

Family

ID=12527784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5038528A Withdrawn JPH06251781A (en) 1993-02-26 1993-02-26 Manufacture of diaphragm for fuel cell having electrode catalyst layer on surface

Country Status (1)

Country Link
JP (1) JPH06251781A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926754A1 (en) * 1997-12-10 1999-06-30 De Nora S.P.A. Polymeric membrane electrochemical cell operating at temperatures above 100 C
JP2001185162A (en) * 1999-12-22 2001-07-06 Sanyo Electric Co Ltd Fuel cell and its manufacturing method
JP2005063780A (en) * 2003-08-11 2005-03-10 Nordson Corp Electrolyte membrane. electrolyte membrane complex, manufacturing method of electrolyte membrane complex, electrolyte membrane/electrode assembly for fuel cell, manufacturing method of electrolyte membrane/electrode assembly for fuel cell, and fuel cell
JP2016081682A (en) * 2014-10-15 2016-05-16 トヨタ自動車株式会社 Method of manufacturing electrolyte membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926754A1 (en) * 1997-12-10 1999-06-30 De Nora S.P.A. Polymeric membrane electrochemical cell operating at temperatures above 100 C
JP2001185162A (en) * 1999-12-22 2001-07-06 Sanyo Electric Co Ltd Fuel cell and its manufacturing method
JP2005063780A (en) * 2003-08-11 2005-03-10 Nordson Corp Electrolyte membrane. electrolyte membrane complex, manufacturing method of electrolyte membrane complex, electrolyte membrane/electrode assembly for fuel cell, manufacturing method of electrolyte membrane/electrode assembly for fuel cell, and fuel cell
JP2016081682A (en) * 2014-10-15 2016-05-16 トヨタ自動車株式会社 Method of manufacturing electrolyte membrane

Similar Documents

Publication Publication Date Title
TW398097B (en) Gas diffusion electrodes based on poly (vinylidene fluoride) carbon blends
US10454122B2 (en) Reinforced electrode assembly
Arico et al. Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells
KR100659133B1 (en) A catalyst coated membrane, a fuel cell comprising the catalyst coated membrane, and a method for preparing the catalyst coated membrane
JP2001504636A (en) New polymer electrolyte membrane for fuel cells
JP2007179925A (en) Electrolyte membrane, manufacturing method of the same, membrane-electrode assembly, and fuel cell using the membrane-electrode assembly
JP2007507849A (en) Method for manufacturing membrane electrode assembly
JP2002298867A (en) Solid polymer fuel cell
TW200403881A (en) Polymer electrolyte fuel cell which is improved its performance and reliability and manufacturing method of the same
JP2007501496A (en) Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same
Nishikawa et al. Preparation of the electrode for high temperature PEFCs using novel polymer electrolytes based on organic/inorganic nanohybrids
JP2000299119A (en) Manufacture of catalyst layer
JP2007213988A (en) Electrode catalyst layer for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
TW200525805A (en) Membrane electrode assembly, manufacturing process therefor and direct type fuel cell therewith
JP2003059511A (en) Electrolyte film and electrode junction for fuel cell, its manufacturing method and polymer electrolyte fuel cell
JPH06251779A (en) Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell
JPH06251781A (en) Manufacture of diaphragm for fuel cell having electrode catalyst layer on surface
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP2002305007A (en) Solid polymer type fuel cell
JPH113724A (en) Direct type methanol fuel cell having solid polymer electrolyte
JPH06251782A (en) Manufacture of joined body of membrane having high electric conductivity with electrode
KR101153074B1 (en) Method of preparing a membrane electrode assembly for fuel cell and Fuel cell to which the method is applied
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP2003526184A (en) Method for producing electrode-membrane assembly, method for producing electrode-membrane-electrode assembly, assembly obtained in the manner described above, and fuel cell device provided with these assemblies
JP2003297373A (en) Coating for catalyst bed and manufacturing method of electrolyte membrane electrode junction body using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509