JPH06233757A - Three-dimensional photographing device - Google Patents

Three-dimensional photographing device

Info

Publication number
JPH06233757A
JPH06233757A JP5023949A JP2394993A JPH06233757A JP H06233757 A JPH06233757 A JP H06233757A JP 5023949 A JP5023949 A JP 5023949A JP 2394993 A JP2394993 A JP 2394993A JP H06233757 A JPH06233757 A JP H06233757A
Authority
JP
Japan
Prior art keywords
dimensional
projection
image
ray
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5023949A
Other languages
Japanese (ja)
Inventor
Hideyuki Ban
伴  秀行
Keiji Umetani
啓二 梅谷
Akihide Hashizume
明英 橋詰
Takeshi Ueda
健 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5023949A priority Critical patent/JPH06233757A/en
Publication of JPH06233757A publication Critical patent/JPH06233757A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the three-dimensional photographing device exactly obtaining three-dimensional distribution concerning the X-ray absorption coefficients of an object at high speed. CONSTITUTION:An X-ray irradiating means 1 irradiates the object with parallel X rays 12, a two-dimensional detecting means 2 detects the two-dimensional intensity distribution of transmitted X rays 13, a projecting direction changing means 3 changes a direction (projecting direction) for the X rays to transmit the object, and a three-dimensional image reconstituting means 4 successively fetches the detected results. According to the request of photographing start from an operator, a photographing control means 5 performs X-ray irradiation and detection while generating control signals to the respective means and changing the projecting direction. Next, the three-dimensional distribution of X-ray absorption coefficients of the object 11 is led out from the detected results collected by the three-dimensional image reconstituting means 4, and displayed by a three-dimensional image display means 6. Thus, the reconstituting algorithm of conventional X-ray CT can be applied, the influence of noise at the time of measurement can be reduced, and high accuracy and high resolution can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被写体のX線吸収係数
の3次元分布を計測する3次元撮影装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional image pickup apparatus for measuring the three-dimensional distribution of X-ray absorption coefficient of a subject.

【0002】[0002]

【従来の技術】従来、例えば被写体のX線吸収係数の3
次元分布を計測する方法として、メディカル イメージ
ング テクノロジー( MEDICAL IMAGING TECHNOLOGY )
8、4( 1990年 )第414頁から第422頁に記載のじん
肺症X線CT画像が利用されていた。これは、人体のX
線吸収係数の3次元分布を計測するものであり、体軸に
垂直な断面上のX線吸収係数の分布を複数断面にわたっ
て計測し、得られた計測結果を積み上げ3次元分布を得
るものである。メディカル イメージング テクノロジ
ー( MEDICAL IMAGING TECHNOLOGY)10、3( 1992年 )第
269頁から第270頁には、照射形状が円錐状である
X線源を利用し、X線源からのX線を複数の方向から被
写体に照射して、被写体を透過したX線の強度分布から
被写体のX線吸収係数の3次元分布を計測する方法が記
載されている。この方法では、被写体を透過したX線の
強度分布からX線吸収係数の3次元分布を導出する、い
わゆる再構成が必要になる。この再構成アルゴリズムと
して、ファン(扇状)ビーム投影に対するフィルタ補正
逆投影法を3次元被写体に対するコーン(円錐状)ビー
ム投影に拡張した方法を用いている。また、電子情報通
信学会論文誌 J72−D−II、9(1989年)第1
534頁から第1542頁にも、同様に照射形状が円錐
状であるX線源を利用した方法が記載されており、再構
成アルゴリズムに制限条件を付加することにより、再構
成時に生じるアーチファクトを低減している。さらに、
電子通信学会技術研究報告(信学技報)第84巻、第1
06号(1984)第73頁から第80頁では、平行X
線を用い、基本的に一つの被写体を透過したX線の2次
元強度分布から、被写体内部のX線吸収係数の3次元分
布を得る再構成方法が検討されている。
2. Description of the Related Art Conventionally, for example, an X-ray absorption coefficient of 3
Medical Imaging Technology (MEDICAL IMAGING TECHNOLOGY) is a method to measure the dimensional distribution.
8, 4 (1990), pneumoconiosis X-ray CT images described on pages 414 to 422 were used. This is the human body X
The three-dimensional distribution of the linear absorption coefficient is measured, and the distribution of the X-ray absorption coefficient on the cross section perpendicular to the body axis is measured over a plurality of cross sections, and the obtained measurement results are accumulated to obtain the three-dimensional distribution. . Medical Imaging Technology (MEDICAL IMAGING TECHNOLOGY) 10, 3 (1992) pp. 269 to 270 uses an X-ray source with a conical irradiation shape, and X-rays from the X-ray source can be emitted in multiple directions. Describes a method of irradiating a subject from the object and measuring a three-dimensional distribution of the X-ray absorption coefficient of the subject from the intensity distribution of the X-ray transmitted through the subject. This method requires so-called reconstruction, which derives a three-dimensional distribution of X-ray absorption coefficients from the intensity distribution of X-rays that have passed through the subject. As this reconstruction algorithm, a method in which the filtered backprojection method for fan (fan-shaped) beam projection is extended to cone (conical) beam projection for a three-dimensional object is used. Also, IEICE Transactions J72-D-II, 9 (1989) No. 1
Also from page 534 to page 1542, a method using an X-ray source whose irradiation shape is also conical is described, and by adding a limiting condition to the reconstruction algorithm, artifacts that occur during reconstruction are reduced. is doing. further,
Technical Report of IEICE Technical Report, Vol. 84, No. 1.
No. 06 (1984), pp. 73-80, parallel X
A reconstruction method using a line to obtain a three-dimensional distribution of the X-ray absorption coefficient inside the subject from the two-dimensional intensity distribution of the X-ray that has basically transmitted through one subject has been studied.

【0003】[0003]

【発明が解決しようとする課題】上記従来方法では、複
数の断面のX線吸収係数分布の計測結果を積み上げてい
るため、高速に計測を行なうことが困難であるという問
題があった。また、断面毎に計測時間が異なるため、被
写体の動きなどにより断面間の対応付けを行なうことが
困難であるという問題があった。また上記従来法では、
実際に病院などで患者を診断する場合に重要である計測
を効率的に行うことに関して全く検討されておらず、効
率のよい計測制御手順の開発が切望されていた。さら
に、再構成時に生じるアーチファクトを低減しようとす
ると、逆に、計測時の雑音などの外的要因を受けやすい
という問題があった。一つの被写体を透過したX線の2
次元強度分布から、被写体内部のX線吸収係数の3次元
分布を得る従来の再構成方法は、X線吸収係数を精度よ
く求めることは困難であり、実用的な再構成法として利
用困難であるという問題があった。本発明の目的は、こ
のような従来の問題点を解決し、被写体のX線吸収係数
の3次元分布を、高速、正確に、簡便に計測可能な3次
元撮影方法及び装置を提供することにある。
In the above-mentioned conventional method, since the measurement results of the X-ray absorption coefficient distributions of a plurality of cross sections are accumulated, there is a problem that it is difficult to perform the measurement at high speed. Further, since the measurement time is different for each cross section, there is a problem that it is difficult to associate the cross sections due to the movement of the subject. In the above conventional method,
Efficient measurement, which is important when actually diagnosing a patient in a hospital or the like, has not been studied at all, and development of an efficient measurement control procedure has been earnestly desired. Further, when attempting to reduce the artifacts that occur during reconstruction, there is a problem that, conversely, it is susceptible to external factors such as noise during measurement. Two X-rays transmitted through one subject
The conventional reconstruction method for obtaining the three-dimensional distribution of the X-ray absorption coefficient inside the subject from the three-dimensional intensity distribution is difficult to obtain the X-ray absorption coefficient with high accuracy and is difficult to use as a practical reconstruction method. There was a problem. An object of the present invention is to solve such conventional problems and to provide a three-dimensional imaging method and apparatus capable of measuring the three-dimensional distribution of the X-ray absorption coefficient of a subject quickly, accurately and easily. is there.

【0004】[0004]

【課題を解決するための手段】本発明の3次元撮影装置
は、被写体に平行X線を照射する平行X線照射手段と、
被写体を透過した透過X線の2次元強度分布を検出する
2次元検出手段と、平行X線を被写体に照射し透過X線
の2次元強度分布を得る投影方向を変更する投影方向変
更手段と、複数の投影方向での2次元強度分布をもとに
被写体のX線吸収係数の3次元分布を再構成する3次元
像再構成手段とを有することに特徴がある。また、操作
者の3次元撮影開始の指示に従って、上記平行X線照射
手段での平行X線を照射するタイミングと、2次元検出
手段での透過X線を検出するタイミングと、投影方向変
更手段での投影方向を変更するタイミングと、3次元像
再構成手段での3次元分布を再構成するタイミングと
を、少なくとも制御可能な撮影制御手段を有することに
も特徴がある。
A three-dimensional imaging apparatus of the present invention comprises parallel X-ray irradiating means for irradiating a subject with parallel X-rays.
A two-dimensional detecting means for detecting a two-dimensional intensity distribution of transmitted X-rays transmitted through the subject; a projection direction changing means for irradiating the subject with parallel X-rays to change a projection direction for obtaining a two-dimensional intensity distribution of the transmitted X-rays; It is characterized by having a three-dimensional image reconstructing means for reconstructing a three-dimensional distribution of the X-ray absorption coefficient of the subject based on the two-dimensional intensity distributions in a plurality of projection directions. In addition, according to the operator's instruction to start three-dimensional imaging, the parallel X-ray irradiating means irradiates the parallel X-rays, the two-dimensional detecting means detects the transmitted X-rays, and the projection direction changing means. It is also characterized in that it has an imaging control means capable of controlling at least the timing of changing the projection direction of the image and the timing of reconstructing the three-dimensional distribution by the three-dimensional image reconstructing means.

【0005】[0005]

【作用】上記構成によれば、投影方向を複数の方向に変
更しながら、透過X線の強度分布を測定するだけで、被
写体のX線吸収係数の3次元分布が得られ、撮影の高速
化を図ることができ、撮影中の被写体の動きによる影響
を著しく軽減することができる。また、上記構成によれ
ば、操作者の撮影開始の要求により、平行X線照射手段
と2次元検出手段と投影方向変更手段と3次元像再構成
手段とが同期して動作できるので、操作者は、例えば、
押しボタンスイッチの操作のみで3次元撮影が行え、煩
雑な操作が不要になるので、計測時間を短縮でき、スル
ープットを飛躍的に向上できる。さらに、上記構成によ
れば、平行X線ビームを照射するので、従来のX線CT
の再構成アルゴリズムを用いた再構成演算が可能にな
り、再構成演算の演算過程で、計測時の雑音等の外的要
因を受けやすいという従来問題を解決することができ、
像再構成によりX線吸収係数を著しく高精度、高分解能
で得ることができる。また、上記構成によれば、投影方
向が異なる複数の透過X線の2次元強度分布を利用する
ので、従来の実用的な像再構成アルゴリズムが使用で
き、従来の線CTと同等の高画質の画像を高速に得るこ
とができる。
According to the above construction, a three-dimensional distribution of the X-ray absorption coefficient of the object can be obtained by simply measuring the intensity distribution of the transmitted X-ray while changing the projection direction to a plurality of directions, and the photographing speed is increased. Therefore, it is possible to significantly reduce the influence of the movement of the subject during shooting. Further, according to the above configuration, the parallel X-ray irradiation unit, the two-dimensional detection unit, the projection direction changing unit, and the three-dimensional image reconstructing unit can operate in synchronization with each other in response to an operator's request to start imaging. Is, for example,
3D imaging can be performed only by operating the push button switch, and complicated operations are not required, so that the measurement time can be shortened and the throughput can be dramatically improved. Further, according to the above configuration, since the parallel X-ray beam is emitted, the conventional X-ray CT is used.
Reconstruction calculation using the reconstruction algorithm is possible, and it is possible to solve the conventional problem that external factors such as noise during measurement are easily received in the calculation process of reconstruction calculation.
By image reconstruction, the X-ray absorption coefficient can be obtained with extremely high accuracy and high resolution. Further, according to the above configuration, since the two-dimensional intensity distribution of a plurality of transmitted X-rays having different projection directions is used, the conventional practical image reconstruction algorithm can be used, and the high image quality equivalent to that of the conventional line CT can be obtained. Images can be obtained at high speed.

【0006】[0006]

【実施例】以下、本発明の実施例を、図面を用いて詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0007】(第1の実施例)図1は、本実施例の基本
構成を示す図である。被写体11に並行X線12を照射
可能なX線照射手段1の詳細は後で説明する。被写体1
1を透過したX線である透過X線13の強度分布を2次
元的に検出する2次元検出手段2は、例えば、X線を可
視光に変換するX線光変換手段と可視光を電気信号に変
換する光電変換手段とを組み合わせて構成する。X線光
変換手段は、蛍光板やX線イメージ・インテンシファイ
ヤ等から、光電変換手段は、予め定めた適当な空間分解
能を有する撮像管やCCDを利用したTVカメラ等か
ら、それぞれ構成できる。X線照射手段1から照射した
X線12が被写体11を透過して2次元検出手段2で検
出可能な位置関係を保ち、且つX線12が被写体11を
透過する方向である投影方向を変更可能とする投影方向
変更手段3は、例えば、図2に示すような構成とする。
図2において、X線管21とX線イメージ・インテンシ
ファイヤ22及びTVカメラ23は回転リング24上に
X線管21のX線照射面とX線イメージ・インテンシフ
ァイヤ22の受光面とが対向して、それぞれ回転リング
24の中心を通る直線上に固定されている。電動機25
は回転リング24を26で示す方向に回転させる。電動
機25の動作開始により、回転リング24が回転し、X
線管21とX線イメージ・インテンシファイヤ22及び
TVカメラ23は、被写体を内部に包含する円の円周上
を回転するので、X線が被写体11を透過する方向(投
影方向)を変更できる。投影方向変更手段3により投影
方向を変更しながら収集した複数の透過X線の強度分布
をもとに、被写体11のX線吸収係数の3次元分布を再
構成する3次元像再構成手段4は、例えば、2次元検出
手段2での検出結果を入力するインターフェイスや検出
結果を演算処理する乗算器等の演算素子あるいはマイク
ロプロセッサ等で構成される。操作者の3次元撮影開始
の指示に従って、X線照射手段1、2次元検出手段2、
投影方向検出手段3、3次元像再構成手段4の各動作タ
イミングを制御する撮影制御手段5は、例えば、タイミ
ング決定の基準信号を生成する水晶発信素子やTTL等
の論理素子等で構成される。被写体11のX線吸収係数
の3次元分布を視覚的に認識可能な形で表示する3次元
画像表示手段6は、例えば、画素値を濃淡値に変換する
画像処理機能をもったCRT等の表示装置等から構成さ
れる。
(First Embodiment) FIG. 1 is a diagram showing the basic configuration of the present embodiment. Details of the X-ray irradiating means 1 capable of irradiating the subject 11 with the parallel X-rays 12 will be described later. Subject 1
The two-dimensional detection means 2 for two-dimensionally detecting the intensity distribution of the transmitted X-rays 13 which are X-rays transmitted through 1 is, for example, an X-ray light conversion means for converting X-rays into visible light and an electric signal for visible light. It is configured by combining with a photoelectric conversion means for converting into. The X-ray light converting means can be constituted by a fluorescent screen, an X-ray image intensifier, etc., and the photoelectric converting means can be constituted by an image pickup tube having a predetermined appropriate spatial resolution, a TV camera using a CCD, or the like. It is possible to change the projection direction, which is the direction in which the X-rays 12 emitted from the X-ray emission means 1 pass through the subject 11 and can be detected by the two-dimensional detection means 2, and the X-rays 12 pass through the subject 11. The projection direction changing means 3 has a configuration as shown in FIG. 2, for example.
In FIG. 2, the X-ray tube 21, the X-ray image intensifier 22 and the TV camera 23 have a rotating ring 24 on which the X-ray irradiation surface of the X-ray tube 21 and the light-receiving surface of the X-ray image intensifier 22 are arranged. Oppositely, each is fixed on a straight line passing through the center of the rotary ring 24. Electric motor 25
Rotates the rotary ring 24 in the direction indicated by 26. When the operation of the electric motor 25 starts, the rotary ring 24 rotates, and X
Since the X-ray tube 21, the X-ray image intensifier 22, and the TV camera 23 rotate on the circumference of a circle that includes the subject inside, the direction (projection direction) in which the X-ray passes through the subject 11 can be changed. . The three-dimensional image reconstructing means 4 for reconstructing the three-dimensional distribution of the X-ray absorption coefficient of the subject 11 based on the intensity distributions of a plurality of transmitted X-rays collected while changing the projection direction by the projection direction changing means 3. For example, it is composed of an interface for inputting the detection result of the two-dimensional detection means 2, an arithmetic element such as a multiplier for arithmetically processing the detection result, or a microprocessor. According to the operator's instruction to start the three-dimensional imaging, the X-ray irradiation means 1, the two-dimensional detection means 2,
The imaging control means 5 for controlling each operation timing of the projection direction detecting means 3 and the three-dimensional image reconstructing means 4 is composed of, for example, a crystal transmitting element that generates a reference signal for timing determination, a logic element such as TTL, or the like. . The three-dimensional image display means 6 for displaying the three-dimensional distribution of the X-ray absorption coefficient of the subject 11 in a visually recognizable form is, for example, a display such as a CRT having an image processing function of converting pixel values into gray values. It is composed of devices.

【0008】次に、X線照射手段11の一構成例を、図
4を用いて説明する。X線をその発生位置を変更しなが
ら発生するX線発生手段7は、例えば、図4中に示すよ
うに熱電子を放出するカソード41と、カソード41か
ら放出した熱電子の衝突によりX線を発生するターゲッ
ト42と、熱電子の向きを変更する偏向手段43から構
成される。偏向手段43は、例えば、対向する2電極を
2組用意し(44と45、46と47)、これらを互い
に直交するよう配置して、電極間に電位差(偏向信号)
を与えて、熱電子の向きを変化させる。X線発生手段7
で発生したX線の方向を制御するソーラースリット8
は、例えば、正方形の断面51の辺寸法に比べて、高さ
方向52の寸法が十分大きな柱状の筒が縦横方向に積層
した構造を有し、その高さ方向52のみにX線が透過す
るスリットである。スリットの材質としては、例えば、
タングステン、タンタル、白金合金等を用いる。図4に
おいて、ターゲット42にカソード41に対して正の電
位差を加えると、カソード41から放出された熱電子
は、例えば、図中48で示すような軌跡を通ってターゲ
ット42に衝突する。ここで、途中の偏向手段43によ
り軌跡が変化する。熱電子が衝突すると、例えば、図中
49、50で示す軌跡を描くX線が放射される。その放
射形状は、円錐形となる。放射されたX線は、ソーラー
スリット8を透過するが、ソーラースリット8は、52
の方向のX線のみ透過させるので、この方向のX線50
のみが得られる。X線の平行度は、ソーラースリットの
スリット間隔とスリットの奥行き長さとX線源からの距
離で決まる。本実施例では、例えば、ソーラースリット
を構成する各柱状の筒を透過したX線の2次元検出器上
での照射サイズが、検出器の一画素のサイズ以下になる
よう、上記のスリット間隔、奥行き長、X線からの距離
を決定する。次に、偏向手段43の偏向信号を変化させ
ると、カソード41からターゲット42までの熱電子の
軌跡が変化するので、熱電子48が衝突するターゲット
上の位置が変化する。従って、ソーラースリット8を透
過して得られるX線50の位置が、偏向信号に応じて変
化する。熱電子48がターゲット42にまんべんなく衝
突するように偏向信号を制御することにより、図4中5
2の方向のみのX線、即ち多重平行平面X線ビームを照
射することができる。X線発生手段での偏向手段の偏向
信号は、例えば、図6に示すような、撮影制御手段から
のX線照射信号に同期した偏向信号を生成する偏向制御
手段を用いて与えられる。X線照射信号とは、X線の照
射を制御する信号であり、各信号は正論理で表現してい
る。詳細については、後で説明する。図6において、電
極44、45間に印加する電位差であるX−偏向信号6
1、電極46、47間に印加する電位差であるY−偏向
信号62は、それぞれ撮影制御手段からのX線照射信号
34に同期している。X−偏向信号61、Y−偏向信号
62を印加すると、熱電子は、ターゲット面上のX方向
をジグザグ走査しながらY方向を1回走査し、ターゲッ
トにまんべんなく衝突する。
Next, an example of the structure of the X-ray irradiation means 11 will be described with reference to FIG. The X-ray generating means 7 for generating X-rays while changing the generation position thereof emits X-rays by collision of the cathode 41 emitting thermoelectrons and the thermoelectrons emitted from the cathode 41 as shown in FIG. It is composed of a target 42 to be generated and a deflecting means 43 for changing the direction of thermoelectrons. The deflecting means 43, for example, prepares two sets of two electrodes facing each other (44 and 45, 46 and 47), arranges them so as to be orthogonal to each other, and potential difference (deflection signal) between the electrodes.
Is given to change the direction of the thermoelectrons. X-ray generation means 7
Solar slit 8 that controls the direction of X-rays generated in
Has, for example, a structure in which columnar cylinders having a dimension in the height direction 52 that is sufficiently larger than the side dimension of the square cross section 51 are stacked in the vertical and horizontal directions, and X-rays are transmitted only in the height direction 52. It is a slit. As the material of the slit, for example,
Tungsten, tantalum, platinum alloy, etc. are used. 4, when a positive potential difference is applied to the target 42 with respect to the target 42, the thermoelectrons emitted from the cathode 41 collide with the target 42 through a locus shown by 48 in the figure, for example. Here, the trajectory is changed by the deflecting means 43 on the way. When the thermal electrons collide, for example, X-rays that draw the loci shown by 49 and 50 in the figure are emitted. Its radial shape is a cone. The emitted X-rays pass through the solar slit 8 and the solar slit 8 is
X-rays in this direction are transmitted because only X-rays in this direction are transmitted.
Only get. The parallelism of X-rays is determined by the slit spacing of the solar slits, the depth length of the slits, and the distance from the X-ray source. In the present embodiment, for example, the above-mentioned slit spacing is set so that the irradiation size of X-rays transmitted through each columnar cylinder forming the solar slit on the two-dimensional detector is equal to or smaller than the size of one pixel of the detector, Depth length, distance from X-ray is determined. Next, when the deflection signal of the deflecting means 43 is changed, the locus of the thermoelectrons from the cathode 41 to the target 42 changes, so that the position on the target where the thermoelectrons 48 collide changes. Therefore, the position of the X-ray 50 obtained by passing through the solar slit 8 changes according to the deflection signal. By controlling the deflection signal so that the thermionic electrons 48 evenly collide with the target 42, 5 in FIG.
It is possible to irradiate X-rays in only two directions, that is, multiple parallel plane X-ray beams. The deflection signal of the deflection means in the X-ray generation means is given using, for example, a deflection control means for generating a deflection signal synchronized with the X-ray irradiation signal from the imaging control means as shown in FIG. The X-ray irradiation signal is a signal for controlling the irradiation of X-rays, and each signal is expressed by positive logic. Details will be described later. In FIG. 6, the X-deflection signal 6 which is the potential difference applied between the electrodes 44 and 45.
The Y-deflection signal 62, which is the potential difference applied between the first electrode 46 and the second electrode 47, is synchronized with the X-ray irradiation signal 34 from the imaging control means. When the X-deflection signal 61 and the Y-deflection signal 62 are applied, the thermoelectrons scan the Y-direction once while zigzag-scanning the X-direction on the target surface, and collide with the target evenly.

【0009】次に、本実施例に基づく3次元撮影手順の
一例を、図3を用いて説明する。図3は、撮影制御手段
での一制御例を説明するタイミング図である。各タイミ
ングは正論理であり、以下、高レベルをH、低レベルを
Lで表現する。先ず、操作者は、投影方向変更手段3の
回転リング24の回転開始を、撮影制御手段5に対して
要求する。この要求は、例えば、操作者が、撮影制御手
段5に設けられた押しボタンスイッチ等の選択をして行
うと、撮影制御手段5は回転開始信号31を投影方向変
更手段3に送る。操作者の要求は、本実施例に限らず以
下に説明する実施例においても、撮影制御手段5に設け
られた押しボタンスイッチ、ダイアルスイッチ等を所望
の要求に対応する位置に選択することにより設定され
る。回転開始信号31を受けた投影方向変更手段3は、
電動機25を動作させ、回転リング24を回転させる。
予め定めた回転数に達した段階で、投影方向変更手段3
は回転完了信号32を撮影制御手段5に送る。回転完了
信号32を受けた撮影制御手段5は、回転が完了した旨
を、例えばランプの点灯等で操作者に知らせる。そこで
操作者は、撮影の開始を撮影制御手段5に対して、例え
ば、押しボタンスイッチ等を介して、要求する。撮影開
始信号33は、この要求をタイミング図上で表現したも
のである。撮影開始の要求を受けた撮影制御手段5は、
X線照射信号34をX線照射手段1に送る。この信号
は、検出同期信号35に同期して生成される。検出同期
信号35とは、2次元検出手段2での透過X線の検出タ
イミングを表す信号であって、例えばTVカメラの同期
信号に相当する。検出同期信号35がHのときはデータ
の読み出し期間、Lのときはブランキング期間に相当す
る。検出同期信号35は、2次元検出手段2あるいは撮
影制御手段5で生成され、両者の同期を図る信号であ
る。X線照射信号34は、検出同期信号35がLのとき
にHになるパルス信号であり、予め定めた所定の投影方
向の数だけ(図中では180投影)のパルスを生成す
る。さらに、撮影開始の要求を受けた撮影制御手段5
は、検出有効信号36を3次元像再構成手段4に送る。
この信号は、撮影開始の要求に対して照射される一連の
X線(図中では180投影)による透過X線が、2次元
検出手段2によって検出される期間、Hとなる信号であ
る。X線照射信号34を受けたX線照射手段1は、X線
照射信号34がHのときX線を被写体11に照射する。
また、検出有効信号36を受けた3次元像再構成手段4
は、2次元検出手段2で検出した透過X線の2次元強度
分布を、逐次取り込む。従って、X線照射信号34に応
じたX線の照射と、2次元検出器2での検出同期信号3
5に応じた透過X線の検出及び3次元像再構成手段4で
の検出結果の取り込みとが、所定の投影方向の数だけ繰
り返し行われる。
Next, an example of a three-dimensional photographing procedure based on this embodiment will be described with reference to FIG. FIG. 3 is a timing chart for explaining an example of control by the photographing control means. Each timing is a positive logic, and hereinafter, the high level is represented by H and the low level is represented by L. First, the operator requests the photographing control means 5 to start rotation of the rotary ring 24 of the projection direction changing means 3. This request is made, for example, by the operator selecting a push button switch or the like provided in the photographing control means 5, and the photographing control means 5 sends a rotation start signal 31 to the projection direction changing means 3. The operator's request is set by selecting a push button switch, a dial switch or the like provided in the photographing control means 5 at a position corresponding to a desired request not only in the present embodiment but also in the embodiments described below. To be done. The projection direction changing means 3 that has received the rotation start signal 31
The electric motor 25 is operated to rotate the rotating ring 24.
When the rotation speed reaches a predetermined value, the projection direction changing means 3
Sends a rotation completion signal 32 to the photographing control means 5. Upon receiving the rotation completion signal 32, the imaging control means 5 notifies the operator that the rotation is completed, for example, by turning on a lamp. Therefore, the operator requests the shooting control means 5 to start shooting, for example, via a push button switch or the like. The shooting start signal 33 represents this request on the timing diagram. Upon receiving the request to start shooting, the shooting control means 5
The X-ray irradiation signal 34 is sent to the X-ray irradiation means 1. This signal is generated in synchronization with the detection synchronization signal 35. The detection synchronization signal 35 is a signal representing the detection timing of the transmitted X-rays by the two-dimensional detection means 2, and corresponds to, for example, a synchronization signal of a TV camera. When the detection synchronization signal 35 is H, it corresponds to the data reading period, and when it is L, it corresponds to the blanking period. The detection synchronization signal 35 is a signal which is generated by the two-dimensional detection means 2 or the photographing control means 5 and which synchronizes the two. The X-ray irradiation signal 34 is a pulse signal that becomes H when the detection synchronization signal 35 is L, and generates a number of pulses in a predetermined predetermined projection direction (180 projections in the figure). Further, the photographing control means 5 that has received the request to start photographing
Sends the detection valid signal 36 to the three-dimensional image reconstructing means 4.
This signal is a signal that becomes H during the period in which the two-dimensional detection unit 2 detects the transmitted X-rays by a series of X-rays (180 projections in the drawing) that are emitted in response to the request to start imaging. Upon receiving the X-ray irradiation signal 34, the X-ray irradiation means 1 irradiates the subject 11 with X-rays when the X-ray irradiation signal 34 is H.
Further, the three-dimensional image reconstructing means 4 which has received the detection valid signal 36
Sequentially takes in the two-dimensional intensity distribution of the transmitted X-ray detected by the two-dimensional detection means 2. Therefore, the X-ray irradiation according to the X-ray irradiation signal 34 and the detection synchronization signal 3 in the two-dimensional detector 2 are performed.
The detection of the transmitted X-ray according to 5 and the capturing of the detection result by the three-dimensional image reconstructing unit 4 are repeated for the number of predetermined projection directions.

【0010】次に、3次元像再構成手段4は、全ての投
影方向に関する透過X線の2次元強度分布を取り込んだ
後、被写体11のX線吸収係数の3次元分布を求める再
構成演算を行う。この演算は、以下に述べるように、従
来のX線CTで用いられている再構成アルゴリズムを適
用できる。再構成演算に用いる透過X線の2次元強度分
布は、X線照射手段でのX線を照射する照射面の位置
と、2次元検出器でのX線を検出する受光面の位置とを
回転させながら検出した。この回転の中心軸に垂直な面
について考えてみると、多重平行平面X線ビームを用い
た場合、この面内の被写体を透過するX線は、同一面内
から照射され、同一面内で検出される。即ち、従来のX
線CTと全く同一のデータ収集方法であるので、従来の
X線CTで用いられている再構成アルゴリズムを適用
し、像再構成が行える。このような再構成アルゴリズム
に関しては、例えば、木村博一監修、最近の医用画像診
断装置、第106頁から第110頁において論じられて
いる。最後に、3次元像再構成手段4での再構成結果
は、3次元画像表示手段に送られ、操作者が視覚的に認
識可能な形で表示される。この表示は、例えば、ある断
面に沿ってX線吸収係数を抽出し、その値を濃淡値とし
て表示する方法(断面表示)により行うことができる。
あるいは、同一係数を有する部分を抽出し、これを物体
と考えて陰面処理や陰影付け処理等を施して形状を表示
する方法(表面表示)により行うことができる。以上の
3次元撮影手順より、被写体11のX線吸収係数の3次
元分布を得てこれを表示できる。
Next, the three-dimensional image reconstructing means 4 takes in the two-dimensional intensity distributions of the transmitted X-rays in all projection directions, and then performs a reconstruction operation for obtaining the three-dimensional distribution of the X-ray absorption coefficient of the subject 11. To do. As described below, the reconstruction algorithm used in the conventional X-ray CT can be applied to this calculation. The two-dimensional intensity distribution of the transmitted X-rays used for the reconstruction calculation rotates the position of the irradiation surface on which the X-ray irradiation means irradiates the X-rays and the position of the light-receiving surface on which the two-dimensional detector detects the X-rays. While detecting. Considering a plane perpendicular to the central axis of this rotation, when a multiple parallel plane X-ray beam is used, X-rays transmitted through an object in this plane are emitted from the same plane and detected in the same plane. To be done. That is, the conventional X
Since the data acquisition method is exactly the same as that for the line CT, image reconstruction can be performed by applying the reconstruction algorithm used in the conventional X-ray CT. Such a reconstruction algorithm is discussed in, for example, Hirokazu Kimura, Recent Medical Image Diagnostic Equipment, pages 106 to 110. Finally, the result of reconstruction by the three-dimensional image reconstruction means 4 is sent to the three-dimensional image display means and displayed in a form that can be visually recognized by the operator. This display can be performed by, for example, a method of extracting an X-ray absorption coefficient along a certain cross section and displaying the value as a gray value (cross section display).
Alternatively, it can be performed by a method (surface display) in which a portion having the same coefficient is extracted, treated as an object, and subjected to a hidden surface processing, a shading processing, or the like to display the shape. By the above three-dimensional imaging procedure, the three-dimensional distribution of the X-ray absorption coefficient of the subject 11 can be obtained and displayed.

【0011】以上のように本実施例では、従来のX線C
Tで用いられている再構成アルゴリズムを適用でき、再
構成演算の演算過程で、計測時の雑音等の外的要因を受
けやすいという従来問題を回避することができ、像再構
成の結果得られるX線吸収係数の高精度、高分解能化を
図ることができる。また、回転リングを1回若しくは適
当な回数だけ回転させるだけで、被写体のX線吸収係数
の3次元分布が得られるので、撮影の高速化を図ること
ができ、撮影中の被写体の動きによる影響を著しく軽減
できる。操作者の撮影開始の要求により、X線照射手段
と2次元検出手段と投影方向変更手段と3次元像再構成
手段とが同期して動作するので、操作者は、例えば、押
しボタンスイッチの操作のみで3次元撮影が行え、煩雑
な操作が不要になり、計測効率の向上を図ることができ
る。また、X線の照射をTVカメラのブランキング期間
に行えるので、2次元検出器において、透過X線の検出
途中に検出対象が変化し、強度分布が正確に検出できな
くなるという問題を回避できる。X線発生手段におい
て、熱電子48がターゲット42にまんべんなく衝突す
るので、ターゲットの部分劣化を低減でき長寿命化を図
ることができる。X線発生手段での偏向手段の偏向信号
を、撮影制御手段からのX線照射信号に同期させ、ター
ゲットへの熱電子の衝突が、1回のX線照射に対して常
に同一条件で発生するようにしたので、X線照射手段か
ら照射される多重平行平面X線ビームの2次元強度分布
を一定に保つことができ、像再構成の結果得られるX線
吸収係数の高精度、高分解能化を図ることができる。
As described above, in this embodiment, the conventional X-ray C is used.
The reconstruction algorithm used in T can be applied, and the conventional problem of being susceptible to external factors such as noise during measurement can be avoided in the calculation process of the reconstruction calculation, and the result of image reconstruction can be obtained. High accuracy and high resolution of the X-ray absorption coefficient can be achieved. Also, since the three-dimensional distribution of the X-ray absorption coefficient of the subject can be obtained by rotating the rotating ring once or an appropriate number of times, the photographing speed can be increased, and the influence of the movement of the subject during the photographing can be achieved. Can be significantly reduced. The X-ray irradiation means, the two-dimensional detection means, the projection direction changing means, and the three-dimensional image reconstructing means operate in synchronization in response to an operator's request to start imaging, so that the operator operates, for example, a push button switch. It is possible to perform three-dimensional imaging only by itself, eliminate the need for complicated operations, and improve the measurement efficiency. Further, since the X-ray irradiation can be performed during the blanking period of the TV camera, it is possible to avoid the problem that the detection target changes during the detection of the transmitted X-ray in the two-dimensional detector and the intensity distribution cannot be accurately detected. In the X-ray generation means, the thermoelectrons 48 evenly collide with the target 42, so that partial deterioration of the target can be reduced and the life can be extended. The deflection signal of the deflection means in the X-ray generation means is synchronized with the X-ray irradiation signal from the imaging control means, and the collision of thermoelectrons with the target always occurs under the same condition for one X-ray irradiation. By doing so, the two-dimensional intensity distribution of the multiple parallel plane X-ray beams emitted from the X-ray irradiating means can be kept constant, and the X-ray absorption coefficient obtained as a result of image reconstruction can be made highly accurate and have high resolution. Can be achieved.

【0012】本実施例において、3次元像再構成手段4
での再構成演算は、全ての投影方向に関する透過X線の
2次元強度分布を取り込んだ後に行うようにしたが、例
えば、シェーディング補正など、透過X線の2次元強度
分布単位で実行可能な処理に関しては、透過X線の2次
元強度分布の取り込みと平行して行うこともでき、この
場合、演算の高速化を図ることができる。また、本実施
例において、投影方向変更手段での投影方向を決定する
回転リングの回転を、撮影制御手段での検出同期信号に
同期させることもでき、例えば、回転リングを回転させ
る電動機を駆動する信号を、PLL(フェーズド ロッ
クド ループ( Phase Locked Loop ))等の回路によ
り、検出同期信号と周波数比及び位相差が一定になるよ
う調整する機能を付加して実現できる。これにより、投
影方向の変更がより正確になり、像再構成の結果得られ
るX線吸収係数の高精度、高分解能化が図れる。本実施
例において、図2に示すような回転リングを用いた投影
方向偏向手段を用いたが、例えば、図5に示すような他
の手段による方法を用いてもよい。
In the present embodiment, the three-dimensional image reconstruction means 4
The reconstruction calculation in step S1 is performed after capturing the two-dimensional intensity distribution of the transmitted X-rays in all the projection directions. For example, a process that can be executed in a unit of the two-dimensional intensity distribution of the transmitted X-rays such as shading correction. Regarding the above, it can be performed in parallel with the acquisition of the two-dimensional intensity distribution of the transmitted X-rays, and in this case, the calculation speed can be increased. Further, in the present embodiment, the rotation of the rotary ring that determines the projection direction by the projection direction changing unit can be synchronized with the detection synchronization signal by the imaging control unit, and, for example, drives an electric motor that rotates the rotary ring. This can be realized by adding a function of adjusting a signal by a circuit such as a PLL (Phase Locked Loop) so that the frequency ratio and the phase difference become constant with respect to the detection synchronization signal. As a result, the projection direction can be changed more accurately, and the X-ray absorption coefficient obtained as a result of image reconstruction can be highly accurate and have high resolution. In this embodiment, the projection direction deflecting means using the rotating ring as shown in FIG. 2 is used, but the method by other means as shown in FIG. 5 may be used.

【0013】図5において、X線管21とX線イメージ
・インテンシファイヤ22及びTVカメラ23は弓型ア
ーム55上にX線管21のX線照射面とX線イメージ・
インテンシファイヤ22の受光面とが対向して固定され
る。また、電動機53は弓型アーム55を54で示す方
向に移動させ、電動機51は電動機53、弓型アーム5
5を52で示す方向に回転させる。電動機51を動作開
始により、弓型アーム55が回転し、X線管21とX線
イメージ・インテンシファイヤ22及びTVカメラ23
は、被写体を内部に包含する円の円周上を回転するの
で、図2の例と同様に、X線が被写体11を透過する方
向(投影方向)を変更できる。さらに、電動機53を動
作させると、弓型アームが移動し、電動機51の動作に
より変更可能な投影方向を変化できる。従って、被写体
を移動させずに撮影部位を変更できる。また、本実施例
において、偏向制御手段により、X線発生手段での偏向
手段の偏向信号を、撮影制御手段からのX線照射信号に
同期させたが、例えば、X−偏向信号、Y−偏向信号の
繰り返し周期を、X線照射信号のパルス幅より十分短く
し、この同期の機能を省略できる。また、本実施例にお
いて、X線発生手段での偏向手段としては、電界により
熱電子の向きを変化させる、いわゆる静電偏向を利用し
たが、磁界により変化させる電磁偏向を利用すること、
あるいは両者を併用しても可能である。さらに、本実施
例において、X線発生手段は、偏向手段によりX線の発
生位置を変化させたが、他の方法として、X線管の焦点
(大焦点、小焦点)サイズ変更による方法、または、複
数のX線管を配置して照射するX線管の切り換えによる
方法、あるいは、これらの方法を併用することも可能で
ある。本実施例において、図4に示す手法により多重平
行平面X線ビームを発生させたが、他の方法として、図
7に示すような多層膜凹面鏡を用いて発生させることも
可能である。図7において、X線管21から発生したX
線は、例えば、図中64で示す軌跡を通り、多層膜凹面
鏡63に入射する。多層膜凹面鏡63は、入射したX線
を反射するが、その反射角度は入射位置により異なり、
反射後のX線は、図中65で示す軌跡のような多重平行
平面X線ビームとなる。従って、多層膜凹面鏡63で反
射させて得た多重平行平面X線ビームを被写体に照射し
て、本実施例と同様の手順で、被写体のX線吸収係数の
3次元分布が得られる。
In FIG. 5, the X-ray tube 21, the X-ray image intensifier 22 and the TV camera 23 are arranged on the bow arm 55 on the X-ray irradiation surface of the X-ray tube 21 and the X-ray image.
The light receiving surface of the intensifier 22 faces and is fixed. Further, the electric motor 53 moves the bow-shaped arm 55 in the direction indicated by 54, and the electric motor 51 causes the electric motor 53 and the bow-shaped arm 5 to move.
5 is rotated in the direction indicated by 52. By starting the operation of the electric motor 51, the bow-shaped arm 55 rotates, and the X-ray tube 21, the X-ray image intensifier 22, and the TV camera 23.
Rotates on the circumference of a circle that includes the subject inside, so that the direction in which X-rays pass through the subject 11 (projection direction) can be changed, as in the example of FIG. Further, when the electric motor 53 is operated, the bow-shaped arm moves, and the changeable projection direction can be changed by the operation of the electric motor 51. Therefore, the imaging region can be changed without moving the subject. In the present embodiment, the deflection control means synchronizes the deflection signal of the deflection means in the X-ray generation means with the X-ray irradiation signal from the imaging control means. For example, the X-deflection signal and the Y-deflection signal are used. The signal repetition period can be made sufficiently shorter than the pulse width of the X-ray irradiation signal, and this synchronization function can be omitted. Further, in the present embodiment, as the deflection means in the X-ray generation means, so-called electrostatic deflection, which changes the direction of thermoelectrons by an electric field, is used, but electromagnetic deflection, which is changed by a magnetic field, is used.
Alternatively, both can be used together. Further, in the present embodiment, the X-ray generation means changes the X-ray generation position by the deflection means, but as another method, a method of changing the size (large focus, small focus) of the X-ray tube, or It is also possible to arrange a plurality of X-ray tubes and switch the X-ray tubes for irradiation, or to use these methods together. In the present embodiment, the multiple parallel plane X-ray beam is generated by the method shown in FIG. 4, but as another method, it is also possible to generate it by using a multilayer film concave mirror as shown in FIG. In FIG. 7, X generated from the X-ray tube 21
The line passes through a locus indicated by 64 in the figure, and is incident on the multilayer concave mirror 63. The multilayer concave mirror 63 reflects incident X-rays, but the reflection angle differs depending on the incident position.
The reflected X-rays become a multiple parallel plane X-ray beam like the locus shown by 65 in the figure. Therefore, the object is irradiated with the multiple parallel plane X-ray beams obtained by being reflected by the multilayer film concave mirror 63, and the three-dimensional distribution of the X-ray absorption coefficient of the object is obtained by the same procedure as in this embodiment.

【0014】(第2の実施例)次に、本発明の第2の実
施例を、図面を用いて詳細に説明する。第1の実施例で
は、互いに平行なシート状X線ビームからなる多重平行
平面X線ビームを用いたが、互いに平行な複数の扇状X
線ビームからなる多重扇状平面X線ビームを用いること
もできる。図8は、本実施例のX線照射手段の一構成例
である。X線の発生位置を変更しながらX線を発生する
X線発生手段は、例えば、図中に示すように熱電子を放
出するカソード41と、カソード41から放出した熱電
子の衝突によりX線を発生するターゲット71と、熱電
子の向きを変更可能な偏向手段72から構成される。偏
向手段72は、例えば、対向する2電極を1組用意し
(73と74)、電極間に電位差(偏向信号)を与えて
電界を発生させ、熱電子の向きを変える。第1の実施例
の場合と異なり、電極が一組であるので、熱電子の向き
は1方向のみで変更できる。10は、X線発生手段9で
発生したX線の方向を制御するソーラースリット10
は、例えば、縦方向より横方向が十分長い長方形の断面
78の縦方向寸法に比べて、高さ方向79の寸法が十分
大きい柱状の筒を、縦に積層した構造を有し、その高さ
方向79で扇形に広がるX線のみ透過するスリットであ
る。スリットの材質としては、例えば、タングステン、
タンタル、白金合金等を用いる。図8において、ターゲ
ット71にカソード41に対して正の電位差を加える
と、カソード41から放出された熱電子は、例えば、図
中75で示すような軌跡を通ってターゲット71に衝突
する。ここで、途中の偏向手段72により軌跡が変化す
る。熱電子が衝突すると、例えば、図中76、77で示
す軌跡を描くX線が放射され、その放射形状は、円錐形
となる。放射されたX線は、ソーラースリット10を透
過するが、ソーラースリット10は、79の方向に扇形
に広がるX線のみ透過させるので、X線77のみが得ら
れる。次に、偏向手段72の偏向信号を変化させると、
カソード41からターゲット71までの熱電子の軌跡が
変化するので、熱電子75が衝突するターゲット上の位
置が変化し、ソーラースリット10を透過して得られる
X線77の位置が、偏向信号に応じて変化する。熱電子
75がターゲット71にまんべんなく衝突するように偏
向信号を制御し、図中79の方向に扇形に広がるX線、
即ち多重扇状平面X線ビームを照射できる。この多重扇
状平面X線ビームを照射可能な手段を利用して、第1の
実施例と同様の手順により被写体11のX線吸収係数の
3次元分布を得ることができる。3次元像再構成手段4
での再構成演算は、第1の実施例の場合(多重平行平面
X線ビーム)と同様に、従来のX線CT(扇形ビームC
T)で使用されている再構成アルゴリズムを適用でき
る。また、X線発生手段での偏向手段の偏向信号に関し
ても、第1の実施例と同様に、図6に示すような撮影制
御手段からのX線照射信号に同期した偏向信号を生成す
る偏向制御手段を付加できる。但し、電極が1組みであ
り、Y−変更信号のみを利用する。
(Second Embodiment) Next, a second embodiment of the present invention will be described in detail with reference to the drawings. In the first embodiment, a multiple parallel plane X-ray beam composed of sheet-like X-ray beams parallel to each other was used, but a plurality of fan-shaped X-ray beams parallel to each other are used.
It is also possible to use a multiple fan-shaped planar X-ray beam consisting of a line beam. FIG. 8 shows an example of the configuration of the X-ray irradiation means of this embodiment. The X-ray generation means for generating X-rays while changing the position of generation of X-rays emits X-rays by collision of the cathode 41 emitting thermoelectrons and the thermoelectrons emitted from the cathode 41 as shown in the figure, for example. It is composed of a target 71 to be generated and a deflecting means 72 capable of changing the direction of thermoelectrons. The deflecting means 72 prepares, for example, a pair of facing two electrodes (73 and 74), gives a potential difference (deflection signal) between the electrodes to generate an electric field, and changes the direction of thermoelectrons. Unlike the case of the first embodiment, since there is one set of electrodes, the direction of thermoelectrons can be changed in only one direction. 10 is a solar slit 10 for controlling the direction of X-rays generated by the X-ray generation means 9.
Has, for example, a structure in which columnar cylinders having a dimension in the height direction 79 that is sufficiently larger than the longitudinal dimension of a rectangular cross section 78 that is sufficiently longer in the lateral direction than the longitudinal direction are vertically stacked, and the height thereof is It is a slit that transmits only X-rays that spread in a fan shape in the direction 79. As the material of the slit, for example, tungsten,
Tantalum, platinum alloy, etc. are used. In FIG. 8, when a positive potential difference is applied to the target 41 with respect to the target 71, the thermoelectrons emitted from the cathode 41 collide with the target 71 through a locus indicated by 75 in the figure, for example. Here, the trajectory is changed by the deflecting means 72 on the way. When the thermoelectrons collide, for example, X-rays that draw the loci denoted by 76 and 77 in the figure are emitted, and the emission shape becomes a conical shape. The emitted X-rays pass through the solar slit 10, but the solar slit 10 transmits only X-rays that spread in a fan shape in the direction of 79, so that only X-rays 77 are obtained. Next, when the deflection signal of the deflection means 72 is changed,
Since the trajectory of the thermoelectrons from the cathode 41 to the target 71 changes, the position on the target where the thermoelectrons 75 collide changes, and the position of the X-ray 77 obtained by passing through the solar slit 10 depends on the deflection signal. Change. The deflection signal is controlled so that the thermoelectrons 75 uniformly collide with the target 71, and the X-ray spreads in a fan shape in the direction of 79 in the figure.
That is, multiple fan-shaped plane X-ray beams can be emitted. A three-dimensional distribution of the X-ray absorption coefficient of the subject 11 can be obtained by using the means capable of irradiating the multiple fan-shaped plane X-ray beams by the same procedure as in the first embodiment. Three-dimensional image reconstruction means 4
The reconstruction calculation in the same manner as in the first embodiment (multiple parallel plane X-ray beam) is performed by the conventional X-ray CT (fan beam C).
The reconstruction algorithm used in T) can be applied. Further, regarding the deflection signal of the deflection means in the X-ray generation means, as in the first embodiment, the deflection control for generating the deflection signal synchronized with the X-ray irradiation signal from the imaging control means as shown in FIG. Means can be added. However, there is one set of electrodes, and only the Y-change signal is used.

【0015】以上のように本実施例では、X線発生手段
の偏向手段の熱電子を偏向させる方向を1方向のみであ
り、偏向制御手段の構成が簡略化でき、高信頼化及び低
コスト化を図ることができる。また、ソーラースリット
の構造は製作が容易な構造であり、高信頼化及び低コス
ト化を図ることができる。本実施例においても、第1の
実施例の場合と同様に、図9に示すような多層膜凹面鏡
を用いて、多重扇状平面X線ビームを発生させることも
可能である。図9において、X線管21から発生したX
線は、例えば、図中82で示す軌跡を通り、多層膜凹面
鏡81に入射する。多層膜凹面鏡81は、入射したX線
を反射するが、その反射角度は入射位置により異なり、
反射後のX線は、図中83で示す軌跡のような多重扇状
平面X線ビームとなる。多層膜凹面鏡81で反射させて
得た多重平行平面X線ビームを被写体に照射して、本実
施例と同様の手順で、被写体のX線吸収係数の3次元分
布が得られる。
As described above, in the present embodiment, the deflection direction of the thermoelectrons of the deflection means of the X-ray generation means is only one direction, the structure of the deflection control means can be simplified, and the reliability and cost can be reduced. Can be achieved. Further, the structure of the solar slit is a structure that can be easily manufactured, and high reliability and low cost can be achieved. Also in this embodiment, as in the case of the first embodiment, it is possible to generate a multiple fan-shaped plane X-ray beam by using a multilayer film concave mirror as shown in FIG. In FIG. 9, X generated from the X-ray tube 21
For example, the line passes through the locus indicated by 82 in the figure and enters the multilayer concave mirror 81. The multilayer film concave mirror 81 reflects incident X-rays, but its reflection angle differs depending on the incident position.
The reflected X-rays become a multiple fan-shaped planar X-ray beam having a locus indicated by 83 in the figure. A multiple parallel plane X-ray beam obtained by being reflected by the multilayer concave mirror 81 is applied to the subject, and a three-dimensional distribution of the X-ray absorption coefficient of the subject is obtained by the same procedure as in this embodiment.

【0016】(第3の実施例)次に、本発明の第3の実
施例を詳細に説明する。上述の各実施例では、投影方向
を予め定めた所定の数だけ(図2の例では180投影)
変化させながら収集した透過X線の2次元強度分布を用
いて、被写体のX線吸収係数の3次元分布を得たが、操
作者の要求する撮影条件により、収集する投影方向の数
を変更可能な投影回数変更手段を設けることもできる。
投影回数変更手段は、撮影1回当たりの収集する投影方
向の数を変更するもので、例えば、図2に示した投影方
向変更手段での回転リング24の速度を変化させる。あ
るいは、回転リング24を複数回回転させて全投影方向
のデータを収集する場合、この回転の回数を変化させ
る。例えば、操作者が高速撮影を要求した場合、投影回
数変更手段では、収集する投影方向の間隔を荒くし、投
影回数を、例えば90投影や60投影等に減少させる。
投影回数を減少させると、データ収集自体に要する時間
が短縮できるので、投影方向変更手段での回転リング2
4の速度を上げて、撮影時間を短縮できる。投影方向を
減少させた場合、3次元像再構成手段での再構成演算の
際にアーチファクトが生じる場合があるが、再構成アル
ゴリズムの最適化により回避できるこのような最適化に
ついては、例えば、オプテック レターズ( OPTICS LE
TTERS )14、20(1989年)第1095頁から第
1097頁において論じられている。また、操作者が高
精細撮影を要求した場合、投影回数変更手段では、収集
する投影方向の間隔を細かくし、投影回数を、例えば3
60投影や480投影等に増加させる。投影回数の増加
により、3次元像再構成手段での再構成演算の精度が向
上し、より高精細なX線吸収係数の3次元分布が得られ
る。以上のように本実施例では、操作者の要求する撮影
条件により、収集する投影方向の数を変更できる投影回
数変更手段を設けたので、操作者の要求に応じて、高速
撮影あるいは高精細撮影を行うことができる。
(Third Embodiment) Next, a third embodiment of the present invention will be described in detail. In each of the above-described embodiments, the projection direction is set to a predetermined number (180 projections in the example of FIG. 2).
Although the three-dimensional distribution of the X-ray absorption coefficient of the subject was obtained using the two-dimensional intensity distribution of the transmitted X-rays collected while changing, the number of projection directions to be collected can be changed according to the imaging conditions required by the operator. It is also possible to provide a means for changing the number of projections.
The projection number changing unit changes the number of projection directions to be collected per image capturing, and changes the speed of the rotating ring 24 in the projection direction changing unit shown in FIG. 2, for example. Alternatively, when the rotating ring 24 is rotated a plurality of times to collect data in all projection directions, the number of times of this rotation is changed. For example, when the operator requests high-speed imaging, the projection number changing means reduces the intervals in the projection direction to be collected and reduces the number of projections to 90 projections, 60 projections, or the like.
If the number of projections is reduced, the time required for data collection itself can be shortened.
The speed of 4 can be increased to shorten the shooting time. When the projection direction is reduced, an artifact may occur during the reconstruction calculation by the three-dimensional image reconstruction means. Such optimization that can be avoided by optimizing the reconstruction algorithm is described in, for example, Optec. Letters (OPTICS LE
TTERS) 14, 20 (1989) pp. 1095-1097. In addition, when the operator requests high-definition imaging, the projection number changing unit makes the intervals in the projection direction to be collected fine, and the number of projections is set to, for example, 3.
Increase to 60 or 480 projections. The increase in the number of projections improves the accuracy of the reconstruction calculation by the three-dimensional image reconstructing means, and a more precise three-dimensional distribution of the X-ray absorption coefficient can be obtained. As described above, in the present embodiment, since the projection number changing unit that can change the number of projection directions to be collected is provided according to the shooting condition requested by the operator, high-speed shooting or high-definition shooting can be performed according to the operator's request. It can be performed.

【0017】(第4の実施例)次に、本発明の第4の実
施例を詳細に説明する。上述の各実施例では、2次元検
出手段は、被写体を透過した透過X線を予め定めた空間
分解能で検出していたが、操作者の要求する撮影条件に
より、この空間分解能を変更する空間分解能変更手段を
設けることもできる。空間分解能変更手段は、2次元検
出手段の空間分解能を変更するもので、例えば、撮像管
に於ける撮像面に蓄積された電荷を読みだす電子ビーム
の走査信号を変更する。例えば、操作者が高速撮影を要
求した場合、空間分解能変更手段では、2次元検出手段
の空間分解能を低下させる。空間分解能を低下させる
と、例えば、撮像管に於ける電子ビームの走査を高速に
でき、検出に要する時間を短縮でき、即ち、図3での検
出同期信号35のレベルがHの期間を短くできる。従っ
て、X線照射信号34のパルス間隔を小さくでき、デー
タ収集自体に要する時間が短縮でき、例えば、図2に示
した投影方向変更手段での回転リング24の速度を上げ
て、撮影時間を短縮できる。また、操作者が高精細撮影
を要求した場合、空間分解能変更手段では、2次元検出
手段の空間分解能を向上させる。空間分解能を向上させ
ると、3次元像再構成手段での再構成演算の精度が向上
し、より高精細なX線吸収係数の3次元分布が得られ
る。以上のように本発明では、操作者の要求する撮影条
件により、2次元検出手段の空間分解能を変更可能な空
間分解能変更手段を設けたので、操作者の要求に応じ
て、高速撮影あるいは高精細撮影を行うことができる。
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described in detail. In each of the above-described embodiments, the two-dimensional detection means detects the transmitted X-rays that have passed through the subject with a predetermined spatial resolution, but the spatial resolution that changes this spatial resolution according to the imaging conditions required by the operator. Modification means can also be provided. The spatial resolution changing means changes the spatial resolution of the two-dimensional detecting means, and changes, for example, a scanning signal of an electron beam that reads out charges accumulated on the image pickup surface of the image pickup tube. For example, when the operator requests high-speed imaging, the spatial resolution changing means reduces the spatial resolution of the two-dimensional detecting means. When the spatial resolution is lowered, for example, the scanning of the electron beam in the image pickup tube can be performed at high speed, and the time required for detection can be shortened, that is, the period in which the level of the detection synchronization signal 35 in FIG. 3 is H can be shortened. . Therefore, the pulse interval of the X-ray irradiation signal 34 can be shortened, and the time required for data collection itself can be shortened. For example, the speed of the rotary ring 24 in the projection direction changing means shown in FIG. 2 can be increased to shorten the imaging time. it can. Further, when the operator requests high-definition imaging, the spatial resolution changing means improves the spatial resolution of the two-dimensional detection means. If the spatial resolution is improved, the accuracy of the reconstruction calculation by the three-dimensional image reconstructing means is improved, and a more precise three-dimensional distribution of the X-ray absorption coefficient can be obtained. As described above, according to the present invention, since the spatial resolution changing means capable of changing the spatial resolution of the two-dimensional detecting means is provided according to the imaging condition required by the operator, high-speed imaging or high-definition imaging can be performed according to the operator's request. You can take a picture.

【0018】(第5の実施例)次に、本発明の第5の実
施例を、図面を用いて詳細に説明する。上述の各実施例
では、例えば、図2に示した撮影方向変更手段の回転リ
ング24を高速回転させ、撮影中の被写体の動きによる
影響を軽減できるが、被写体の動きと同期しながら撮影
を行うことでも、撮影中の被写体の動きによる影響を軽
減できる。例えば、人体を撮影する場合、心臓の鼓動に
よる動きの影響を受ける恐れがある。そこで、例えば心
電図等から被写体の動きに同期した信号である動き同期
信号を生成する動き検出手段と、X線を照射するタイミ
ングを動き同期信号に同期させる撮影同期手段とを、撮
影制御手段に付加する。本実施例での撮影制御手段での
一制御例を、図10に示すタイミング図を用いて説明す
る。図10において、回転開始信号31、回転完了信号
32、撮影開始信号33は、図3に示したものと同一の
意味をもち同じ働きをする。心筋からの電気信号を体表
に電極を装着して測定した心電図に相当する心電信号9
1をもとに動き検出手段で生成した動き同期信号92
は、例えば、心電信号91にしきい値処理を行って得ら
れる。X線照射信号93、検出同期信号94、検出有効
信号95は、図3に示したものと同一の意味であり同じ
働きをする。但し、2次元検出手段及び3次元像再構成
手段は、撮影制御手段で生成された検出同期信号94に
同期して、透過X線の検出及び検出結果の収集を行う。
また、投影方向変更手段における投影方向を変更する速
度(図2の例での回転リングの回転速度に相当する)
を、前述したPLL等の回路を利用して動き検出信号9
2に同期させる。但し、例えば、動き検出信号92の1
周期で投影方向を1回転させるのではなく、全変更回数
の逆数分(例えば1/180)だけ進んだ速度にする。
次に、本実施例に基づく3次元撮影手順の一例を、図1
0を用いて説明する。先ず、撮影開始信号33がHとな
った後、最初の動き検出信号92がHとなった時点から
予め定めた一定時間の後、X線照射信号93をHにす
る。この動き検出信号92とX線照射信号93との間の
遅延は、撮影同期手段により制御される。言い換える
と、撮影同期手段は、動き検出信号92がHになった時
点から一定期間の後、X線照射信号93をHにして、X
線を照射するタイミングを動き同期信号92に同期させ
る。次に撮影制御手段は、X線照射信号93をHからL
にして、X線の照射を終了させた後、検出同期信号94
をHにして、透過X線の検出及び検出結果の収集を行
う。再び動き検出信号92がHとなった時、先程と同様
に撮影同期手段により、一定期間の後、X線照射信号9
3をHにする。このとき、投影方向変更手段における投
影方向を変更する速度は、全変更回数の逆数分だけ進ん
でいるので、ちょうど所定の投影方向に達したときにX
線が照射されることになる。次に撮影制御手段は、X線
照射信号93をHからLにして、X線の照射を終了させ
た後、検出同期信号94をHにして透過X線の検出及び
検出結果の収集を行う。この動き検出信号92に同期し
たX線の照射と検出及び収集を、所定の投影方向の変更
回数だけ繰り返すことにより、動き同期信号からある一
定期間の後の時点での、透過X線の2次元強度分布を全
投影方向にわたって収集できる。従って、収集した2次
元強度分布を用いて再構成演算を行ない、被検体の動き
の影響の少ないX線吸収係数の3次元分布が得られる。
(Fifth Embodiment) Next, a fifth embodiment of the present invention will be described in detail with reference to the drawings. In each of the above-described embodiments, for example, the rotating ring 24 of the shooting direction changing unit shown in FIG. 2 can be rotated at high speed to reduce the influence of the movement of the subject during shooting, but shooting is performed in synchronization with the movement of the subject. This also reduces the effect of the movement of the subject during shooting. For example, when photographing a human body, there is a risk of being affected by movement due to the heartbeat. Therefore, for example, a motion detection unit that generates a motion synchronization signal that is a signal synchronized with the motion of the subject from an electrocardiogram and the like, and a shooting synchronization unit that synchronizes the X-ray irradiation timing with the motion synchronization signal are added to the shooting control unit. To do. An example of control by the photographing control means in this embodiment will be described with reference to the timing chart shown in FIG. In FIG. 10, the rotation start signal 31, the rotation completion signal 32, and the photographing start signal 33 have the same meanings as those shown in FIG. 3 and have the same functions. An electrocardiographic signal corresponding to an electrocardiogram measured by attaching an electrode to the body surface of an electrical signal from the myocardium 9
Motion synchronization signal 92 generated by the motion detection means based on 1.
Is obtained by performing threshold processing on the electrocardiographic signal 91, for example. The X-ray irradiation signal 93, the detection synchronization signal 94, and the detection valid signal 95 have the same meanings as those shown in FIG. 3 and have the same functions. However, the two-dimensional detection means and the three-dimensional image reconstruction means perform detection of transmitted X-rays and collection of detection results in synchronization with the detection synchronization signal 94 generated by the imaging control means.
The speed at which the projection direction is changed by the projection direction changing means (corresponding to the rotation speed of the rotating ring in the example of FIG. 2).
By using a circuit such as the PLL described above.
Synchronize to 2. However, for example, 1 of the motion detection signal 92
Instead of rotating the projection direction once in a cycle, the speed is advanced by the reciprocal number (for example, 1/180) of the total number of changes.
Next, an example of a three-dimensional imaging procedure based on this embodiment will be described with reference to FIG.
It will be described using 0. First, after the imaging start signal 33 becomes H, the X-ray irradiation signal 93 is set to H after a predetermined time elapses from the time when the first motion detection signal 92 becomes H. The delay between the motion detection signal 92 and the X-ray irradiation signal 93 is controlled by the photographing synchronization means. In other words, the imaging synchronization means sets the X-ray irradiation signal 93 to H after a certain period from the time when the motion detection signal 92 becomes H, and sets X to X.
The timing of irradiating the line is synchronized with the motion synchronization signal 92. Next, the imaging control means changes the X-ray irradiation signal 93 from H to L.
Then, after the X-ray irradiation is terminated, the detection synchronization signal 94
Is set to H to detect transmitted X-rays and collect detection results. When the motion detection signal 92 becomes H again, the X-ray irradiation signal 9 is output after a certain period of time by the imaging synchronization means as in the previous case.
Set 3 to H. At this time, since the speed of changing the projection direction by the projection direction changing means is advanced by the reciprocal of the total number of changes, X is reached when the predetermined projection direction is reached.
The line will be illuminated. Next, the imaging control unit changes the X-ray irradiation signal 93 from H to L to end the X-ray irradiation, and then sets the detection synchronization signal 94 to H to detect the transmitted X-rays and collect the detection results. By repeating irradiation, detection, and collection of X-rays synchronized with the motion detection signal 92 a predetermined number of times of changing the projection direction, two-dimensional transmission X-rays at a time point after a certain period from the motion synchronization signal. The intensity distribution can be collected over all projection directions. Therefore, reconstruction operation is performed using the collected two-dimensional intensity distribution, and a three-dimensional distribution of the X-ray absorption coefficient that is less affected by the movement of the subject is obtained.

【0019】以上のように本実施例では、被写体の動き
に同期して、X線の照射と検出及び検出結果の収集を行
うので、被写体の動きによる影響を低減できることがで
き、X線吸収係数の高精度、高分解能化が図れる。本実
施例において、撮影同期手段は、動き検出信号がHにな
った時点から一定期間の後、X線照射信号93を1回だ
けHにしたが、複数回数、Hにすることもできる。図1
1は、撮影制御手段での一制御例をに示すタイミング図
である。X線照射信号96、検出同期信号97以外は、
図10で示したものと同一である。図11の例では、撮
影同期手段は、動き検出信号92に同期して、図中a、
b、cで示す3つのパルスからなるX線照射信号を生成
する。また、各X線照射信号のパルスに同期して検出同
期信号97が生成され、検出同期信号97に同期して検
出された透過X線の2次元強度分布は、3次元像再構成
手段で収集される。3次元像再構成手段では、検出時点
が、動き検出信号92から見て同一である収集結果(例
えば、検出同期信号97上のaの時点で収集した2次元
強度分布)のみから像再構成を行うので、動き検出信号
92から遅れが異なった複数の被写体のX線吸収係数の
3次元分布が得られる。この結果、1回の撮影で、動き
の異なる複数の被写体のX線吸収係数の3次元分布を撮
影できる。また、本実施例では、被写体の動きに同期し
て、X線の照射と検出及び検出結果の収集を行うが、撮
影中に被写体の動きが不規則になり、正確な同期が得ら
れなくなった場合、例えば、動き検出信号の周期を測定
し、周期の極端な変化を検出し、撮影を中止、あるいは
やり直すこともできる。
As described above, in the present embodiment, since X-ray irradiation and detection and detection results are collected in synchronization with the movement of the subject, the influence of the movement of the subject can be reduced and the X-ray absorption coefficient can be reduced. High accuracy and high resolution can be achieved. In the present embodiment, the imaging synchronization means sets the X-ray irradiation signal 93 to H only once after a certain period from the time when the motion detection signal becomes H, but it can also be set to H multiple times. Figure 1
FIG. 1 is a timing chart showing an example of control by the photographing control means. Except for the X-ray irradiation signal 96 and the detection synchronization signal 97,
It is the same as that shown in FIG. In the example of FIG. 11, the shooting synchronization means synchronizes with the motion detection signal 92, and
An X-ray irradiation signal composed of three pulses indicated by b and c is generated. Further, the detection synchronization signal 97 is generated in synchronization with the pulse of each X-ray irradiation signal, and the two-dimensional intensity distribution of the transmitted X-ray detected in synchronization with the detection synchronization signal 97 is collected by the three-dimensional image reconstructing means. To be done. The three-dimensional image reconstructing means reconstructs an image only from the acquisition result (for example, the two-dimensional intensity distribution acquired at the time point a on the detection synchronization signal 97) whose detection time points are the same when viewed from the motion detection signal 92. Therefore, the three-dimensional distribution of the X-ray absorption coefficients of a plurality of subjects with different delays can be obtained from the motion detection signal 92. As a result, the three-dimensional distribution of the X-ray absorption coefficient of a plurality of subjects having different movements can be photographed by one photographing. Further, in the present embodiment, X-ray irradiation and detection and collection of detection results are performed in synchronization with the movement of the subject, but the movement of the subject becomes irregular during imaging, and accurate synchronization cannot be obtained. In this case, for example, the period of the motion detection signal may be measured, an extreme change in the period may be detected, and shooting may be stopped or redone.

【0020】(第6の実施例)次に、本発明の第6の実
施例を、図面を用いて詳細に説明する。上述の各実施例
では、所望のある状態でのX線吸収係数の3次元分布を
導出する、いわゆる静止撮影の手法について説明した
が、被写体のX線吸収係数が異なる状態(例えば、生体
への造影剤注入の前後、あるいは照射するX線の波長の
違い等)でのデータ収集により、被写体の状態の変化を
撮影することもできる。図12は、本実施例の基本構成
である。X線照射手段1、2次元検出器2、投影方向変
更手段3、3次元像再構成手段4、撮影制御手段5、被
写体11、X線12、透過X線13は、図1のものと同
一の機能をもつ。2次元検出器2で検出した透過X線の
2次元強度分布の検出結果を格納する2次元データ記憶
手段101は、例えば、検出結果をディジタル化して格
納する半導体記憶素子等で構成される。2次元検出器2
で検出した透過X線の2次元強度分布の検出結果と2次
元データ記憶手段101に格納された検出結果との差分
画像である、2次元差分画像を生成する2次元差分画像
生成手段102は、例えば、減算処理可能な演算素子あ
るいはマイクロプロセッサ等で構成される。複数の3次
元像再構成手段4での再構成結果を、視覚的に認識可能
な形で重畳表示可能な多重3次元画像表示手段103
は、例えば、画素値を濃淡値に変換するための適当な画
像処理とCRT等の表示装置等から構成される。多重3
次元画像表示手段103は図1での3次元画像表示手段
6に、複数の再構成結果を重ねて表示可能な機能を付加
したものである。この重畳表示手法としては、例えば、
単に重ね合わせのもとになる画像の色や明るさを、重ね
合わせる画像の画素値に応じて変化させる手法、あるい
は表面表示に於ける半透明表示する手法等がある。
(Sixth Embodiment) Next, a sixth embodiment of the present invention will be described in detail with reference to the drawings. In each of the above-described embodiments, the so-called still imaging method for deriving the three-dimensional distribution of the X-ray absorption coefficient in a desired state has been described, but the X-ray absorption coefficient of the subject is different (for example, to a living body). By collecting data before and after the injection of the contrast agent, or before and after the irradiation of X-rays, the change in the condition of the subject can be photographed. FIG. 12 shows the basic configuration of this embodiment. The X-ray irradiation means 1, the two-dimensional detector 2, the projection direction changing means 3, the three-dimensional image reconstructing means 4, the imaging control means 5, the subject 11, the X-rays 12, and the transmitted X-rays 13 are the same as those in FIG. With the function of. The two-dimensional data storage means 101 for storing the detection result of the two-dimensional intensity distribution of the transmitted X-ray detected by the two-dimensional detector 2 is composed of, for example, a semiconductor memory device for digitizing and storing the detection result. Two-dimensional detector 2
The two-dimensional difference image generation means 102 for generating a two-dimensional difference image, which is a difference image between the detection result of the two-dimensional intensity distribution of the transmitted X-ray detected in step 2 and the detection result stored in the two-dimensional data storage means 101, For example, it is composed of an arithmetic element capable of subtraction processing, a microprocessor, or the like. Multiple 3D image display means 103 capable of superimposing and displaying the reconstruction results obtained by the plurality of 3D image reconstruction means 4 in a visually recognizable form.
Is composed of, for example, appropriate image processing for converting a pixel value into a gray value and a display device such as a CRT. Multiple 3
The three-dimensional image display means 103 has the three-dimensional image display means 6 in FIG. 1 and a function capable of displaying a plurality of reconstruction results in an overlapping manner. As this superimposition display method, for example,
There is a method of simply changing the color and brightness of images to be superposed according to pixel values of the images to be superposed, a method of semi-transparent display in surface display, and the like.

【0021】次に、本実施例に基づく3次元撮影手順の
一例を説明する。先ず、第一の実施例と同様の手順に従
って第1回目の3次元撮影を行い、被写体11のX線吸
収係数の3次元分布を得る。但し、2次元検出器2で検
出した透過X線の2次元強度分布を、3次元像再構成手
段4で取り込む際、取り込む強度分布を2次元データ記
憶手段101にも格納するが、2次元差分画像生成手段
102は何も処理を行わない(2次元検出器2で検出し
た強度分布は、直接3次元像再構成手段4に取り込
む)。また、3次元像再構成手段4での再構成結果は、
多重3次元画像表示手段103で、図1の3次元画像表
示手段6と同様な手法で表示する。次に、被写体のX線
吸収係数が変化した状態を見計らって、第2回目の3次
元撮影を行う。第2回目の3次元撮影も第1回目と基本
的に同一手順で行うが、第2回目では、2次元差分画像
生成手段102で、2次元検出器2で検出した強度分布
に対して差分を行う。2次元検出器2で検出した透過X
線の2次元強度分布は、3次元像再構成手段4で取り込
む前に、2次元差分画像生成手段102に送られる。2
次元差分画像生成手段102では、2次元検出器2から
の検出した強度分布と第1回目の撮影時に格納した2次
元データ記憶手段101内の強度分布との間で差分を行
い、2次元差分画像を生成する。3次元像再構成手段4
では、この生成した2次元差分画像を逐次取り込み、2
次元差分画像を透過X線の強度分布であるとして再構成
演算を行う。このように差分画像に対して再構成を行う
と、第1回目の撮影と第2回目の撮影との間でのX線吸
収係数の変化が得られる。この再構成演算の結果は、多
重3次元画像表示手段103で、例えば、第1回目の撮
影での再構成結果を重ねた上で表示する。
Next, an example of a three-dimensional photographing procedure based on this embodiment will be described. First, the first three-dimensional imaging is performed according to the same procedure as in the first embodiment, and the three-dimensional distribution of the X-ray absorption coefficient of the subject 11 is obtained. However, when the two-dimensional intensity distribution of the transmitted X-ray detected by the two-dimensional detector 2 is captured by the three-dimensional image reconstructing means 4, the captured intensity distribution is also stored in the two-dimensional data storage means 101. The image generating means 102 does not perform any processing (the intensity distribution detected by the two-dimensional detector 2 is directly taken into the three-dimensional image reconstructing means 4). Further, the reconstruction result by the three-dimensional image reconstruction means 4 is
The multiplex three-dimensional image display means 103 is displayed by the same method as the three-dimensional image display means 6 of FIG. Next, the second three-dimensional imaging is performed in consideration of the state in which the X-ray absorption coefficient of the subject has changed. The second three-dimensional imaging is basically performed in the same procedure as the first one, but in the second one, the two-dimensional difference image generation means 102 makes a difference to the intensity distribution detected by the two-dimensional detector 2. To do. Transmission X detected by the two-dimensional detector 2
The two-dimensional intensity distribution of the line is sent to the two-dimensional difference image generation means 102 before being captured by the three-dimensional image reconstruction means 4. Two
The two-dimensional difference image is generated by the two-dimensional difference image generating means 102 between the intensity distribution detected by the two-dimensional detector 2 and the intensity distribution in the two-dimensional data storage means 101 stored at the time of the first imaging. To generate. Three-dimensional image reconstruction means 4
Then, the generated two-dimensional difference images are sequentially captured, and 2
The reconstruction calculation is performed by regarding the dimensional difference image as the intensity distribution of the transmitted X-ray. By performing the reconstruction on the difference image in this way, a change in the X-ray absorption coefficient between the first imaging and the second imaging can be obtained. The result of the reconstruction calculation is displayed by the multiplex three-dimensional image display means 103, for example, after superimposing the reconstruction result in the first photographing.

【0022】以上のように本実施例では、2次元検出器
2からの検出した強度分布と予め検出し格納した強度分
布との間で差分を行った2次元差分画像を、再構成演算
するようにしたので、被写体の状態の変化に対するX線
吸収係数の変化を表示でき、被写体の状態をより詳細、
綿密に把握できる。また、予め撮影した被写体のX線吸
収係数の3次元分布と、被写体の状態の変化に対するX
線吸収係数の変化とを、重ねて表示できるので、変化を
有する部位の位置を予め撮影した結果から把握でき、撮
影結果を迅速、正確に認識できる。本実施例において、
撮影を2回行い、得られる2つの2次元強度分布の間で
差分を行うようにしたが、3回又はそれ以上の撮影を行
い、任意の2つの2次元強度分布の間で差分を行うこと
も可能である。例えば、第1回目の撮影で得た2次元強
度分布を2次元データ記憶手段に常に格納し、第3回
目、第4回目等の撮影での2次元強度分布との間で差分
を行うこともできる。あるいは、第2回目、第3回目等
の撮影で得た2次元強度分布も2次元データ記憶手段に
格納し(既に格納済みのデータを書き換える)、連続す
る2撮影間(例えば、第2回目と第3回目、第3回目と
第4回目等)で差分を行うこともできる。また、本実施
例において、多重3次元画像表示手段を用いて、予め撮
影した被写体のX線吸収係数の3次元分布と、被写体の
状態の変化に対するX線吸収係数の変化とを、重ねて表
示できるようにしたが、例えば、図1の3次元画像表示
手段を利用して、被写体の状態の変化に対するX線吸収
係数の変化のみを表示する、あるいは両者を組み合わせ
ることも可能である。
As described above, in this embodiment, the two-dimensional difference image obtained by performing the difference between the intensity distribution detected by the two-dimensional detector 2 and the intensity distribution detected and stored in advance is reconstructed. Therefore, the change in the X-ray absorption coefficient with respect to the change in the state of the subject can be displayed, and the state of the subject can be displayed in more detail.
You can understand it carefully. In addition, the three-dimensional distribution of the X-ray absorption coefficient of the subject photographed in advance and the X
Since the change in the linear absorption coefficient can be displayed in an overlapping manner, the position of the changed portion can be grasped from the result of the image capturing in advance, and the image capturing result can be recognized quickly and accurately. In this example,
The image was taken twice, and the difference was obtained between the two obtained two-dimensional intensity distributions, but the image was taken three times or more and the difference was made between any two two-dimensional intensity distributions. Is also possible. For example, it is possible to always store the two-dimensional intensity distribution obtained in the first imaging in the two-dimensional data storage means and perform the difference between the two-dimensional intensity distribution in the third imaging, the fourth imaging, and the like. it can. Alternatively, the two-dimensional intensity distribution obtained by the second, third, etc. photographing is also stored in the two-dimensional data storage means (data already stored is rewritten), and the two consecutive photographing (for example, the second photographing) It is also possible to perform the difference at the third time, the third time and the fourth time, etc.). Further, in the present embodiment, the three-dimensional image display means is used to superimpose and display the three-dimensional distribution of the X-ray absorption coefficient of the subject photographed in advance and the change of the X-ray absorption coefficient with respect to the change of the state of the subject. However, it is also possible to display only the change of the X-ray absorption coefficient with respect to the change of the state of the subject by using the three-dimensional image display means of FIG. 1, or to combine both.

【0023】(第7の実施例)次に、本発明の第7の実
施例を、図面を用いて詳細に説明する。上述の各実施例
では、所望のある状態でのX線吸収係数の3次元分布を
導出する、いわゆる静止撮影の手法をについて説明した
が、被写体のX線吸収係数が異なる状態(例えば、生体
への造影剤注入の前後、あるいは照射するX線の波長の
違い等)でのデータ収集により、被写体の状態の変化を
撮影することも可能である。図13は、本実施例の基本
構成を示す図である。X線照射手段1、2次元検出器
2、投影方向変更手段3、3次元像再構成手段4、撮影
制御手段5、3次元画像表示手段6、被写体11、X線
12、透過X線13は、図1のものと同一機能をもつ。
3次元像再構成手段4での再構成演算の結果得られた被
写体のX線吸収係数の3次元分布から、所望の領域を抽
出可能な3次元領域抽出手段104は、例えば、再構成
結果を演算処理する乗算器等の演算素子あるいはマイク
ロプロセッサ等で構成される。抽出手法としては、例え
ば、適当なしきい値による2値化処理の手法等を用い
る。3次元領域抽出手段104での抽出結果を格納する
3次元データ記憶手段105は、例えば、抽出結果をデ
ィジタル化して格納する半導体記憶素子等で構成され
る。3次元像再構成手段4での再構成結果と3次元デー
タ記憶手段105に格納された抽出結果との差分画像で
ある、3次元差分画像を生成可能な3次元差分画像生成
手段106は、例えば、減算処理する演算素子あるいは
マイクロプロセッサ等で構成される。次に、本実施例に
基づく3次元撮影手順の一例を説明する。先ず、第一の
実施例と同様の手順に従って第1回目の3次元撮影を行
い、被写体11のX線吸収係数の3次元分布を得る。但
し、3次元像再構成手段4で得た結果は、直接3次元画
像表示手段6に送って表示するのではなく、3次元領域
抽出手段104に送る。3次元領域抽出手段104は、
操作者の指示に従い、3次元像再構成手段4から送られ
たX線吸収係数の3次元分布から、所望の領域(例え
ば、被写体が人体の場合、骨領域のみ)を抽出する。抽
出結果は、3次元データ記憶手段105に送られ、抽出
領域のみ3次元像再構成手段4で得たX線吸収係数を有
し、その他の領域の値は係数がゼロ(吸収なし)である
データとして格納される。次に、被写体のX線吸収係数
が変化した状態を見計らって、第2回目の3次元撮影を
行う。第2回目の3次元撮影も、第一の実施例と同様の
手順に従って行う。但し、3次元像再構成手段4で得た
結果は、直接3次元画像表示手段6に送って表示するの
ではなく、3次元差分画像生成手段106に送る。3次
元差分画像生成手段106は、3次元像再構成手段4か
ら送られた再構成結果と第1回目の撮影時に格納した3
次元データ記憶手段105内の抽出結果との間で差分を
行い、3次元差分画像を生成する。ここで3次元差分画
像は、3次元領域抽出手段104で抽出した領域外のX
線吸収係数と、被写体の状態の変化に対するX線吸収係
数の変化とを重ねた画像となる。例えば、被写体が人体
の場合、3次元領域抽出手段104で骨領域を抽出し
て、血管造影の前後に撮影を行うと、骨以外の部位と血
管とを重ねた画像が得られる。生成した3次元差分画像
は、3次元画像表示手段6に送られ表示される。
(Seventh Embodiment) Next, a seventh embodiment of the present invention will be described in detail with reference to the drawings. In each of the above-described embodiments, the so-called still imaging method for deriving the three-dimensional distribution of the X-ray absorption coefficient in a desired certain state has been described, but the X-ray absorption coefficient of the subject is different (for example, to a living body). It is also possible to capture the change in the state of the subject by collecting data before and after the injection of the contrast agent, or before and after the injection of the contrast agent). FIG. 13 is a diagram showing the basic configuration of this embodiment. The X-ray irradiation means 1, the two-dimensional detector 2, the projection direction changing means 3, the three-dimensional image reconstruction means 4, the imaging control means 5, the three-dimensional image display means 6, the subject 11, the X-rays 12, and the transmitted X-rays 13 are , Has the same function as that of FIG.
The three-dimensional area extracting means 104 capable of extracting a desired area from the three-dimensional distribution of the X-ray absorption coefficient of the subject obtained as a result of the reconstruction operation in the three-dimensional image reconstructing means 4 can obtain the reconstruction result, for example. It is composed of an arithmetic element such as a multiplier for arithmetic processing or a microprocessor. As the extraction method, for example, a binarization method using an appropriate threshold value or the like is used. The three-dimensional data storage unit 105 that stores the extraction result of the three-dimensional region extraction unit 104 is configured by, for example, a semiconductor storage element that stores the extraction result in a digitized form. The three-dimensional difference image generation means 106 capable of generating a three-dimensional difference image, which is a difference image between the reconstruction result of the three-dimensional image reconstruction means 4 and the extraction result stored in the three-dimensional data storage means 105, is, for example, , A subtraction processing arithmetic element, a microprocessor, or the like. Next, an example of a three-dimensional imaging procedure based on this embodiment will be described. First, the first three-dimensional imaging is performed according to the same procedure as in the first embodiment, and the three-dimensional distribution of the X-ray absorption coefficient of the subject 11 is obtained. However, the result obtained by the three-dimensional image reconstructing means 4 is not directly sent to the three-dimensional image display means 6 and displayed, but is sent to the three-dimensional area extracting means 104. The three-dimensional area extracting means 104
According to the operator's instruction, a desired area (for example, only the bone area when the subject is a human body) is extracted from the three-dimensional distribution of the X-ray absorption coefficient sent from the three-dimensional image reconstructing means 4. The extraction result is sent to the three-dimensional data storage unit 105, only the extraction region has the X-ray absorption coefficient obtained by the three-dimensional image reconstructing unit 4, and the values of the other regions are zero (no absorption). It is stored as data. Next, the second three-dimensional imaging is performed in consideration of the state in which the X-ray absorption coefficient of the subject has changed. The second three-dimensional imaging is also performed according to the same procedure as in the first embodiment. However, the result obtained by the three-dimensional image reconstructing means 4 is not directly sent to the three-dimensional image display means 6 for display, but is sent to the three-dimensional difference image generating means 106. The three-dimensional difference image generation unit 106 stores the reconstruction result sent from the three-dimensional image reconstruction unit 4 and the 3 stored at the time of the first imaging.
The difference with the extraction result in the dimensional data storage unit 105 is calculated to generate a three-dimensional difference image. Here, the three-dimensional difference image is an X outside the area extracted by the three-dimensional area extracting unit 104.
An image is obtained by superimposing the X-ray absorption coefficient and the change of the X-ray absorption coefficient with respect to the change of the state of the subject. For example, when the subject is a human body, a bone region is extracted by the three-dimensional region extraction unit 104 and images are taken before and after angiography, and an image in which a region other than the bone and the blood vessel are superimposed is obtained. The generated three-dimensional difference image is sent to the three-dimensional image display means 6 and displayed.

【0024】以上のように本実施例では、3次元像再構
成手段で得た被写体のX線吸収係数の3次元分布を、予
め撮影したX線吸収係数の3次元分布との間で差分を行
った後、表示するので、被写体の状態の変化に対するX
線吸収係数の変化を表示でき、被写体の状態をより詳細
且つ綿密に把握できる。また、予め撮影したX線吸収係
数の3次元分布から所望の領域を抽出した後、新たに撮
影したX線吸収係数との差分を行うようにしたので、新
たに撮影したX線吸収係数から抽出した領域に関する部
分を取り除くことができ、例えば血管の微細な構造を把
握する際に妨げとなる骨の画像の重なり等を低減でき、
被写体の状態をより詳細、綿密に把握できる。本実施例
において、第1回目の撮影の際、3次元領域抽出手段1
04により再構成結果から所望の領域を抽出した後、抽
出結果を3次元データ記憶手段105に格納したが、3
次元領域抽出手段104の機能を省略し、再構成結果を
3次元データ記憶手段105に直接格納することも可能
である。この場合、被写体の状態の変化に対するX線吸
収係数の変化を表示できる。また、本実施例において、
図12を用いて説明した第6の実施例の場合と同様に、
多重3次元画像表示手段を用いて、予め撮影した被写体
のX線吸収係数の3次元分布等、他の情報を重ねて表示
することも可能である。
As described above, in this embodiment, the difference between the three-dimensional distribution of the X-ray absorption coefficient of the subject obtained by the three-dimensional image reconstructing means and the three-dimensional distribution of the X-ray absorption coefficient photographed in advance is calculated. After the operation, it will be displayed.
The change in the linear absorption coefficient can be displayed, and the state of the subject can be grasped in more detail and detail. In addition, since a desired area is extracted from the three-dimensional distribution of the X-ray absorption coefficient photographed in advance, the difference with the newly photographed X-ray absorption coefficient is calculated. Therefore, it is extracted from the newly photographed X-ray absorption coefficient. It is possible to remove the part relating to the region, for example, it is possible to reduce the overlap of the images of the bone, which is an obstacle when grasping the fine structure of blood vessels,
You can understand the subject's condition in more detail and detail. In the present embodiment, the three-dimensional region extracting means 1 is used for the first photographing.
After extracting a desired area from the reconstruction result by 04, the extraction result is stored in the three-dimensional data storage means 105.
It is also possible to omit the function of the dimensional area extracting unit 104 and store the reconstruction result directly in the three-dimensional data storage unit 105. In this case, the change in the X-ray absorption coefficient with respect to the change in the state of the subject can be displayed. In addition, in this embodiment,
Similar to the case of the sixth embodiment described with reference to FIG. 12,
It is also possible to superimpose and display other information such as the three-dimensional distribution of the X-ray absorption coefficient of the subject photographed in advance by using the multiple three-dimensional image display means.

【0025】(第8の実施例)次に、本発明の第8の実
施例を、図面を用いて詳細に説明する。上述の各実施例
では、投影方向変更手段により投影方向を変更しながら
収集した複数の透過X線の強度分布から、被写体のX線
吸収係数の3次元分布を導出して表示したが、操作者の
所望の方向での透過X線の2次元強度分布である投影像
を表示することも可能である。図14は、本実施例の基
本構成を説明する図である。X線照射手段1、2次元検
出器2、投影方向変更手段3、3次元像再構成手段4、
撮影制御手段5、3次元画像表示手段6、被写体11、
X線12、透過X線13は、図1のものと同一の機能を
もつ。被写体を透過した透過X線の2次元強度分布であ
る投影像を生成可能な投影像生成手段111は、例え
ば、2次元検出手段2での検出結果を直接取り込む。投
影像生成手段111で生成した投影像を視覚的に認識可
能な形で表示可能な2次元表示手段112は、例えば、
画素値を濃淡値に変換するための適当な画像処理やCR
T等の表示装置等から構成される。操作者が3次元画像
表示手段6に表示された被写体のX線吸収係数の3次元
分布をもとに、所望の投影方向を指示可能な投影方向指
示手段113は、例えば、3次元画像表示手段6の表示
画面を観察しながら座標入力が可能なマウス、トラック
ボール、タッチパネル等の座標入力装置を用いて構成さ
れる。次に、本実施例に基づく撮影手順の一例を説明す
る。先ず、投影方向変更手段3で変更可能な投影方向
を、予め定めた適当な方向に固定させた後、X線照射手
段1においてX線を連続的に照射する。照射の結果、被
写体を透過した透過X線の2次元強度分布を2次元検出
手段2で検出する。検出した2次元強度分布は、投影像
生成手段111を経て2次元画像表示手段112で表示
画面上に表示される。この検出と表示を逐次繰り返し被
写体を透視撮影できる。操作者はこの表示画面に表示さ
れる投影像を観察し被写体の状態を把握できる。次に、
操作者は、撮影制御手段5に対して、3次元撮影開始の
指示を行う。この撮影開始の指示タイミングは、投影像
の観察結果をもとに決定でき、指示後の3次元撮影の手
順は、第1の実施例と同様の手順に従う。撮影の結果得
られる被写体11のX線吸収係数の3次元分布は、3次
元画像表示手段6の表示画面上に表示される、操作者は
投影方向指示手段113を利用して、3次元画像表示手
段6に表示された画像を観察しながら、所望の投影方向
を指示する。指示方法としては、例えば、3次元撮影の
際に投影方向変更手段3でのX線の照射面と受光面とが
作る平面に添ったX線吸収係数を、3次元画像表示手段
6の表示画面上に断面表示し、この断面の中心を通る線
分(線分の方向が投影方向を表す)を、マウス等を用い
て入力する。あるいは他の例として、被写体の外形を表
すX線吸収係数を抽出して3次元画像表示手段6の表示
画面上に表面表示し、この表面上の1点をマウス等を用
いて入力する。この入力した点と3次元空間の原点とを
結ぶ線分の方向が投影方向を表す。投影方向指示手段1
13で投影方向が指示されると、投影方向指示手段11
3は撮影制御手段5に対して、指示した投影方向でX線
の照射と検出を行うよう要求する。要求を受けた撮影制
御手段5は、例えば、投影方向変更手段3に投影方向の
変更を要求し、所望の投影方向に達した時点でX線照射
信号を発生してX線を照射し、且つ検出同期信号をHに
して透過X線を検出するよう制御する。検出した透過X
線の2次元強度分布は、投影像生成手段111を経て2
次元画像表示手段112で表示画面上に表示される。従
って、表示画面上には、投影方向指示手段113で指示
した投影方向での投影像が表示される。
(Eighth Embodiment) Next, an eighth embodiment of the present invention will be described in detail with reference to the drawings. In each of the embodiments described above, the three-dimensional distribution of the X-ray absorption coefficient of the subject is derived and displayed from the intensity distribution of the plurality of transmitted X-rays collected while changing the projection direction by the projection direction changing means. It is also possible to display a projected image which is a two-dimensional intensity distribution of the transmitted X-rays in the desired direction. FIG. 14 is a diagram for explaining the basic configuration of this embodiment. X-ray irradiation means 1, two-dimensional detector 2, projection direction changing means 3, three-dimensional image reconstruction means 4,
Photographing control means 5, three-dimensional image display means 6, subject 11,
The X-ray 12 and the transmitted X-ray 13 have the same functions as those in FIG. The projection image generation means 111 capable of generating a projection image which is a two-dimensional intensity distribution of transmitted X-rays transmitted through the subject directly takes in the detection result of the two-dimensional detection means 2, for example. The two-dimensional display means 112 capable of displaying the projected image generated by the projected image generating means 111 in a visually recognizable form is, for example,
Appropriate image processing and CR for converting pixel values into gray values
It is composed of a display device such as T. The projection direction instructing means 113 that allows the operator to instruct a desired projection direction based on the three-dimensional distribution of the X-ray absorption coefficient of the subject displayed on the three-dimensional image display means 6 is, for example, a three-dimensional image display means. It is configured by using a coordinate input device such as a mouse, a trackball, or a touch panel that allows coordinate input while observing the display screen of 6. Next, an example of a photographing procedure based on this embodiment will be described. First, after fixing the projection direction that can be changed by the projection direction changing means 3 to an appropriate predetermined direction, the X-ray irradiation means 1 continuously emits X-rays. As a result of the irradiation, the two-dimensional intensity distribution of the transmitted X-ray transmitted through the subject is detected by the two-dimensional detection means 2. The detected two-dimensional intensity distribution is displayed on the display screen by the two-dimensional image display means 112 through the projection image generation means 111. This detection and display can be sequentially repeated to perform fluoroscopic imaging of the subject. The operator can grasp the state of the subject by observing the projected image displayed on this display screen. next,
The operator gives an instruction to start the three-dimensional imaging to the imaging control means 5. The instruction timing for starting the imaging can be determined based on the observation result of the projected image, and the procedure of the three-dimensional imaging after the instruction follows the same procedure as in the first embodiment. The three-dimensional distribution of the X-ray absorption coefficient of the subject 11 obtained as a result of photographing is displayed on the display screen of the three-dimensional image display means 6. The operator uses the projection direction instruction means 113 to display the three-dimensional image. While observing the image displayed on the means 6, the desired projection direction is designated. As an instruction method, for example, the X-ray absorption coefficient along the plane formed by the X-ray irradiation surface and the light-receiving surface of the projection direction changing unit 3 at the time of three-dimensional imaging is displayed on the display screen of the three-dimensional image display unit 6. A cross-section is displayed above, and a line segment that passes through the center of this cross-section (the direction of the line segment represents the projection direction) is input using a mouse or the like. Alternatively, as another example, the X-ray absorption coefficient representing the outer shape of the subject is extracted and displayed on the surface of the display screen of the three-dimensional image display means 6, and one point on this surface is input using a mouse or the like. The direction of the line segment connecting the input point and the origin of the three-dimensional space represents the projection direction. Projection direction indicating means 1
When the projection direction is designated by 13, the projection direction designating means 11
3 requests the photographing control means 5 to perform X-ray irradiation and detection in the designated projection direction. Upon receiving the request, the imaging control unit 5 requests the projection direction changing unit 3 to change the projection direction, generates an X-ray irradiation signal when the desired projection direction is reached, and irradiates the X-ray, and The detection synchronizing signal is set to H and control is performed so as to detect a transmitted X-ray. Transmission X detected
The two-dimensional intensity distribution of the line is 2
It is displayed on the display screen by the three-dimensional image display means 112. Therefore, the projection image in the projection direction designated by the projection direction designating means 113 is displayed on the display screen.

【0026】以上のように本実施例では、予め撮影した
被写体のX線吸収係数の3次元分布と、現時点での被写
体の投影像とを同時に観察でき、被写体をより詳細、綿
密に把握できる。また、被写体の状態を透視撮影により
観察しながら、3次元撮影を開始するタイミングを決定
でき、例えば、血管造影での造影剤の広がり方など、よ
り最適な状態で3次元撮影を開始でき、所望の情報の正
確な抽出ができ、撮影ミスの低減、不要なX線照射の防
止による被爆量削減等が図れるる。投影像を撮影する際
に、所望の投影方向を、予め撮影した被写体のX線吸収
係数の3次元分布をもとに指示でき、例えば、異常な吸
収係数を有する部分など観察すべき投影方向を、X線吸
収係数の撮影結果から直接決定でき、被写体を迅速、正
確に把握できる。本実施例において、投影方向変更手段
で変更可能な投影方向を、予め定めた適当な方向に固定
した後、被写体の透視撮影を行うが、この投影方向に関
しても、投影方向指示手段を利用して所望の方向に変更
できる。但し、3次元撮影を行う前の状態では、被写体
のX線吸収係数の3次元分布をもと指示できないが、例
えば、投影方向変更手段でのX線の照射面の位置を指示
する等、直接的に指示可能な手法を併用して可能とな
る。また、本実施例において、投影像生成手段で得た投
影像を3次元撮影開始の指示タイミングの決定に利用し
たが、3次元撮影位置の決定に利用することもできる。
例えば、先ず、被写体とX線照射手段及び2次元検出器
との位置関係を、被写体を透視撮影で観察しながら調整
する。このとき、透視撮影で得た投影像と3次元撮影の
際の撮影視野との位置関係を予め定めておき、3次元撮
影したい部位が撮影視野内に入るように調整する。例え
ば、2次元画像表示手段の表示画面上で、この撮影視野
を適当な枠で表現し、この枠内に所望の部位が入るよう
に調整し、撮影位置の決定の後、被写体の3次元撮影を
開始する。このように、投影像から3次元撮影部位を決
定するので、観察したい部位を確実に3次元撮影でき、
所望の情報の正確な抽出ができ、撮影ミスの低減、不要
なX線照射の防止による被爆量削減等を図れる。また、
本実施例において、投影像を表示可能な2次元画像表示
手段と、X線吸収係数の3次元分布を表示可能な3次元
画像表示手段とをそれぞれ用意したが、両方の情報を同
一画面上に並べて表示したり、あるいは重ねて表示する
手段も利用できる。投影方向変更手段として図5に示し
た手段を用いると、電動機53を動作させて弓形アーム
55を移動できるので、様々な投影方向での投影像の撮
影を、被写体の移動なしに行える。さらに、投影像の撮
影は、3次元撮影の際に用いるX線照射手段、2次元検
出手段、投影方向変更手段を利用したが、投影像の撮影
のために別の各手段を用意し、例えば、変更可能な投影
方向の自由度など、3次元撮影を行う上での制限を受け
ずに撮影可能となる。
As described above, in this embodiment, the three-dimensional distribution of the X-ray absorption coefficient of the object photographed in advance and the projected image of the object at the present time can be observed at the same time, and the object can be grasped in more detail and closeness. Further, it is possible to determine the timing to start the three-dimensional imaging while observing the state of the subject by the fluoroscopic imaging, and to start the three-dimensional imaging in a more optimal state such as how the contrast agent spreads in angiography. It is possible to accurately extract the information, and it is possible to reduce imaging mistakes and reduce the amount of radiation exposure by preventing unnecessary X-ray irradiation. When capturing a projected image, a desired projection direction can be designated based on the three-dimensional distribution of the X-ray absorption coefficient of a subject that has been captured in advance. For example, the projection direction to be observed, such as a portion having an abnormal absorption coefficient, can be specified. , The X-ray absorption coefficient can be directly determined from the imaging result, and the subject can be grasped quickly and accurately. In the present embodiment, the projection direction that can be changed by the projection direction changing means is fixed to a predetermined appropriate direction, and then the subject is fluoroscopically photographed. You can change to the desired direction. However, in the state before performing the three-dimensional imaging, although it is not possible to instruct based on the three-dimensional distribution of the X-ray absorption coefficient of the subject, for example, the position of the X-ray irradiation surface in the projection direction changing unit is directly instructed. This can be done by using methods that can be instructed together. Further, in the present embodiment, the projection image obtained by the projection image generating means is used for determining the instruction timing for starting the three-dimensional imaging, but it may be used for determining the three-dimensional imaging position.
For example, first, the positional relationship between the subject and the X-ray irradiating means and the two-dimensional detector is adjusted while observing the subject by fluoroscopy. At this time, the positional relationship between the projection image obtained by the fluoroscopic imaging and the imaging visual field in the three-dimensional imaging is determined in advance, and the region to be three-dimensionally imaged is adjusted to be within the imaging visual field. For example, on the display screen of the two-dimensional image display means, this photographing field of view is represented by an appropriate frame, adjustment is performed so that a desired part is included in this frame, and after the photographing position is determined, three-dimensional photographing of the subject is performed. To start. In this way, since the three-dimensional imaged part is determined from the projected image, the part to be observed can be surely three-dimensionally imaged.
It is possible to accurately extract desired information, reduce imaging mistakes, and reduce exposure dose by preventing unnecessary X-ray irradiation. Also,
In the present embodiment, the two-dimensional image display means capable of displaying the projected image and the three-dimensional image display means capable of displaying the three-dimensional distribution of the X-ray absorption coefficient are respectively prepared, but both information are displayed on the same screen. It is also possible to use a means of displaying the images side by side or displaying them in an overlapping manner. When the means shown in FIG. 5 is used as the projection direction changing means, the electric motor 53 can be operated to move the arcuate arm 55, so that projection images can be taken in various projection directions without moving the subject. Further, the X-ray irradiation means, the two-dimensional detection means, and the projection direction changing means used in the three-dimensional imaging are used for the imaging of the projected image, but other respective means are prepared for imaging the projected image, for example, It is possible to perform photography without being restricted in performing three-dimensional photography, such as the degree of freedom of changeable projection direction.

【0027】(第9の実施例)次に、本発明の第9の実
施例を、図面を用いて詳細に説明する。第1の実施例で
は、操作者の所望の方向での透過X線の2次元強度分布
である投影像を表示するようにしたが、被写体のX線吸
収係数が異なる状態(例えば、生態への造影剤注入の前
後、あるいは照射するX線の波長の違い等)でのデータ
収集により、被写体の状態の変化を撮影、表示できる。
図15は、本実施例の基本構成を説明する図である。X
線照射手段1、2次元検出器2、投影方向変更手段3、
3次元像再構成手段4、撮影制御手段5、3次元画像表
示手段6、被写体11、X線12、透過X線13は、図
1のものと同一の機能をもつ。また、投影像生成手段1
11、投影方向変更手段113は、図14のものと同一
の機能をもつ。投影像生成手段111で生成した投影像
を格納可能な投影データ記憶手段114は、例えば、投
影結果をディジタル化して格納する半導体記憶素子で構
成される。投影像生成手段で生成した投影像と投影デー
タ記憶手段114に格納した投影像との差分画像であ
る、投影差分画像を生成可能な投影差分画像生成手段1
15は、例えば、減算処理する演算素子あるいはマイク
ロプロセッサ等で構成される。複数の投影像を視覚的に
認識可能な形で重畳表示可能な多重2次元画像表示手段
116は、例えば、画素値を濃淡値に変換するための適
当な画像処理とCRT等の表示装置等から構成される。
この多重2次元画像表示手段116は、図14での3次
元画像表示手段112に、複数の投影像を重ねて表示可
能な機能を付加したもので、重ね合わせは、例えば、単
に重ね合わせのもとになる画像の色や明るさを、重ね合
わせる画像の画素値に応じて変化させること等によりな
される。次に、本実施例に基づく撮影手順の一例を説明
する。先ず、所望の投影方向での被写体11の投影像を
撮影する(第1回目の撮影)。撮影手順は、第八の実施
例に従う。但し、得られた投影結果は、投影データ記憶
手段114に格納するが、投影差分画像生成手段115
では何も処理を行わないで、直接多重2次元画像表示手
段116で濃淡値に変換して表示する。次に、被写体の
X線吸収係数が変化した状態を見計らって、投影方向は
変化させないで第2回目の投影像を撮影する。得られた
投影結果は、投影差分画像生成手段115に送られ、投
影データ記憶手段114に格納された投影像との間で差
分を行う。差分により、第1回目の撮影と第2回目の撮
影との間での、透過X線の強度の変化が得られる。差分
の結果得られた投影差分画像は、多重2次元画像表示手
段116で、例えば、第1回目の撮影での投影像と重ね
て表示する。
(Ninth Embodiment) Next, a ninth embodiment of the present invention will be described in detail with reference to the drawings. In the first embodiment, the projected image, which is the two-dimensional intensity distribution of the transmitted X-rays in the direction desired by the operator, is displayed, but the X-ray absorption coefficient of the subject is different (for example, to the biological environment). By collecting data before and after the injection of the contrast agent, or before and after the irradiation of X-rays, the change in the condition of the subject can be photographed and displayed.
FIG. 15 is a diagram for explaining the basic configuration of this embodiment. X
Line irradiation means 1, two-dimensional detector 2, projection direction changing means 3,
The three-dimensional image reconstructing unit 4, the photographing control unit 5, the three-dimensional image display unit 6, the subject 11, the X-rays 12, and the transmitted X-rays 13 have the same functions as those in FIG. In addition, the projection image generation means 1
11. The projection direction changing means 113 has the same function as that of FIG. The projection data storage unit 114 capable of storing the projection image generated by the projection image generation unit 111 is composed of, for example, a semiconductor memory element that digitizes and stores the projection result. Projection difference image generation means 1 capable of generating a projection difference image, which is a difference image between the projection image generated by the projection image generation means and the projection image stored in the projection data storage means 114.
Reference numeral 15 is composed of, for example, an arithmetic element for performing subtraction processing, a microprocessor, or the like. The multiple two-dimensional image display means 116 capable of superimposing and displaying a plurality of projected images in a visually recognizable form includes, for example, appropriate image processing for converting a pixel value into a gray value and a display device such as a CRT. Composed.
The multiplex two-dimensional image display means 116 is a three-dimensional image display means 112 in FIG. 14 with a function capable of displaying a plurality of projected images in an overlapping manner. This is done by changing the color and brightness of the image to be displayed according to the pixel value of the image to be superimposed. Next, an example of a photographing procedure based on this embodiment will be described. First, a projected image of the subject 11 in a desired projection direction is photographed (first photographing). The shooting procedure is according to the eighth embodiment. However, although the obtained projection result is stored in the projection data storage means 114, the projection difference image generation means 115
Then, without performing any processing, the multiplex two-dimensional image display means 116 directly converts the grayscale value and displays it. Next, the second projection image is photographed without changing the projection direction while observing the state where the X-ray absorption coefficient of the subject has changed. The obtained projection result is sent to the projection difference image generation means 115, and the difference is obtained with the projection image stored in the projection data storage means 114. The difference gives the change in the intensity of the transmitted X-ray between the first and second imaging. The projection difference image obtained as a result of the difference is displayed by the multiplex two-dimensional image display means 116, for example, overlapping the projection image in the first photographing.

【0028】以上のように本実施例では、予め撮影した
投影像との差分を行った投影差分画像を表示するので、
被写体の状態の変化に対する透過X線の強度の変化を表
示でき、被写体の状態をより詳細、綿密に把握できる。
また、予め撮影した被写体の投影像と、被写体の状態の
変化に対する透過X線の強度の変化とを、重ねて表示で
きるので、変化を有する部位の位置を、予め撮影した結
果から把握でき、撮影結果を迅速、正確に認識できる。
本実施例では、撮影を2回行い得られる2つの投影像の
間で差分を行うが、3回又はそれ以上の撮影を行い、任
意の2つの投影像の間で差分を行うこともできる。例え
ば、第1回目の撮影で得た投影像を投影データ記憶手段
に常に格納し、第3回目、第4回目等の撮影での投影像
との間で差分を行うこともできる。あるいは、第2回
目、第3回目等の撮影で得た投影像も投影データ記憶手
段に格納し(既に格納済みのデータを書き換える)、連
続する2撮影間(例えば、第2回目と第3回目、第3回
目と第4回目等)で差分を行うこともできる。また、本
実施例では、多重2次元画像表示手段を用いて、予め撮
影した被写体の投影像と、被写体の状態の変化に対する
透過X線の強度の変化とを、重ねて表示できるが、例え
ば、図14の2次元画像表示手段を利用して、被写体の
状態の変化に対する透過X線の強度の変化のみを表示す
る、あるいは両者を組み合わせて表示することもでき
る。
As described above, in this embodiment, since the projection difference image obtained by performing the difference from the projection image captured in advance is displayed,
The change in the intensity of the transmitted X-ray with respect to the change in the state of the subject can be displayed, and the state of the subject can be grasped in more detail and detail.
In addition, since the projection image of the subject captured in advance and the change in the intensity of the transmitted X-ray with respect to the change in the condition of the subject can be displayed in an overlapping manner, the position of the changed portion can be grasped from the result of the advance capture, The result can be recognized quickly and accurately.
In the present embodiment, the difference is obtained between the two projected images obtained by performing the photographing twice, but it is also possible to perform the difference between the arbitrary two projected images by performing the photographing three times or more. For example, it is possible to always store the projection image obtained in the first photographing in the projection data storage means and make a difference with the projection images in the third and fourth photographing. Alternatively, the projection images obtained by the second and third shootings are also stored in the projection data storage means (data already stored is rewritten), and two consecutive shootings (for example, the second and third shootings). , The third time and the fourth time, etc.). Further, in the present embodiment, by using the multiplex two-dimensional image display means, it is possible to superimpose and display the projection image of the subject photographed in advance and the change in the intensity of the transmitted X-ray with respect to the change in the state of the subject. By using the two-dimensional image display means of FIG. 14, it is possible to display only the change in the intensity of the transmitted X-ray with respect to the change in the state of the subject, or to display both in combination.

【0029】(第10の実施例)次に、本発明の第10
の実施例を、図面を用いて詳細に説明する。第9の実施
例では、予め撮影した被写体の投影像と新たに撮影した
投影像との間の差分処理により、被写体の状態の変化に
対する透過X線の強度の変化を把握したが、予め3次元
撮影を行って収集した被写体のX線吸収係数の3次元分
布を再投影した後、再投影結果と新たに撮影した投影像
との間の差分処理により、被写体の状態の変化を把握で
きる。図16は、本実施例の基本構成を説明する図であ
る。X線照射手段1、2次元検出器2、投影方向変更手
段3、3次元像再構成手段4、撮影制御手段5、3次元
画像表示手段6、被写体11、X線12、透過X線13
は、図1のものと同一の機能をもつ。また、投影像生成
手段111、2次元画像表示手段112、投影方向変更
手段113は、図14のものと同一の機能をもち、投影
差分画像表示手段115は、図15のものと同一の機能
をもつ。3次元像再構成手段4での再構成演算の結果得
られた被写体のX線吸収係数の3次元分布から、所望の
領域を抽出可能な3次元領域抽出手段117は、例え
ば、再構成結果を演算処理する乗算器等の演算素子ある
いはマイクロプロセッサ等で構成される。抽出手法とし
ては、例えば、適当なしきい値による2値化処理等を用
いる。3次元領域抽出手段117での抽出結果を格納可
能な3次元データ記憶手段118は、例えば、抽出結果
をディジタル化して格納する半導体記憶素子等で構成さ
れる。3次元データ記憶手段118で格納した抽出結果
をもとに、ある投影方向へ再投影を行った結果である再
投影像を生成可能な再投影像生成手段119は、例え
ば、各種算術演算処理を行う演算素子あるいはマイクロ
プロセッサや演算結果を格納する記憶素子等で構成され
る。次に、本実施例に基づく撮影手順の一例を説明す
る。先ず、第1の実施例と同様の手順に従って3次元撮
影を行い、被写体11のX線吸収係数の3次元分布を得
る。3次元像再構成手段4で得た結果は、3次元領域抽
出手段117に送る。3次元領域抽出手段117は、操
作者の指示に従い、3次元像再構成手段4から送られた
X線吸収係数の3次元分布から、所望の領域(例えば、
被写体が人体の場合、骨領域のみ)を抽出する。抽出結
果は、3次元データ記憶手段118に送られ、抽出領域
のみで3次元像再構成手段4で得たX線吸収係数を有
し、その他の領域では係数がゼロ(吸収なし)のデータ
として格納される。次に、被写体のX線吸収係数が変化
した状態を見計らって、第8の実施例と同様の手順に従
って、所望の投影方向での被写体11の投影像を撮影す
る。得られた投影像は、投影差分画像生成手段115に
送られる。また、再投影像生成手段119に於て、撮影
した投影像と同一投影方向へ再投影を行った再投影像を
生成する。生成した再投影像は、投影差分画像生成手段
115に送ら、ここで投影像生成手段111からの投影
像との間で差分を行う。差分の結果得られた投影差分画
像は、3次元領域抽出手段118で抽出した領域外のX
線吸収係数と、被写体の状態の変化に対する透過X線の
強度の変化とを重ねた画像となる。例えば、被写体が人
体の場合、3次元領域抽出手段118で骨領域を抽出し
て、血管造影の前後に撮影を行うと、骨以外の部位と血
管とを重ねた投影像が得られる。生成した投影差分画像
は、2次元画像表示手段112に送られ表示される。
(Tenth Embodiment) Next, the tenth embodiment of the present invention will be described.
Embodiments will be described in detail with reference to the drawings. In the ninth embodiment, the change in the intensity of the transmitted X-ray with respect to the change in the state of the subject is grasped by the difference processing between the projection image of the subject captured in advance and the projection image newly captured. After re-projecting the three-dimensional distribution of the X-ray absorption coefficient of the subject that has been captured and collected, the change in the condition of the subject can be grasped by the difference processing between the re-projection result and the newly captured projection image. FIG. 16 is a diagram for explaining the basic configuration of this embodiment. X-ray irradiation means 1, two-dimensional detector 2, projection direction changing means 3, three-dimensional image reconstruction means 4, imaging control means 5, three-dimensional image display means 6, subject 11, X-rays 12, transmitted X-rays 13.
Has the same function as in FIG. The projection image generation means 111, the two-dimensional image display means 112, and the projection direction changing means 113 have the same functions as those in FIG. 14, and the projection difference image display means 115 has the same functions as those in FIG. Hold. The three-dimensional area extracting means 117 capable of extracting a desired area from the three-dimensional distribution of the X-ray absorption coefficient of the subject obtained as a result of the reconstruction operation by the three-dimensional image reconstructing means 4 can obtain the reconstruction result, for example. It is composed of an arithmetic element such as a multiplier for arithmetic processing or a microprocessor. As the extraction method, for example, binarization processing with an appropriate threshold value is used. The three-dimensional data storage unit 118 capable of storing the extraction result of the three-dimensional area extraction unit 117 is composed of, for example, a semiconductor storage element that stores the extraction result in a digitized form. The reprojection image generation unit 119 capable of generating a reprojection image that is a result of reprojection in a certain projection direction based on the extraction result stored in the three-dimensional data storage unit 118, for example, performs various arithmetic operation processes. It is composed of a computing element to be performed, a microprocessor, a memory element for storing a computation result, or the like. Next, an example of a photographing procedure based on this embodiment will be described. First, three-dimensional imaging is performed according to the same procedure as in the first embodiment, and the three-dimensional distribution of the X-ray absorption coefficient of the subject 11 is obtained. The result obtained by the three-dimensional image reconstructing means 4 is sent to the three-dimensional area extracting means 117. The three-dimensional area extracting unit 117, according to the instruction of the operator, selects a desired area (for example, from the three-dimensional distribution of the X-ray absorption coefficient sent from the three-dimensional image reconstructing unit 4).
If the subject is a human body, only the bone region) is extracted. The extraction result is sent to the three-dimensional data storage unit 118, and has the X-ray absorption coefficient obtained by the three-dimensional image reconstructing unit 4 only in the extraction region, and as the data in which the coefficient is zero (no absorption) in other regions. Is stored. Next, a state in which the X-ray absorption coefficient of the subject has changed is observed, and a projection image of the subject 11 in a desired projection direction is taken according to the same procedure as in the eighth embodiment. The obtained projection image is sent to the projection difference image generation means 115. Further, the reprojection image generation means 119 generates a reprojection image obtained by reprojecting in the same projection direction as the captured projection image. The generated re-projection image is sent to the projection difference image generation unit 115, and the difference is obtained between it and the projection image from the projection image generation unit 111. The projection difference image obtained as a result of the difference is the X outside the area extracted by the three-dimensional area extracting means 118.
An image is obtained by superimposing the linear absorption coefficient and the change in the intensity of the transmitted X-ray with respect to the change in the state of the subject. For example, when the subject is a human body, a bone region is extracted by the three-dimensional region extracting unit 118, and images are taken before and after angiography, so that a projected image in which a region other than the bone and the blood vessel are superimposed is obtained. The generated projection difference image is sent to the two-dimensional image display means 112 and displayed.

【0030】以上のように本実施例では、予め3次元撮
影を行って収集した被写体のX線吸収係数の3次元分布
を再投影した後、再投影結果と新たに撮影した投影像と
の間の差分処理により、被写体の状態の変化を把握する
ので、予め3次元撮影を一度行えば、任意投影方向での
投影像の撮影を繰り返すだけで、被写体の状態の変化に
対する透過X線の強度の変化を表示でき、被写体の状態
をより詳細、綿密に把握できる。また、予め撮影したX
線吸収係数の3次元分布から所望の領域を抽出した後再
投影処理を行うので、新たに撮影した投影像から抽出し
た領域に関する部分を取り除くことができ、例えば血管
の微細な構造を把握する際に妨げとなる骨の画像の重な
り等を低減でき、被写体の状態をより詳細、綿密に把握
できる。本実施例では、3次元領域抽出手段117によ
り再構成結果から所望の領域を抽出した後、抽出結果を
3次元データ記憶手段118に格納したが、3次元領域
抽出手段117の機能を省略し、再構成結果を3次元デ
ータ記憶手段118に直接格納することもできる。この
場合、被写体の状態の変化に対する透過X線の強度の変
化を表示できる。また、本実施例において、図15を用
いて説明した第9の実施例の場合と同様に、多重2次元
画像表示手段を用いて、予め撮影した被写体の投影像
等、他の情報を重ねて表示できる。なお、上述の各実施
例において、おもに3次元撮影に付随する方法及び装置
に関するもの(特に第3の実施例から第10の実施例)
については、平行X線を用いずに3次元撮影を行う場合
にも適応可能である。例えば、従来の扇状ビームX線を
用いて、被写体のX線吸収係数の3次元分布を求める3
次元撮影を行う場合にも適応可能である。
As described above, in this embodiment, after the three-dimensional imaging is performed in advance and the three-dimensional distribution of the X-ray absorption coefficient of the object collected is re-projected, the result between the re-projection result and the newly captured projection image is Since the change of the state of the subject is grasped by the difference processing of 3), once the three-dimensional imaging is performed in advance, the intensity of the transmitted X-ray with respect to the change of the state of the subject can be changed by simply taking the projection image in the arbitrary projection direction. Changes can be displayed and the subject's condition can be grasped in more detail and detail. In addition, X taken in advance
Since the re-projection process is performed after extracting a desired region from the three-dimensional distribution of the linear absorption coefficient, it is possible to remove a portion related to the region extracted from the newly captured projection image. For example, when grasping a fine structure of a blood vessel. It is possible to reduce overlapping of images of bones, which hinders the user, and to grasp the condition of the subject in more detail and detail. In this embodiment, after the desired area is extracted from the reconstruction result by the three-dimensional area extracting means 117 and the extraction result is stored in the three-dimensional data storing means 118, the function of the three-dimensional area extracting means 117 is omitted. The reconstruction result may be directly stored in the three-dimensional data storage means 118. In this case, the change in the intensity of the transmitted X-ray with respect to the change in the state of the subject can be displayed. Further, in the present embodiment, as in the case of the ninth embodiment described with reference to FIG. 15, other information such as a projected image of a subject photographed in advance is superimposed by using the multiplex two-dimensional image display means. Can be displayed. Note that, in each of the above-described embodiments, mainly relates to a method and apparatus associated with three-dimensional imaging (in particular, the third to tenth embodiments).
With respect to (3), it is applicable to the case of performing three-dimensional imaging without using parallel X-rays. For example, a conventional fan-shaped beam X-ray is used to obtain a three-dimensional distribution of the X-ray absorption coefficient of the subject 3.
It is also applicable when performing three-dimensional imaging.

【0031】[0031]

【発明の効果】以上述べたように本発明では、2次元強
度分布が一定な多重平行平面X線ビームを使用するの
で、再構成演算を従来のX線CTで用いられている再構
成アルゴリズムを適用でき、再構成演算の演算過程で、
計測時の雑音等の外的要因を受けやすいという従来問題
を回避することができ、像再構成の結果得られるX線吸
収係数の高精度、高分解能化を図ることができる。本発
明の装置によれば、押しボタンスイッチの操作のみで撮
影条件、観察部位等を指定して、3次元撮影を実行で
き、煩雑な操作が不要になり、撮影の高速化、計測効率
の向上を図ることができる。
As described above, according to the present invention, since the multiple parallel plane X-ray beam having a constant two-dimensional intensity distribution is used, the reconstruction algorithm used in the conventional X-ray CT is used as the reconstruction operation. Applicable, in the process of reconstruction operation,
It is possible to avoid the conventional problem of being susceptible to external factors such as noise at the time of measurement, and it is possible to achieve high precision and high resolution of the X-ray absorption coefficient obtained as a result of image reconstruction. According to the device of the present invention, it is possible to perform three-dimensional imaging by designating the imaging conditions, the observation site, etc., only by operating the push button switch, eliminating the need for complicated operations, speeding up imaging, and improving measurement efficiency. Can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の基本構成を示す図。FIG. 1 is a diagram showing a basic configuration of a first embodiment of the present invention.

【図2】投影方向変更手段の一例を説明する図。FIG. 2 is a diagram illustrating an example of a projection direction changing unit.

【図3】撮影制御手段の一制御例を説明する図。FIG. 3 is a diagram illustrating an example of control of a photographing control unit.

【図4】X線照射手段の一実施例を説明する図。FIG. 4 is a diagram illustrating an example of an X-ray irradiation unit.

【図5】投影方向変更手段の一例を説明する図。FIG. 5 is a diagram illustrating an example of a projection direction changing unit.

【図6】偏向制御手段の一制御例を説明する図。FIG. 6 illustrates a control example of a deflection control unit.

【図7】多重平行平面X線ビーム照射手段の一例を説明
する図。
FIG. 7 is a diagram illustrating an example of multiple parallel plane X-ray beam irradiation means.

【図8】本発明の第2の実施例におけるX線照射手段を
説明する図。
FIG. 8 is a diagram illustrating an X-ray irradiating means according to a second embodiment of the present invention.

【図9】多重扇状平面X線ビーム照射手段の一例を説明
する図。
FIG. 9 is a diagram illustrating an example of a multiple fan-shaped plane X-ray beam irradiation unit.

【図10】本発明の第4の実施例における撮影制御手段
の一制御例を示すタイミング図。
FIG. 10 is a timing chart showing an example of control of a photographing control means according to the fourth embodiment of the present invention.

【図11】本発明の第4の実施例における撮影制御手段
の他の制御例を示すタイミング図。
FIG. 11 is a timing chart showing another control example of the photographing control means in the fourth embodiment of the present invention.

【図12】本発明の第6の実施例の構成を示す図。FIG. 12 is a diagram showing a configuration of a sixth exemplary embodiment of the present invention.

【図13】本発明の第7の実施例の構成を示す図。FIG. 13 is a diagram showing the configuration of a seventh exemplary embodiment of the present invention.

【図14】本発明の第8の実施例の構成を示す図。FIG. 14 is a diagram showing a configuration of an eighth exemplary embodiment of the present invention.

【図15】本発明の第9の実施例の構成を示す図。FIG. 15 is a diagram showing a configuration of a ninth exemplary embodiment of the present invention.

【図16】本発明の第10の実施例の構成を示す図。FIG. 16 is a diagram showing the configuration of a tenth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…X線照射手段、2…2次元検出手段、3…投影方向
偏向手段、4…3次元像再構成手段、5…撮影制御手
段、6…3次元画像表示手段、7…X線発生手段、8…
ソーラースリット、9…X線発生手段、10…ソーラー
スリット、11…被写体、12…X線、13…透過X
線、21…X線管、22…X線イメージ・インテンシフ
ァイヤ、23…TVカメラ、24…回転リング、25…
電動機、31…回転開始信号、32…回転完了信号、3
3…撮影開始信号、34…X線照射信号、35…検出同
期信号、36…検出有効信号、41…カソード、42…
ターゲット、43…偏向手段、61…X−偏向信号、6
2…Y−偏向信号、63…多層膜凹面鏡、71…ターゲ
ット、72…偏向手段、81…多層膜凹面鏡、91…心
電信号、92…動き検出信号、93…X線照射信号、9
4…検出同期信号、95…検出有効信号、101…2次
元データ記憶手段、102…2次元差分画像生成手段、
103…多重3次元画像表示手段、104…3次元領域
抽出手段、105…3次元データ記憶手段、106…3
次元差分画像生成手段、111…投影像生成手段、11
2…2次元画像表示手段、113…投影方向指示手段、
114…投影データ記憶手段、115…投影差分画像生
成手段、116…多重2次元画像表示手段、117…3
次元領域抽出手段、118…3次元データ記憶手段、1
19…再投影像生成手段。
1 ... X-ray irradiation means, 2 ... Two-dimensional detection means, 3 ... Projection direction deflection means, 4 ... Three-dimensional image reconstruction means, 5 ... Imaging control means, 6 ... Three-dimensional image display means, 7 ... X-ray generation means , 8 ...
Solar slit, 9 ... X-ray generating means, 10 ... Solar slit, 11 ... Subject, 12 ... X-ray, 13 ... Transmitted X
X-ray, 21 ... X-ray tube, 22 ... X-ray image intensifier, 23 ... TV camera, 24 ... Rotating ring, 25 ...
Electric motor, 31 ... Rotation start signal, 32 ... Rotation completion signal, 3
3 ... Imaging start signal, 34 ... X-ray irradiation signal, 35 ... Detection synchronization signal, 36 ... Detection valid signal, 41 ... Cathode, 42 ...
Target, 43 ... Deflection means, 61 ... X-deflection signal, 6
2 ... Y-deflection signal, 63 ... Multilayer film concave mirror, 71 ... Target, 72 ... Deflection means, 81 ... Multilayer film concave mirror, 91 ... Electrocardiographic signal, 92 ... Motion detection signal, 93 ... X-ray irradiation signal, 9
4 ... Detection synchronization signal, 95 ... Detection effective signal, 101 ... Two-dimensional data storage means, 102 ... Two-dimensional difference image generation means,
103 ... Multiple 3D image display means, 104 ... 3D area extraction means, 105 ... 3D data storage means, 106 ... 3
Dimensional difference image generation means, 111 ... Projection image generation means, 11
2 ... Two-dimensional image display means, 113 ... Projection direction instruction means,
114 ... Projection data storage means, 115 ... Projection difference image generation means, 116 ... Multiple two-dimensional image display means, 117 ... 3
Dimensional area extraction means, 118 ... Three-dimensional data storage means, 1
19 ... Reprojection image generation means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 健 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Ueda 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】被写体に平行X線を照射する平行X線照射
手段と、前記被写体を透過した透過X線の2次元強度分
布を検出する2次元検出手段と、前記平行X線を前記被
写体に照射し透過X線の2次元強度分布を得る投影方向
を変更する投影方向変更手段と、複数の投影方向での前
記2次元強度分布をもとに前記被写体のX線吸収係数の
3次元分布を再構成する3次元像再構成手段とを有する
ことを特徴とする3次元撮影装置。
1. A parallel X-ray irradiating means for irradiating a subject with parallel X-rays, a two-dimensional detecting means for detecting a two-dimensional intensity distribution of transmitted X-rays transmitted through the subject, and the parallel X-rays for the subject. Projection direction changing means for changing the projection direction for obtaining a two-dimensional intensity distribution of transmitted X-rays, and a three-dimensional distribution of the X-ray absorption coefficient of the subject based on the two-dimensional intensity distributions in a plurality of projection directions. A three-dimensional imaging apparatus having a three-dimensional image reconstructing means for reconstructing.
【請求項2】請求項1に記載の3次元撮影装置であっ
て、前記平行X線照射手段は、複数のお互いに平行な平
行平面X線ビームからなる多重平行平面X線ビームを照
射することを特徴とする3次元撮影装置。
2. The three-dimensional imaging apparatus according to claim 1, wherein the parallel X-ray irradiating means irradiates a multiple parallel plane X-ray beam composed of a plurality of parallel plane X-ray beams parallel to each other. A three-dimensional imaging device characterized by.
【請求項3】請求項1に記載の3次元撮影装置であっ
て、前記平行X線照射手段は、複数のお互いに平行な扇
状平面X線ビームからなる多重扇状平面X線ビームを照
射することを特徴とする3次元撮影装置。
3. The three-dimensional imaging apparatus according to claim 1, wherein the parallel X-ray irradiation means irradiates a multiple fan-shaped plane X-ray beam composed of a plurality of mutually parallel fan-shaped plane X-ray beams. A three-dimensional imaging device characterized by.
【請求項4】請求項1から請求項3のいずれかに記載の
3次元撮影装置であって、前記投影方向変更手段は、前
記平行X線照射手段及び前記2次元検出手段とを、所定
の距離を直径とする円周上で回転させることを特徴とす
る3次元撮影装置。
4. The three-dimensional imaging apparatus according to claim 1, wherein the projection direction changing means includes the parallel X-ray irradiating means and the two-dimensional detecting means in a predetermined manner. A three-dimensional imaging device characterized by rotating on a circumference having a distance as a diameter.
【請求項5】請求項1から請求項4のいずれかに記載の
3次元撮影装置であって、操作者の3次元撮影開始の指
示に従って、少なくとも、前記平行X線照射手段での平
行X線を照射するタイミングと、前記2次元検出手段で
の透過X線を検出するタイミングと、前記投影方向変更
手段での投影方向を変更するタイミングと、前記3次元
像再構成手段での3次元分布を再構成するタイミングと
を制御する撮影制御手段を有することを特徴とする3次
元撮影装置。
5. The three-dimensional imaging apparatus according to any one of claims 1 to 4, wherein at least parallel X-rays by the parallel X-ray irradiating means are in accordance with an operator's instruction to start three-dimensional imaging. Of the three-dimensional distribution in the three-dimensional image reconstructing means, the timing of irradiating the X-rays, the timing of detecting the transmitted X-rays in the two-dimensional detecting means, the timing of changing the projection direction in the projection direction changing means. A three-dimensional imaging apparatus having imaging control means for controlling the timing of reconstruction.
【請求項6】請求項1から請求項5のいずれかに記載の
3次元撮影装置であって、前記2次元検出器は、少なく
とも透過X線を可視光に変換するX線光変換手段と可視
光を電気信号に変換する光電変換手段とから構成するこ
とを特徴とする3次元撮影装置。
6. The three-dimensional imaging apparatus according to claim 1, wherein the two-dimensional detector includes at least X-ray light conversion means for converting transmitted X-rays into visible light and visible light. A three-dimensional imaging device comprising: a photoelectric conversion unit that converts light into an electric signal.
【請求項7】請求項1から請求項6のいずれかに記載の
3次元撮影装置であって、前記平行X線照射手段は、熱
電子を放出するカソードと、前記熱電子の衝突によりX
線を発生するターゲットと、及び前記熱電子の運動方向
を変化させる偏向手段とを有し、前記偏向手段により前
記熱電子の運動方向を順次変化させて、前記熱電子が前
記ターゲット上を走査して平行X線を発生させることを
特徴とする3次元撮影装置。
7. The three-dimensional imaging apparatus according to claim 1, wherein the parallel X-ray irradiating means is configured to emit X-rays by colliding the cathode emitting thermoelectrons with the thermoelectrons.
A target that generates a line, and a deflection unit that changes the movement direction of the thermoelectrons, the movement direction of the thermoelectrons is sequentially changed by the deflection unit, and the thermoelectrons scan the target. A three-dimensional imaging device characterized by generating parallel X-rays.
【請求項8】請求項7に記載の3次元撮影装置であっ
て、前記ターゲットから放出されるX線の方向を制御す
るソーラースリットを有することを特徴とする3次元撮
影装置。
8. The three-dimensional imaging apparatus according to claim 7, further comprising a solar slit that controls a direction of X-rays emitted from the target.
【請求項9】請求項7または請求項8に記載の3次元撮
影装置であって、前記偏向手段による前期熱電子の運動
方向を変更するタイミングと、前記被写体を撮影するタ
イミングとを同期させる偏向制御手段を有することを特
徴とする3次元撮影装置。
9. A three-dimensional imaging apparatus according to claim 7, wherein the deflection means synchronizes the timing of changing the moving direction of the thermoelectrons by the deflection means with the timing of photographing the subject. A three-dimensional imaging device having a control means.
【請求項10】請求項1から請求項6のいずれかに記載
の3次元撮影装置であって、前記平行X線照射手段は、
少なくとも円錐状のX線を発生する円錐状X線ビーム発
生源と、この円錐状のX線ビームを平行なX線として反
射する多層膜凹面鏡とから構成することを特徴とする3
次元撮影装置。
10. The three-dimensional imaging apparatus according to claim 1, wherein the parallel X-ray irradiation means is
3. A conical X-ray beam generation source that generates at least a conical X-ray, and a multilayer film concave mirror that reflects this conical X-ray beam as parallel X-rays.
Dimensional photography device.
【請求項11】請求項1から請求項10のいずれかに記
載の3次元撮影装置であって、前記影方向変更手段によ
り投影方向を変更して前記2次元検出手段により透過X
線の2次元強度分布の検出を行う回数を、所望の撮影条
件に応じて変更する投影回数変更手段を有することを特
徴とする3次元撮影装置。
11. The three-dimensional imaging apparatus according to claim 1, wherein the shadow direction changing means changes the projection direction and the two-dimensional detecting means transmits X.
A three-dimensional imaging apparatus comprising projection number changing means for changing the number of times of detecting a two-dimensional intensity distribution of a line according to a desired imaging condition.
【請求項12】請求項1から請求項11のいずれかに記
載の3次元撮影装置であって、前記2次元検出手段の空
間分解能を、所望の撮影条件に応じて変更する手段を有
することを特徴とする3次元撮影装置。
12. The three-dimensional imaging apparatus according to claim 1, further comprising means for changing the spatial resolution of the two-dimensional detection means according to a desired imaging condition. A characteristic three-dimensional imaging device.
【請求項13】請求項1から請求項12のいずれかに記
載の3次元撮影装置であって、前記被写体の動きを検出
する動き検出手段と、検出した動きと3次元撮影の撮影
タイミングを同期させる撮影同期手段とを有することを
特徴とする3次元撮影装置。
13. The three-dimensional photographing apparatus according to claim 1, wherein the movement detecting means for detecting the movement of the subject and the detected movement are synchronized with the photographing timing of the three-dimensional photographing. A three-dimensional image capturing apparatus, comprising:
【請求項14】請求項1から請求項13のいずれかに記
載の3次元撮影装置であって、前記3次元像再構成手段
で用いる透過X線の2次元強度分布を格納する2次元デ
ータ記憶手段と、この2次元データ記憶手段に格納した
強度分布との違いを表す2次元差分画像を生成する2次
元差分画像生成手段とを有し、個別の撮影で得た強度分
布間の違いを表す2次元差分画像を生成し、得られた2
次元差分画像をもとに前記強度分布間の違いの3次元分
布を再構成して3次元差分画像を生成することを特徴と
する3次元撮影装置。
14. The three-dimensional imaging device according to claim 1, wherein the two-dimensional data storage stores a two-dimensional intensity distribution of transmitted X-rays used in the three-dimensional image reconstructing means. Means and a two-dimensional difference image generation means for generating a two-dimensional difference image representing the difference between the intensity distributions stored in the two-dimensional data storage means, and representing the difference between the intensity distributions obtained by individual photographing. 2D obtained by generating a two-dimensional difference image
A three-dimensional imaging apparatus, which reconstructs a three-dimensional distribution of differences between the intensity distributions based on the three-dimensional difference image to generate a three-dimensional difference image.
【請求項15】請求項1から請求項のいずれかに14記
載の3次元撮影装置であって、前記被写体のX線吸収係
数の3次元分布を格納する3次元データ記憶手段と、こ
の3次元データ記憶手段に格納した3次元分布との違い
を表す3次元差分画像を生成する3次元差分画像生成手
段とを有し、個別の撮影で得た3次元分布間の違いを表
す3次元差分画像を生成することを特徴とする3次元撮
影装置。
15. The three-dimensional imaging apparatus according to claim 1, wherein the three-dimensional data storage means stores a three-dimensional distribution of the X-ray absorption coefficient of the subject, and the three-dimensional data storage means. A three-dimensional difference image representing a difference from the three-dimensional distribution stored in the data storage means, and a three-dimensional difference image representing a difference between the three-dimensional distributions obtained by individual photographing. A three-dimensional image capturing apparatus characterized by generating a.
【請求項16】請求項15に記載の3次元撮影装置であ
って、前記被写体のX線吸収係数の3次元分布から、所
望の領域を抽出する3次元領域抽出手段を有することを
特徴とする3次元撮影装置。
16. The three-dimensional imaging apparatus according to claim 15, further comprising a three-dimensional area extracting means for extracting a desired area from the three-dimensional distribution of the X-ray absorption coefficient of the subject. Three-dimensional imaging device.
【請求項17】請求項14から請求項16のいずれかに
記載の3次元撮影装置であって、前記被写体のX線吸収
係数の3次元分布に、前記3次元差分画像を重畳させて
表示する多重3次元画像表示手段を有することを特徴と
する3次元撮影装置。
17. The three-dimensional imaging apparatus according to any one of claims 14 to 16, wherein the three-dimensional difference image is superimposed and displayed on the three-dimensional distribution of the X-ray absorption coefficient of the subject. A three-dimensional image capturing apparatus having multiple three-dimensional image display means.
【請求項18】請求項1から請求項17のいずれかに記
載の3次元撮影装置であって、透過X線の2次元強度分
布である投影像を、所望の投影方向に対して生成する投
影像生成手段を有することを特徴とする3次元撮影装
置。
18. The three-dimensional imaging apparatus according to claim 1, wherein a projection image having a two-dimensional intensity distribution of transmitted X-rays is generated in a desired projection direction. A three-dimensional imaging apparatus having an image generating means.
【請求項19】請求項18に記載の3次元撮影装置であ
って、前記投影像生成手段で得られた前記投影像を表示
する2次元画像表示手段を有し、前記2次元画像表示手
段で表示される投影像をもとにして3次元撮影を開始す
ることを特徴とする3次元撮影装置。
19. The three-dimensional imaging apparatus according to claim 18, further comprising a two-dimensional image display means for displaying the projection image obtained by the projection image generation means, the two-dimensional image display means comprising: A three-dimensional imaging device, which starts three-dimensional imaging based on a projected image displayed.
【請求項20】請求項18に記載の3次元撮影装置であ
って、前記投影像生成手段で得られた前記投影像を表示
する2次元画像表示手段を有し、前記2次元画像表示手
段で表示される投影像をもとにして3次元撮影する部位
を指示する手段を有することを特徴とする3次元撮影装
置。
20. The three-dimensional image capturing apparatus according to claim 18, further comprising a two-dimensional image display means for displaying the projection image obtained by the projection image generating means, the two-dimensional image display means comprising: A three-dimensional imaging apparatus having means for designating a part to be three-dimensionally imaged based on a projected image displayed.
【請求項21】請求項18から請求項20のいずれかに
記載の3次元撮影装置であって、前記3次元再構成手段
で得られた前記被写体のX線吸収率の3次元分布を表示
する3次元画像表示手段と、表示された3次元分布をも
とにして所望の投影方向を指示する投影方向指示手段と
を有し、前記投影像生成手段は、前記投影方向指示手段
で指示された投影方向からの投影像を生成することを特
徴とする3次元撮影装置。
21. The three-dimensional imaging apparatus according to claim 18, wherein the three-dimensional distribution of the X-ray absorptance of the subject obtained by the three-dimensional reconstruction means is displayed. It has a three-dimensional image display means and a projection direction instruction means for instructing a desired projection direction based on the displayed three-dimensional distribution, and the projection image generation means is instructed by the projection direction instruction means. A three-dimensional imaging apparatus characterized by generating a projected image from a projection direction.
【請求項22】請求項18から請求項21のいずれかに
記載の3次元撮影装置であって、前記投影像生成手段で
生成した投影像を格納する投影データ記憶手段と、前記
投影データ記憶手段に格納した投影像との違いを表す投
影差分画像を生成する投影差分画像生成手段とを有し、
個別の撮影で得た投影像間の違いを表す投影差分画像を
生成することを特徴とする3次元撮影装置。
22. The three-dimensional imaging apparatus according to claim 18, wherein the projection data storage unit stores the projection image generated by the projection image generation unit, and the projection data storage unit. And a projection difference image generation unit that generates a projection difference image representing a difference from the projection image stored in
A three-dimensional imaging device characterized by generating a projection difference image representing a difference between projection images obtained by individual imaging.
【請求項23】請求項18から請求項21のいずれかに
記載の3次元撮影装置であって、被写体のX線吸収係数
の3次元分布を格納する3次元データ記憶手段と、前記
3次元データ記憶手段に格納した3次元分布を前記投影
像生成手段で生成した投影像の投影方向に投影する再投
影像生成手段と、前記投影像生成手段で生成した投影像
と前記再投影像生成手段で生成した再投影像との違いを
表す投影差分画像を生成する投影差分画像生成手段とを
有し、個別の撮影で得た投影像間の違いを表す投影差分
画像を生成することを特徴とする3次元撮影装置。
23. The three-dimensional imaging apparatus according to claim 18, wherein the three-dimensional data storage means stores a three-dimensional distribution of the X-ray absorption coefficient of the subject, and the three-dimensional data. A reprojection image generation means for projecting the three-dimensional distribution stored in the storage means in the projection direction of the projection image generated by the projection image generation means, a projection image generated by the projection image generation means, and the reprojection image generation means. Projection difference image generation means for generating a projection difference image showing a difference from the generated reprojection image, and generating a projection difference image showing a difference between the projection images obtained by individual photographing Three-dimensional imaging device.
【請求項24】請求項23に記載の3次元撮影装置であ
って、前記被写体のX線吸収係数の3次元分布から、所
望の領域を抽出する3次元領域抽出手段を有することを
特徴とする3次元撮影装置。
24. The three-dimensional imaging apparatus according to claim 23, further comprising a three-dimensional area extracting means for extracting a desired area from the three-dimensional distribution of the X-ray absorption coefficient of the subject. Three-dimensional imaging device.
【請求項25】請求項22から請求項24のいずれかに
記載の3次元撮影装置であって、前記投影像生成手段で
生成した投影像に、前記投影像生成手段で生成した投影
像をもとに生成した前記投影差分画像を重畳させて表示
する多重3次元画像表示手段を有することを特徴とする
3次元撮影装置。
25. The three-dimensional image capturing apparatus according to claim 22, wherein the projection image generated by the projection image generating means includes a projection image generated by the projection image generating means. A three-dimensional image capturing apparatus, comprising: a multiple three-dimensional image display unit that superimposes and displays the projection difference images generated in the above.
JP5023949A 1993-02-12 1993-02-12 Three-dimensional photographing device Pending JPH06233757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5023949A JPH06233757A (en) 1993-02-12 1993-02-12 Three-dimensional photographing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5023949A JPH06233757A (en) 1993-02-12 1993-02-12 Three-dimensional photographing device

Publications (1)

Publication Number Publication Date
JPH06233757A true JPH06233757A (en) 1994-08-23

Family

ID=12124806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5023949A Pending JPH06233757A (en) 1993-02-12 1993-02-12 Three-dimensional photographing device

Country Status (1)

Country Link
JP (1) JPH06233757A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262519A (en) * 1998-12-22 2000-09-26 General Electric Co <Ge> Cardiac gated type ct system
JP2002541897A (en) * 1999-04-15 2002-12-10 ゼネラル・エレクトリック・カンパニイ Optimized CT protocol
JP2003000580A (en) * 2001-06-21 2003-01-07 Toshiba Corp Image processor and medical image diagnostic device
JP2005058774A (en) * 2003-08-18 2005-03-10 Siemens Ag Device for capturing structural data of object
JP2005169110A (en) * 2003-12-05 2005-06-30 Ge Medical Systems Global Technology Co Llc Method and system for target angle heel effect compensation
JP2007202714A (en) * 2006-01-31 2007-08-16 Toshiba Corp Radiographic apparatus
JP2007244584A (en) * 2006-03-15 2007-09-27 Toshiba Corp X-ray diagnostic apparatus
JP2007530122A (en) * 2004-03-23 2007-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray inspection apparatus and method
JP2008043564A (en) * 2006-08-17 2008-02-28 Fujifilm Corp Domain definer
JP2008122101A (en) * 2006-11-08 2008-05-29 Tomohei Sakabe Image measuring method and device
JP2009095510A (en) * 2007-10-18 2009-05-07 Toshiba Corp X-ray ct apparatus
JP2009136518A (en) * 2007-12-07 2009-06-25 Canon Inc X-ray radiographing apparatus and x-ray radiographing method
JP2009153589A (en) * 2007-12-25 2009-07-16 Canon Inc X-ray imaging apparatus
JP2009297314A (en) * 2008-06-16 2009-12-24 Ge Medical Systems Global Technology Co Llc X-ray tomographic apparatus
JP2010505454A (en) * 2006-11-09 2010-02-25 キヤノン株式会社 Radiation imaging control device using multi-radiation generator
JP2011019802A (en) * 2009-07-17 2011-02-03 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
WO2013008685A1 (en) * 2011-07-12 2013-01-17 富士フイルム株式会社 Radiation output device, radiography system, and radiography method
JP2013099639A (en) * 2013-02-28 2013-05-23 Ge Medical Systems Global Technology Co Llc X-ray tomographic apparatus
JP2013173015A (en) * 2013-05-09 2013-09-05 Canon Inc X-ray radiographing apparatus and x-ray radiographing method
JP2018038500A (en) * 2016-09-06 2018-03-15 キヤノン株式会社 Radiographic apparatus, radiographic system, radiographic method, and program

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262519A (en) * 1998-12-22 2000-09-26 General Electric Co <Ge> Cardiac gated type ct system
JP4732592B2 (en) * 1999-04-15 2011-07-27 ゼネラル・エレクトリック・カンパニイ Optimized CT protocol
JP2002541897A (en) * 1999-04-15 2002-12-10 ゼネラル・エレクトリック・カンパニイ Optimized CT protocol
JP2003000580A (en) * 2001-06-21 2003-01-07 Toshiba Corp Image processor and medical image diagnostic device
JP2005058774A (en) * 2003-08-18 2005-03-10 Siemens Ag Device for capturing structural data of object
JP4717393B2 (en) * 2003-08-18 2011-07-06 シーメンス アクチエンゲゼルシヤフト Object structure data acquisition device
JP2005169110A (en) * 2003-12-05 2005-06-30 Ge Medical Systems Global Technology Co Llc Method and system for target angle heel effect compensation
JP4576218B2 (en) * 2003-12-05 2010-11-04 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Method and system for target angle heel effect correction
JP2007530122A (en) * 2004-03-23 2007-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X-ray inspection apparatus and method
JP2007202714A (en) * 2006-01-31 2007-08-16 Toshiba Corp Radiographic apparatus
JP2007244584A (en) * 2006-03-15 2007-09-27 Toshiba Corp X-ray diagnostic apparatus
JP2008043564A (en) * 2006-08-17 2008-02-28 Fujifilm Corp Domain definer
JP2008122101A (en) * 2006-11-08 2008-05-29 Tomohei Sakabe Image measuring method and device
US7978816B2 (en) 2006-11-09 2011-07-12 Canon Kabushiki Kaisha Radiographic imaging control apparatus using multi radiation generating apparatus
JP2010505454A (en) * 2006-11-09 2010-02-25 キヤノン株式会社 Radiation imaging control device using multi-radiation generator
JP2009095510A (en) * 2007-10-18 2009-05-07 Toshiba Corp X-ray ct apparatus
JP2009136518A (en) * 2007-12-07 2009-06-25 Canon Inc X-ray radiographing apparatus and x-ray radiographing method
JP2009153589A (en) * 2007-12-25 2009-07-16 Canon Inc X-ray imaging apparatus
JP2009297314A (en) * 2008-06-16 2009-12-24 Ge Medical Systems Global Technology Co Llc X-ray tomographic apparatus
JP2011019802A (en) * 2009-07-17 2011-02-03 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
WO2013008685A1 (en) * 2011-07-12 2013-01-17 富士フイルム株式会社 Radiation output device, radiography system, and radiography method
JP2013099639A (en) * 2013-02-28 2013-05-23 Ge Medical Systems Global Technology Co Llc X-ray tomographic apparatus
JP2013173015A (en) * 2013-05-09 2013-09-05 Canon Inc X-ray radiographing apparatus and x-ray radiographing method
JP2018038500A (en) * 2016-09-06 2018-03-15 キヤノン株式会社 Radiographic apparatus, radiographic system, radiographic method, and program

Similar Documents

Publication Publication Date Title
JPH06233757A (en) Three-dimensional photographing device
JP3378401B2 (en) X-ray equipment
EP0569238B1 (en) Image reconstruction technique for a computed tomography system
US6226350B1 (en) Methods and apparatus for cardiac scoring with a multi-beam scanner
JP4054402B2 (en) X-ray tomography equipment
JP4537129B2 (en) System for scanning objects in tomosynthesis applications
JP2017529204A (en) Static real-time CT image forming system and image forming control method thereof
JP2004180715A (en) X-ray computed tomography apparatus
JPH10211196A (en) X-ray ct scanner
JPH11226004A (en) X-ray inspection device and image pickup method for x-ray image
JP2008012206A (en) X-ray tomographic apparatus
US7949087B2 (en) Radiography apparatus
JP2004065982A (en) Imaging medical examination apparatus to shoot image of object moving periodically and method to obtain three dimensional measured data of object moving periodically
JP2001346791A (en) X-ray ct device
JP2001299737A (en) Modification of data aquisition using conventional ct for better reconstitution
JPH119583A (en) X-ray ct scanner
RU2633286C2 (en) Obtaining of images with c-type frame with enlarged angular strobing window
US7848790B2 (en) System and method of imaging using a variable speed for thorax imaging
JP2002325757A (en) Method and apparatus for compensating gap of multi- plate volumetric ct scanner
JPH026530B2 (en)
JP2000237177A (en) X-ray three-dimensional image photographing method and device
JP6373558B2 (en) X-ray CT system
JP3233955B2 (en) X-ray CT system
KR101531370B1 (en) X-ray Imaging Device And Imaging Method Thereof
JPH09327454A (en) Differential image photographing method and x-ray ct apparatus