JPH06237106A - Lamination type element for microwave - Google Patents

Lamination type element for microwave

Info

Publication number
JPH06237106A
JPH06237106A JP2268193A JP2268193A JPH06237106A JP H06237106 A JPH06237106 A JP H06237106A JP 2268193 A JP2268193 A JP 2268193A JP 2268193 A JP2268193 A JP 2268193A JP H06237106 A JPH06237106 A JP H06237106A
Authority
JP
Japan
Prior art keywords
dielectric
conductor
microwave
conductors
lamination type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2268193A
Other languages
Japanese (ja)
Inventor
Tatsuya Inoue
竜也 井上
Hiroshi Kagata
博司 加賀田
Ichiro Kameyama
一郎 亀山
Junichi Kato
純一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2268193A priority Critical patent/JPH06237106A/en
Publication of JPH06237106A publication Critical patent/JPH06237106A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the small sized lamination type element manufactured by an easy baking condition and having an excellent microwave characteristic by employing a specific Ag/Pd alloy to part or all of a conductor. CONSTITUTION:The lamination type dielectric resonator has a structure that each of strip line conductors 2-4 is inserted between dielectric layers 1 to incorporate a shield conductor and a coupling capacitor as a lamination microwave element. The inner conductors 2-4 of the lamination type dielectric resonator are arranged at a prescribed interval via the dielectric layer 1 and they are connected respectively to an external electrode 5. All or part of the conductors 2-4 is made of an Ag/Pd alloy including 80wt.% or over of Ag. That is, the Ag/Pd alloy with a higher conductive rate comparatively except Ag,Cu,Au is employed for the conductors 2-4 of the microwave lamination type element, then a temperature at which simultaneous baking is attained is increased up to nearly 1050 deg.C, the environment control is not required, the selection of the dielectric layer 1 is extended and the dielectric body having a higher dielectric rate and a higher no load Q value is used for the dielectric layer 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導体としてAg/Pd合
金を使い、マイクロ波特性に優れたマイクロ波用積層型
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave laminated element using an Ag / Pd alloy as a conductor and having excellent microwave characteristics.

【0002】[0002]

【従来の技術】近年、マイクロ波帯域の電波を利用した
自動車電話、可搬型電話などの移動体通信機、あるいは
衛星放送などの進展にともない機器の小型化が要求され
ている。このためには、機器を構成する個々の部品が小
型化される必要があり、その手段の一つに、誘電体材料
を使ったバンドパスフィルター、共振器、共用器などの
積層型素子が提案されている(特開平3−254512号公
報)。
2. Description of the Related Art In recent years, there has been a demand for miniaturization of mobile communication devices such as car telephones, portable telephones, and the like, which utilize radio waves in the microwave band, or devices such as satellite broadcasting. For this purpose, it is necessary to reduce the size of individual parts that make up the equipment, and one of the means is to propose laminated elements such as bandpass filters, resonators, and duplexers that use dielectric materials. (Japanese Patent Laid-Open No. 3-254512).

【0003】これらの小型の積層型素子には、マイクロ
波域での誘電率が高く、無負荷Q値が大きく、共振周波
数の温度変化率の絶対値が小さい誘電体材料を使った誘
電体層と、電導率の高い導体で構成されることが要求さ
れる。
In these small stacked elements, a dielectric layer using a dielectric material having a high dielectric constant in the microwave range, a large unloaded Q value and a small absolute value of the temperature change rate of the resonance frequency. It is required to be composed of a conductor having a high electric conductivity.

【0004】この場合、素子の大きさは、誘電体の持つ
誘電率の平方根に逆比例するので、同じ共振モードを使
う限り誘電率が大きいほど素子は小型化でき、また、素
子に求められる特性である低損失のために誘電体材料の
損失が小さく(無負荷Q値が大きく)、電極材料の損失が
小さい(電導率が大きい)ことが必要であり、温度安定性
のために誘電体材料の共振周波数の温度変化率の絶対値
が小さいことが不可欠であるからである。
In this case, since the size of the element is inversely proportional to the square root of the permittivity of the dielectric, the larger the permittivity, the smaller the element can be, and the characteristics required for the element, as long as the same resonance mode is used. It is necessary that the loss of the dielectric material is small (the unloaded Q value is large) due to the low loss, and the loss of the electrode material is small (the conductivity is large), and the dielectric material is required for the temperature stability. This is because it is essential that the absolute value of the temperature change rate of the resonance frequency is small.

【0005】[0005]

【発明が解決しようとする課題】しかし、導電率の非常
に大きいAgやAu、Cuといった金属は融点が低く、同
時に使う誘電体材料はその温度より低い温度で焼成でき
なければならない。たとえば、Agの融点は961℃と非常
に低く、そのためにAgを導体に使うことのできる誘電
体は、焼成温度が961℃以下のごく限られた低温焼結材
料だけであり、高誘電率の誘電体をそのまま積層型素子
の材料として使うことはできない。
However, metals such as Ag, Au, and Cu having a very high conductivity have a low melting point, and the dielectric material used at the same time must be able to be fired at a temperature lower than that temperature. For example, the melting point of Ag is extremely low at 961 ° C, and therefore, the only dielectric materials that can use Ag for conductors are very low-temperature sintered materials with a firing temperature of 961 ° C or less. The dielectric cannot be used as it is as a material for a laminated device.

【0006】また、CuやAuは融点がそれぞれ1083℃、
1063℃とAgに比べれば高いが、Auは高価な貴金属であ
り、導体に使用するにはコストが高すぎ実用的とは言え
ない部分があり、Cuは、空気中で焼成すると酸化する
ので、酸素の存在しない雰囲気中、たとえば窒素中で焼
成する必要がある。しかしながら、積層型素子の作製に
当たって、誘電体シートや導体ペースト中に含まれる有
機成分を酸素存在下で熱処理しバーンアウトすることは
不可欠である。それゆえにCuを導体に使うためには有
機成分は飛散するが、Cuは酸化されない非常に困難な
雰囲気制御が必要となっていくる。
Further, Cu and Au have melting points of 1083 ° C. and
Although 1063 ℃, which is higher than that of Ag, Au is an expensive noble metal, and there are some parts that are too expensive to be used as a conductor and are not practical, and since Cu oxidizes when fired in air, It is necessary to bake in an oxygen-free atmosphere, for example in nitrogen. However, in manufacturing a laminated device, it is essential to heat-treat an organic component contained in a dielectric sheet or a conductor paste in the presence of oxygen to burn out. Therefore, in order to use Cu as a conductor, organic components are scattered, but Cu is required to be controlled in a very difficult atmosphere without being oxidized.

【0007】以上のような理由から、小型のマイクロ波
用の積層型素子の導体としてAgやAu、Cuなどの金属
を使うことは様々な制約があり困難であるという問題が
あった。しかしながら、従来はこれらの金属以外の導体
は電導率が小さく、マイクロ波用の素子の導体として使
うのには適していないと考えられており、実用化の例は
なかった。
For the above reasons, there is a problem that it is difficult to use a metal such as Ag, Au, or Cu as a conductor of a small-sized laminated type element for microwaves because of various restrictions. However, conventionally, conductors other than these metals have low electric conductivity and are considered to be unsuitable for use as conductors of microwave elements, and there has been no practical application.

【0008】本発明は上述した問題を解決するものであ
り、Ag,Au,Cuと比較して電導率が低いというAg/
Pd合金の欠点を、ある程度補い、積層型素子自体の損
失を抑えた優れたマイクロ波特性を持つ小型のマイクロ
波用積層型素子を提供することを目的とする。
The present invention solves the above-mentioned problems, and Ag / Au / Cu, which has a lower conductivity than Ag, Au, and Cu, is used.
An object of the present invention is to provide a small-sized laminated element for microwaves, which has excellent microwave characteristics while suppressing the loss of the laminated element itself by compensating for the drawbacks of the Pd alloy to some extent.

【0009】[0009]

【課題を解決するための手段】この目的を達成するた
め、本発明は、少なくとも、導体と誘電体層からなり、
前記導体の全て、あるいは一部が、Agを80重量%以上
含むAg/Pd合金より構成されたことを特徴とする。
To achieve this object, the present invention comprises at least a conductor and a dielectric layer,
All or part of the conductor is made of an Ag / Pd alloy containing 80% by weight or more of Ag.

【0010】[0010]

【作用】本発明によれば、Ag,Cu,Au以外では比較
的電導率の高いAg/Pd合金をマイクロ波用の積層型素
子の導体に使うことで、同時焼成可能な温度を1050℃程
度まで上げ、雰囲気制御の必要をなくし、このことによ
って、誘電体層の選択を広げ、より高い誘電率や無負荷
Q値を持つ誘電体を誘電体層に使うことを可能にする。
According to the present invention, by using an Ag / Pd alloy having a relatively high electric conductivity other than Ag, Cu, and Au for the conductor of the laminated element for microwaves, the temperature at which simultaneous firing is possible is about 1050 ° C. And eliminates the need for atmosphere control, which broadens the choice of dielectric layers and allows the use of dielectrics with higher dielectric constants and unloaded Q-values.

【0011】[0011]

【実施例】積層型のマイクロ波素子として、ストリップ
ライン導体を誘電体層で挟み、シールド導体と結合用の
キャパシタを内蔵した構造を持つ積層型の誘電体共振器
を作製した。
EXAMPLE As a laminated microwave element, a laminated dielectric resonator having a structure in which a stripline conductor was sandwiched between dielectric layers and a shield conductor and a coupling capacitor were built in was produced.

【0012】図1は上記作製された本発明の一実施例の
積層型誘電体共振器の構造を示す縦断面図、図2は図1
の横断面図、図3は図1の外観斜視図である。
FIG. 1 is a vertical cross-sectional view showing the structure of the laminated dielectric resonator according to one embodiment of the present invention manufactured as described above, and FIG. 2 is shown in FIG.
3 is a cross-sectional view of FIG. 3, and FIG. 3 is an external perspective view of FIG.

【0013】図1ないし図3において、1は誘電体層、
2,3,4は内層導体、5は外部電極であり、前記内層
導体2,3,4は誘電体層1を介して所定間隔をおいて
配置され、夫々外部電極5と接続された構造となってい
る。
1 to 3, 1 is a dielectric layer,
2, 3, 4 are inner layer conductors, 5 is an outer electrode, and the inner layer conductors 2, 3, 4 are arranged at a predetermined interval via the dielectric layer 1 and are connected to the outer electrodes 5, respectively. Has become.

【0014】次に誘電体共振器の作製について説明す
る。図1ないし図3に示す誘電体層1に使う誘電体磁器
組成物の出発原料としては高純度なPbO2,SrO2,C
aCO3,Fe23,Nb25,WO3を用いた。これらを
一般式(Pb0.4625Sr0.05Ca0.4875)(Fe1/2Nb1/2)0.8
(Fe2/31/3)0.23になるように純度補正を行なった
上で所定量を秤量し、安定化ジルコニア製玉石を用い純
水を溶媒としてボールミルで17時間混合した。これを吸
引ろ過して水分の大半を分離した後乾燥し、アルミナる
つぼ中に入れ825℃で2時間仮焼した。
Next, the fabrication of the dielectric resonator will be described. High-purity PbO 2 , SrO 2 , and C are used as starting materials for the dielectric ceramic composition used for the dielectric layer 1 shown in FIGS.
aCO 3 , Fe 2 O 3 , Nb 2 O 5 and WO 3 were used. These are represented by the general formula (Pb 0.4625 Sr 0.05 Ca 0.4875 ) (Fe 1/2 Nb 1/2 ) 0.8.
After correcting the purity so as to be (Fe 2/3 W 1/3 ) 0.2 O 3 , a predetermined amount was weighed and mixed with a stabilized zirconia boulder using pure water as a solvent in a ball mill for 17 hours. This was suction filtered to separate most of the water content, dried, put into an alumina crucible and calcined at 825 ° C. for 2 hours.

【0015】次に仮焼物をアルミナ乳鉢で粗砕し、さら
に安定化ジルコニア製玉石を用い純水を溶媒としてボー
ルミルで17時間粉砕し、吸引ろ過して水分の大半を分離
した後乾燥した。
Next, the calcined product was roughly crushed in an alumina mortar and further crushed in a ball mill for 17 hours using a ball made of stabilized zirconia and pure water as a solvent, suction-filtered to separate most of water, and then dried.

【0016】この仮焼粉に有機バインダ、溶剤、および
可塑剤を加え混合して得たスラリーをドクターブレード
法によりシート化した。また、内層導体2,3,4の導
体金属として使うAg/Pd合金(Ag/Pd=90/10)を、
ビヒクルと混練しペースト化した。
A slurry obtained by adding an organic binder, a solvent, and a plasticizer to the calcined powder and mixing them was formed into a sheet by a doctor blade method. Also, the Ag / Pd alloy (Ag / Pd = 90/10) used as the conductor metal of the inner layer conductors 2, 3 and 4 is
It was kneaded with the vehicle to form a paste.

【0017】図4に素子1個の導体の印刷パターンを示
す。図4の内層導体2,3,4(ストリップライン)の長
さは約10mmにした。シートを複数枚積層した後、図4の
内層導体2の導体パターンをスクリーン印刷し、その上
に、シートを複数枚積層し、内層導体3の導体パターン
印刷、さらに、シートを複数枚積層し、内層導体4の導
体パターン印刷、そしてシートを複数枚積層後、熱プレ
スで圧着した。個々の素子に切断後、空気中700℃で熱
処理してバインダを飛散させた。これらの素子を空気中
で2時間焼成した。焼成温度は1000℃とした。
FIG. 4 shows a printed pattern of the conductor of one element. The length of the inner layer conductors 2, 3, 4 (strip line) in FIG. 4 was set to about 10 mm. After laminating a plurality of sheets, the conductor pattern of the inner layer conductor 2 of FIG. 4 is screen-printed, a plurality of sheets are laminated thereon, a conductor pattern of the inner layer conductor 3 is printed, and a plurality of sheets are laminated, After printing the conductor pattern of the inner layer conductor 4 and laminating a plurality of sheets, the sheets were pressure-bonded by a hot press. After cutting into individual elements, heat treatment was performed at 700 ° C. in air to scatter the binder. These devices were fired in air for 2 hours. The firing temperature was 1000 ° C.

【0018】そして、外部電極5として、市販のAgペ
ーストを800℃で焼き付け、積層型の誘電体共振器を得
た。焼成後のストリップラインの長さは約8.8mmから9.2
mmであった。各々の導体に対し素子を10個作製し、特性
はその平均を用いた。
Then, as the external electrode 5, a commercially available Ag paste was baked at 800 ° C. to obtain a laminated dielectric resonator. The length of the strip line after firing is about 8.8 mm to 9.2
It was mm. Ten elements were prepared for each conductor, and the average was used as the characteristic.

【0019】また、誘電体層1に他の誘電体磁器組成物
を用いた場合は、各々の組成になるように配合しシート
化し、積層の方法も印刷パターンの大きさが各々の誘電
体に適した大きさにした以外は上記の製法とほぼ同様で
ある。
When another dielectric ceramic composition is used for the dielectric layer 1, the composition is blended so as to have each composition and formed into a sheet, and the lamination method is such that the size of the printing pattern is different for each dielectric. The manufacturing method is almost the same as the manufacturing method described above except that the size is set to a suitable size.

【0020】表1に、積層型素子の誘電体層に使った誘
電体磁器組成物の組成と焼成温度と各々の磁器組成物が
持つ誘電率ε,無負荷Q値を示す。
Table 1 shows the composition and firing temperature of the dielectric ceramic composition used for the dielectric layer of the laminated element, the dielectric constant ε and the unloaded Q value of each ceramic composition.

【0021】[0021]

【表1】 [Table 1]

【0022】表2に、これらそれぞれの誘電体磁器組成
物を誘電体層に用いた積層型素子のマイクロ波誘電特
性、内層導体(ストリップライン)の長さ、および使用し
たAg/Pd合金を示す。また、各々の誘電体層番号は表
1の番号の誘電体磁器組成物を誘電体層に用いたことを
表している。尚、表1の番号に*印をつけたものは本実
施例の比較例である。
Table 2 shows the microwave dielectric characteristics of the laminated type element using these dielectric ceramic compositions in the dielectric layer, the length of the inner layer conductor (strip line), and the Ag / Pd alloy used. . Moreover, each dielectric layer number indicates that the dielectric ceramic composition of the number in Table 1 was used for the dielectric layer. The numbers marked with * in Table 1 are comparative examples of this example.

【0023】[0023]

【表2】 [Table 2]

【0024】表2から明らかなように、焼成温度が1050
℃以下の誘電体磁器組成物を誘電体層に用い、かつ導体
層にAgを80重量%以上含むAg/Pd合金を使った場
合、雰囲気制御などの必要のない空気中で焼成でき、10
50℃までの温度で焼成すれば、導体のAg/Pd合金が溶
けだすこともなかった。
As is clear from Table 2, the firing temperature is 1050.
When a dielectric ceramic composition having a temperature of ℃ or below is used for the dielectric layer and an Ag / Pd alloy containing 80% by weight or more of Ag is used for the conductor layer, it can be fired in the air without controlling the atmosphere.
By firing at a temperature of up to 50 ° C, the Ag / Pd alloy of the conductor did not melt.

【0025】しかし、本実施例の比較例である9,13番
の場合は、焼成温度が1200℃のため導体層にAgを80重
量%以上含むAg/Pd合金を使った場合、誘電体層1が
焼結する温度ではAg/Pd合金が溶け、良好な積層体は
得られなかった。そこで、この誘電体層にAgを70重量
%含むAg/Pd合金を導体に使った14,15番の場合、導
体の溶け出しはなかったが、導体の損失が大きくなりす
ぎ、積層型素子のマイクロ波特性が充分ではなかったの
で、本発明の範囲からは除外した。
However, in the case of Nos. 9 and 13 which are comparative examples of this example, since the firing temperature was 1200 ° C., when the Ag / Pd alloy containing 80 wt% or more of Ag was used for the conductor layer, the dielectric layer At the temperature at which No. 1 sinters, the Ag / Pd alloy was melted and a good laminate could not be obtained. Therefore, in the case of Nos. 14 and 15 in which Ag / Pd alloy containing 70% by weight of Ag in this dielectric layer was used for the conductor, the conductor did not melt, but the conductor loss was too large, and Since the microwave characteristics were not sufficient, they were excluded from the scope of the present invention.

【0026】本実施例の積層型素子の共振周波数はいず
れも830MHz前後、無負荷Q値は高いもので100以上に
より、容易な条件で優れたマイクロ波誘電体特性を有す
るマイクロ波用積層型素子を得ることができた。また、
空気中で焼成でき、誘電体層に使う誘電体をある程度幅
広く選択できるため、非常に高い誘電率と高い無負荷Q
値を有する誘電体を積層することができる。これによ
り、同一モード、同一共振周波数においては、従来の低
温焼結材料を用いた積層型素子より遥かに小さいマイク
ロ波用積層型素子を得ることができた。
The resonance frequency of the laminated element of this embodiment is around 830 MHz, and the unloaded Q value is high and is 100 or more. Therefore, the laminated element for microwaves having excellent microwave dielectric characteristics under easy conditions is obtained. I was able to get Also,
Since it can be fired in air and the dielectric used for the dielectric layer can be selected to a certain extent, it has a very high dielectric constant and high unloaded Q.
Dielectrics having values can be stacked. As a result, it was possible to obtain a laminated element for microwaves, which is much smaller than the laminated element using the conventional low temperature sintered material in the same mode and the same resonance frequency.

【0027】さらにこの積層型素子は誘電体の無負荷Q
値が高いので電極に電導率がAgやCuと比べて低いAg
/Pd合金を使用しても、そのAg含有量が80重量%以上
であれば充分なマイクロ波誘電特性を有する。たとえ
ば、従来の低温焼成基板材料の誘電率は8程度であるた
め、本実施例の共振器と同一の構造で、同一の共振周波
数を得るには、31.9mmの内層導体(ストリップライン)の
長さが必要となる。しかし、本実施例で使用した誘電体
の一例である、誘電率εが100、無負荷Q値が1230の(P
b0.4625Sr0.05Ca0.4875)(Fe1/2Nb1/2)0.8(Fe2/3
1/3)0.23を用いた場合、積層型素子の内層導体(スト
リップライン)の長さが約9.0mmという非常に小型であ
り、素子の無負荷Q値が114という優れた特性をもつ積
層型素子を得ることができた。
Further, this laminated device has a dielectric unloaded Q
Since the value is high, the conductivity of the electrode is lower than that of Ag or Cu.
Even if the / Pd alloy is used, if the Ag content is 80% by weight or more, it has sufficient microwave dielectric properties. For example, since the dielectric constant of the conventional low temperature fired substrate material is about 8, in order to obtain the same resonance frequency with the same structure as the resonator of the present embodiment, the length of the inner layer conductor (strip line) of 31.9 mm is required. Is required. However, as an example of the dielectric used in this example, the dielectric constant ε is 100 and the unloaded Q value is 1230 (P
b 0.4625 Sr 0.05 Ca 0.4875 ) (Fe 1/2 Nb 1/2 ) 0.8 (Fe 2/3 W
1/3 ) When 0.2 O 3 is used, the inner layer conductor (stripline) length of the laminated element is very small, about 9.0 mm, and the element has excellent characteristics with an unloaded Q value of 114. A laminated device could be obtained.

【0028】なお、内層導体(ストリップライン)を曲線
状や、積層状にすることで、より小型の共振デバイスを
得ることも可能である。また、これらを複数個とキャパ
シタ等を組み合わせることにより、バンドパスフィルタ
ー等を得ることも可能である。
It is also possible to obtain a smaller resonant device by forming the inner layer conductor (strip line) into a curved shape or a laminated shape. It is also possible to obtain a bandpass filter or the like by combining a plurality of these with a capacitor or the like.

【0029】[0029]

【発明の効果】以上説明したように、本発明のマイクロ
波用積層型素子は、電極としてAg含有量が80重量%以
上のAg/Pd合金を使うことで、同時焼成可能な温度を
1050℃に上げ、焼成時の困難な雰囲気制御の必要をなく
し、その結果、誘電体層に使用できる誘電体の選択を広
範囲に広げることができる。これにより、従来使用でき
なかった誘電率が高く、無負荷Q値の大きい誘電体を積
層型素子の誘電体層に使うことができ、従来の誘電体材
料を使ったマイクロ波デバイスに比べ非常に小型の積層
型素子を得ることができる。
As described above, in the microwave laminated element of the present invention, by using an Ag / Pd alloy having an Ag content of 80% by weight or more as an electrode, the temperature at which simultaneous firing can be performed can be performed.
Raising the temperature to 1050 ° C eliminates the need for difficult atmosphere control during firing, and as a result, the selection of dielectrics that can be used for the dielectric layer can be broadened. As a result, a dielectric material having a high dielectric constant and a large unloaded Q value, which could not be used conventionally, can be used for the dielectric layer of the laminated element, which is much higher than that of a microwave device using a conventional dielectric material. It is possible to obtain a small stacked element.

【0030】本発明によってマイクロ波域で使用可能な
様々な小型の共振器系を形成することができるので、自
動車電話や可搬型電話などのマイクロ波用機器の小型化
に寄与するところが大きいと考えられる。また、本発明
の誘電体磁器は、マイクロ波用の回路基板などにも利用
できる。
Since various small-sized resonator systems usable in the microwave region can be formed by the present invention, it is considered that it greatly contributes to downsizing of microwave devices such as car phones and portable phones. To be Further, the dielectric porcelain of the present invention can be used for a microwave circuit board and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における容量内蔵積層型の誘
電体共振器の構造を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing the structure of a built-in capacitor type dielectric resonator according to an embodiment of the present invention.

【図2】図1の横断面図である。2 is a cross-sectional view of FIG.

【図3】図1の外観斜視図である。3 is an external perspective view of FIG. 1. FIG.

【図4】図1の内層導体の印刷パターンを示す図であ
る。
FIG. 4 is a diagram showing a printed pattern of the inner conductor of FIG.

【符号の説明】[Explanation of symbols]

1…誘電体層、 2,3,4…内層導体、 5…外部電
極。
1 ... Dielectric layer, 2, 3, 4 ... Inner layer conductor, 5 ... External electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 純一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Kato 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、導体と誘電体層からなり、
前記導体の全て、あるいは一部が、Agを80重量%以上
含むAg/Pd合金より構成されたことを特徴とするマイ
クロ波用積層型素子。
1. At least a conductor and a dielectric layer,
A laminated element for microwaves, wherein all or part of the conductor is made of an Ag / Pd alloy containing 80% by weight or more of Ag.
JP2268193A 1993-02-10 1993-02-10 Lamination type element for microwave Pending JPH06237106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2268193A JPH06237106A (en) 1993-02-10 1993-02-10 Lamination type element for microwave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2268193A JPH06237106A (en) 1993-02-10 1993-02-10 Lamination type element for microwave

Publications (1)

Publication Number Publication Date
JPH06237106A true JPH06237106A (en) 1994-08-23

Family

ID=12089609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268193A Pending JPH06237106A (en) 1993-02-10 1993-02-10 Lamination type element for microwave

Country Status (1)

Country Link
JP (1) JPH06237106A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211772A1 (en) * 1995-11-13 2002-06-05 Siemens Aktiengesellschaft Method of introducing optical cable into a solid bed
KR101704301B1 (en) * 2015-12-10 2017-02-07 현대자동차주식회사 Method and Engine for Preventing Piston Oil Up

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211772A1 (en) * 1995-11-13 2002-06-05 Siemens Aktiengesellschaft Method of introducing optical cable into a solid bed
US6866448B2 (en) 1995-11-13 2005-03-15 Ccs Technology, Inc. Fiber optic installation
KR101704301B1 (en) * 2015-12-10 2017-02-07 현대자동차주식회사 Method and Engine for Preventing Piston Oil Up

Similar Documents

Publication Publication Date Title
EP0779257B1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
JP2002217054A (en) Electronic component and manufacturing method thereof
JP3523280B2 (en) Manufacturing method of multilayer ceramic parts
JP2798105B2 (en) Dielectric ceramic composition and laminated microwave device
JP3846464B2 (en) Dielectric ceramic composition and ceramic electronic component using the same
US5629252A (en) Method for manufacturing a dielectric ceramic composition dielectric ceramic and multilayer high frequency device
JP2526701B2 (en) Dielectric porcelain composition
JPH06237106A (en) Lamination type element for microwave
JP2000239061A (en) Dielectric porcelain composition
JP3375450B2 (en) Dielectric porcelain composition
JP4146152B2 (en) Dielectric ceramic composition and ceramic electronic component
JP4494881B2 (en) Low temperature fired dielectric ceramic composition and dielectric component
JP3373436B2 (en) Ceramic laminated electronic components
JP3329014B2 (en) Dielectric porcelain composition
JP2837016B2 (en) Laminated microwave device and method of manufacturing the same
EP0869514B1 (en) A method for manufacturing a dielectric ceramic composition, dielectric ceramic and multilayer high frequency device
JPH07169331A (en) Dielectric ceramic comopsition and multilayer microwave device
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JPH0959062A (en) Conductor ceramic composition, its production and laminate-type high-frequency device
JPH1134231A (en) Composite laminated dielectric ceramic part
JP3321980B2 (en) Dielectric porcelain composition and laminated dielectric component using this dielectric porcelain composition
JPH0574224A (en) Dielectric porcelain composition and microwave electronic device
JP3597244B2 (en) Dielectric porcelain composition
JP2004010441A (en) Dielectric ceramic composition and laminated ceramic electronic part using it