JPH0621683A - Electromagnetic shield and manufacture thereof - Google Patents

Electromagnetic shield and manufacture thereof

Info

Publication number
JPH0621683A
JPH0621683A JP4172759A JP17275992A JPH0621683A JP H0621683 A JPH0621683 A JP H0621683A JP 4172759 A JP4172759 A JP 4172759A JP 17275992 A JP17275992 A JP 17275992A JP H0621683 A JPH0621683 A JP H0621683A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
synthetic resin
thermoplastic synthetic
sheet
wave shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4172759A
Other languages
Japanese (ja)
Inventor
Toshiaki Jinno
敏明 神野
Makoto Katsumata
信 勝亦
Kiyoshi Yagi
清 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP4172759A priority Critical patent/JPH0621683A/en
Publication of JPH0621683A publication Critical patent/JPH0621683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To manufacture an electromagnetic wave shield of a highly processed layer having high corrosion resistance and stable electromagnetic wave shielding characteristics by providing thermoplastic synthetic resin layers at both sides of a conductive composition layer made of carbon fiber, metal fiber and thermoplastic synthetic resin. CONSTITUTION:When thermoplastic synthetic resin 3 is formed as a single sheet by a heating roll, a conductive composition layer 2 is interposed between the sheets 3 and contact pressed by the roll or a hot press or the resin 3 is sheeted by the roll, the layer 2 is interposed between both the surface layers, simultaneously sheeted to simultaneously obtain a laminated composite sheet 1. The sheet 1 can be used as an electromagnetic wave shield to be bonded to a wall surface or a floor surfaces as it is. Or, an electromagnetic wave shield having a box state or other various shape such as a housing for an electronic apparatus or a shielded case for an electronic apparatus can be simultaneously molded by heat molding means such as a hot press, a vacuum molding, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複合シート状の電磁波遮
蔽体に関し、更にはかかる複合シートを利用して電子機
器用筐体や電子装置用シールドケース等の電磁波遮蔽体
を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite sheet-like electromagnetic wave shield, and more particularly to a method for producing an electromagnetic wave shield such as a casing for electronic equipment or a shield case for electronic equipment using the composite sheet.

【0002】[0002]

【従来の技術】近時、コンピュータ、OA機器等の電子
機器の普及に伴い、種々の機器から発生する電磁波がこ
れらの電子機器の誤作動の原因となることが多くなって
きている。こうした電子機器用筐体や電子装置用シール
ドケース等は従来からアルミニウムや鋼などの金属板か
らプレス成形されていたが、軽量化と生産性の改善との
観点から合成樹脂で形成することが多くなってきてい
る。そして電子機器を電磁波障害から保護するために、
合成樹脂製のハウジングに電磁波遮蔽特性を付与するこ
とが必要となっている。
2. Description of the Related Art Recently, with the spread of electronic devices such as computers and office automation equipment, electromagnetic waves generated from various devices are often the cause of malfunction of these electronic devices. Conventionally, such electronic device casings and electronic device shield cases have been press-molded from metal plates such as aluminum and steel, but are often formed from synthetic resin from the viewpoint of weight reduction and productivity improvement. It has become to. And to protect electronic devices from electromagnetic interference,
It is necessary to impart electromagnetic wave shielding properties to a synthetic resin housing.

【0003】そこで成形後のハウジングに、例えば金属
箔、炭素繊維紙や炭素繊維布、金属酸化物や金属あるい
は導電性炭素などの導電材の粉末や繊維を混合した合成
樹脂フィルム等の電磁波遮蔽用シート材料を張り付ける
方法や導電性塗料を塗布する方法、或いは溶射やメッキ
などによって金属層を設ける方法などが提案されている
が、作業性が悪いうえに生産性が低く、また金属を用い
た場合には腐食により電磁波遮蔽性が損なわれるという
問題があった。そして又、導電材の粉末や繊維を混合し
た導電性合成樹脂組成物を用いてハウジングを成形する
方法があるが、かかる導電性合成樹脂組成物は、一般に
着色が自由でなくまた加工性が劣り、成形品の外観が満
足できないために成形後のハウジングに更に塗装するこ
とが必要となるなどの不利があった。
Therefore, for electromagnetic wave shielding, for example, metal foil, carbon fiber paper or carbon fiber cloth, synthetic resin film in which powder or fiber of conductive material such as metal oxide or metal or conductive carbon is mixed in the molded housing. Methods such as pasting sheet material, applying conductive paint, and providing a metal layer by thermal spraying or plating have been proposed, but workability is poor and productivity is low, and metal is used. In this case, there is a problem that the electromagnetic wave shielding property is impaired due to corrosion. There is also a method of molding a housing using a conductive synthetic resin composition in which powder or fibers of a conductive material is mixed, but such a conductive synthetic resin composition is generally not freely colored and has poor processability. However, there is a disadvantage in that it is necessary to further coat the molded housing because the appearance of the molded product is unsatisfactory.

【0004】そこで熱可塑性合成樹脂シートの裏面に、
例えばアルミニウムや銅等の金属層を接着や溶射、或い
はメッキなどの方法により積層して電磁波遮蔽用シート
材料を得、これを熱プレス加工して電子機器用筐体や電
子装置用シールドケース等を形成する方法が提案されて
いる。しかしこの方法でも金属層が腐食し易いという欠
点があり、また絞り加工をすると金属箔に裂傷が発生し
て電磁波遮蔽性が損なわれるという問題があって、軽度
の折り曲げなどの加工にしか適しない。
Then, on the back surface of the thermoplastic synthetic resin sheet,
For example, a metal layer such as aluminum or copper is laminated by a method such as adhesion, thermal spraying, or plating to obtain an electromagnetic wave shielding sheet material, which is hot-pressed to form a housing for electronic equipment or a shield case for electronic equipment. A method of forming is proposed. However, this method also has a drawback that the metal layer is easily corroded, and there is a problem that when the drawing process is performed, the metal foil is cracked and the electromagnetic wave shielding property is impaired, which is suitable only for a process such as a slight bending. .

【0005】そこで皺を設けて伸長変形を可能とした金
属箔と合成樹脂とを積層して、高度加工が可能なシート
を得る方法(特開平2−125730号)が提案されて
いるが、これも深絞り加工には適していない。
Therefore, there has been proposed a method (Japanese Patent Application Laid-Open No. 2-125730) for obtaining a sheet which can be highly processed by laminating a synthetic resin and a metal foil which is provided with wrinkles and which can be stretched and deformed. Is not suitable for deep drawing.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明は、軽量
であって耐蝕性に優れ、かつ高度加工を行ってもなお優
れた電磁波遮蔽特性を保持するシート状の電磁波遮蔽体
を提供しようとするものであり、更にかかる電磁波遮蔽
体を用いて電子機器用筐体又は電子装置用シールドケー
スなどの電磁波遮蔽体を製造する方法を提供しようとす
るものである。
SUMMARY OF THE INVENTION Therefore, the present invention is to provide a sheet-like electromagnetic wave shield which is lightweight, has excellent corrosion resistance, and retains excellent electromagnetic wave shielding properties even when subjected to advanced processing. Further, it is an object of the present invention to provide a method for manufacturing an electromagnetic wave shield such as a housing for electronic equipment or a shield case for electronic equipment using the electromagnetic wave shield.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するこ
とができる本発明の電磁波遮蔽体は、炭素繊維と金属繊
維と熱可塑性合成樹脂とからなる導電性組成物層を中間
に挟んで両側に熱可塑性合成樹脂層を設けた積層構造を
有する複合シートからなるものであり、更にはかかる複
合シートを加熱成形することにより、電子機器用筐体又
は電子装置用シールドケースなどの電磁波遮蔽体を製造
するものである。
The electromagnetic wave shield of the present invention that can achieve the above object has a conductive composition layer composed of carbon fiber, metal fiber and thermoplastic synthetic resin sandwiched between the two sides. A composite sheet having a laminated structure in which a thermoplastic synthetic resin layer is provided, and by further heat-molding such a composite sheet, an electromagnetic wave shield such as a casing for electronic equipment or a shield case for electronic devices can be obtained. It is manufactured.

【0008】本発明の複合シート状の電磁波遮蔽体の中
間層を構成する導電性組成物層は炭素繊維と金属繊維と
熱可塑性合成樹脂とからなるものであるが、かかる熱可
塑性合成樹脂は導電性繊維のバインダとなると共にこの
中間層の両側に設けられる熱可塑性合成樹脂層と相溶性
のよいものである必要があり、例えばポリオレフィン樹
脂、エチレン酢酸ビニル共重合樹脂、塩化ビニル樹脂、
ジエン・スチレン共重合樹脂、ABS樹脂などの熱可塑
性合成樹脂から適宜のものを選択して用いることができ
る。
The conductive composition layer constituting the intermediate layer of the electromagnetic wave shield in the form of a composite sheet of the present invention comprises carbon fiber, metal fiber and thermoplastic synthetic resin. Such thermoplastic synthetic resin is conductive. It is necessary to be a material having good compatibility with the thermoplastic synthetic resin layer provided on both sides of this intermediate layer as a binder of the organic fiber, for example, polyolefin resin, ethylene vinyl acetate copolymer resin, vinyl chloride resin,
An appropriate one can be selected and used from thermoplastic synthetic resins such as diene / styrene copolymer resin and ABS resin.

【0009】また炭素繊維としては、例えばトルエン、
ベンゼン、ナフタレン等の芳香族炭化水素やプロパン、
エタン、エチレン等の脂肪族炭化水素などの炭化水素化
合物、好ましくはベンゼンまたはナフタレンを原料とし
て用い、かかる原料をガス化して水素などのキャリヤガ
スと共に900〜1500℃で超微粒金属からなる触
媒、たとえば粒径100〜300オングストロームの
鉄、ニッケル、鉄−ニッケル合金などをセラミックスや
黒鉛などからなる基体上に塗布したものなどと接触、分
解させるか、またはかかる原料をガス化して水素などの
キャリヤガスと共に900〜1500℃の反応帯域中に
分散浮遊させた超微粒金属からなる触媒、たとえば粒径
100〜300オングストロームの鉄、ニッケル、鉄−
ニッケル合金などと接触、分解させるなどの方法により
得られる気相成長炭素繊維、例えばポリアクリロニトリ
ル繊維を高温熱処理して炭素化して得たPAN系炭素繊
維、石油ピッチ、石炭ピッチ等を紡糸し、酸化性雰囲気
にて加熱して不融化し、高温熱処理して炭素化して得た
ピッチ系炭素繊維、ならびにこれらの繊維を更に150
0〜3500℃、好ましくは2500℃以上の温度で、
3〜120分間、好ましくは30分以上、アルゴン等の
不活性ガスの雰囲気下で熱処理することにより得られた
黒鉛繊維などを用いることができる。これらの炭素繊維
は単独で使用してもよくまた2種以上を併用してもよい
が、特に黒鉛化気相成長炭素繊維が好ましい。
As the carbon fiber, for example, toluene,
Aromatic hydrocarbons such as benzene and naphthalene, propane,
Hydrocarbon compounds such as ethane and aliphatic hydrocarbons such as ethylene, preferably benzene or naphthalene are used as raw materials, and these raw materials are gasified to form a catalyst composed of ultrafine metal at 900-1500 ° C. with a carrier gas such as hydrogen, for example, Iron, nickel, iron-nickel alloy or the like having a particle size of 100 to 300 angstrom is contacted with or decomposed with a material such as ceramics or graphite coated on a substrate, or such a raw material is gasified together with a carrier gas such as hydrogen. A catalyst composed of ultrafine metal particles dispersed and suspended in a reaction zone of 900 to 1500 ° C., for example, iron, nickel and iron having a particle diameter of 100 to 300 angstroms.
Vapor grown carbon fiber obtained by a method of contacting with nickel alloy or decomposing it, for example, polyacrylonitrile fiber is heat-treated at high temperature to carbonize to obtain PAN-based carbon fiber, petroleum pitch, coal pitch, etc. Of the pitch-based carbon fibers obtained by heating in a neutral atmosphere to infusibilize them, heat-treating them at a high temperature to carbonize them, and these fibers for a further 150
0 to 3500 ° C, preferably 2500 ° C or higher,
It is possible to use graphite fibers obtained by heat-treating for 3 to 120 minutes, preferably 30 minutes or more, in an atmosphere of an inert gas such as argon. These carbon fibers may be used alone or in combination of two or more, and graphitized vapor grown carbon fiber is particularly preferable.

【0010】また炭素繊維と併用される金属繊維は、熱
可塑性合成樹脂マトリックス中で炭素繊維の導電性が不
安定化することを抑制するために用いられるもので、
銅、アルミニウム、ニッケル、ステンレス鋼などの繊維
であり、炭素繊維と金属繊維との使用割合は重量比で1
0:90〜95:5である。金属繊維の割合が90以上
となると加熱成形が困難となり、無理に高度な加工をし
ようとすると成形品の電磁波遮蔽層に欠陥が発生し易く
なる。また5以下では電磁波遮蔽層の電導性が不安定と
なるため、加工度が高いときには電導性が不充分となり
良好な電磁波遮蔽性能が期待できなくなる。
The metal fiber used in combination with the carbon fiber is used to suppress the destabilization of the conductivity of the carbon fiber in the thermoplastic synthetic resin matrix.
Fibers such as copper, aluminum, nickel, and stainless steel. The ratio of carbon fiber to metal fiber used is 1 by weight.
It is 0:90 to 95: 5. If the ratio of the metal fibers is 90 or more, heat molding becomes difficult, and if an attempt is made to forcibly perform advanced processing, defects will easily occur in the electromagnetic wave shielding layer of the molded product. On the other hand, if it is 5 or less, the electric conductivity of the electromagnetic wave shielding layer becomes unstable. Therefore, when the working degree is high, the electric conductivity becomes insufficient, and good electromagnetic wave shielding performance cannot be expected.

【0011】これらの導電性繊維と熱可塑性合成樹脂と
からなる導電性組成物層は、熱可塑性合成樹脂100重
量部に対して炭素繊維と金属繊維とを10〜200重量
部配合し、必要に応じて可塑剤や添加剤等を加えて加熱
下に混練し、ロールなどを用いてシート化することがで
きる。或いは又揮発性の溶剤を加えて緊密に混練して導
電性塗料とし、これを平坦な剥離性支持体面上に塗布し
乾燥して導電性フィルムとすることもでき、更にはかか
る炭素繊維と金属繊維とを水中に分散させると共に熱可
塑性合成樹脂の水性分散液を加え、必要に応じてパルプ
等を添加して抄紙することにより導電性シートを得るこ
ともできる。
The conductive composition layer composed of these conductive fibers and thermoplastic synthetic resin contains 10 to 200 parts by weight of carbon fiber and metal fiber with respect to 100 parts by weight of thermoplastic synthetic resin. Accordingly, a plasticizer, an additive, and the like may be added, and the mixture may be kneaded under heating and formed into a sheet by using a roll or the like. Alternatively, a volatile solvent may be added and the mixture may be intimately kneaded to form a conductive paint, which may be coated on a flat releasable support surface and dried to form a conductive film. It is also possible to obtain a conductive sheet by dispersing fibers and water, adding an aqueous dispersion of a thermoplastic synthetic resin, and optionally adding pulp or the like to make a paper.

【0012】このような導電性組成物層を中間に挟んで
両側に設けられる熱可塑性合成樹脂の表層は、前記の導
電性組成物層に使用された熱可塑性合成樹脂と同種のも
のであってもよく、相互に相溶性があれば異なった種類
の熱可塑性合成樹脂から適宜選択して用いることもでき
る。こうした表層用の熱可塑性合成樹脂は加工成形性が
よいことが必要なことは勿論であるが、更には物性や外
観を良好とするために充填材、補強材、加工助剤、着色
剤、或いは難燃剤など、使用目的に応じた配合剤を添加
することができる。
The surface layers of the thermoplastic synthetic resin provided on both sides with the conductive composition layer interposed therebetween are of the same kind as the thermoplastic synthetic resin used for the conductive composition layer. Alternatively, if they are compatible with each other, they can be appropriately selected and used from different types of thermoplastic synthetic resins. Needless to say, the thermoplastic synthetic resin for the surface layer is required to have good workability and moldability, and further, in order to improve physical properties and appearance, a filler, a reinforcing material, a processing aid, a colorant, or A compounding agent such as a flame retardant can be added depending on the purpose of use.

【0013】以上のような導電性組成物と熱可塑性合成
樹脂とから複合シート状の本発明の電磁波遮蔽体を得る
には、熱可塑性合成樹脂を加熱ロールなどによって単独
のシートとしたうえ導電性組成物層を中間に挟んで加熱
ロールや熱プレスにより圧着積層するか、熱可塑性合成
樹脂を加熱ロールなどによってシート化する際に、導電
性組成物層を中間に挟んで両表層を同時にシート化して
一挙に積層した複合シートを得るなどの方法、加熱ロー
ルなどによって得た熱可塑性合成樹脂シートの上に導電
性組成物の塗料を塗布乾燥して導電性組成物層を形成
し、更に熱可塑性合成樹脂シートを加熱ロールや熱プレ
スにより圧着積層する方法などを利用することができる
が、これに限らず適宜の方法を用いることもでき、特に
限定されない。
In order to obtain the electromagnetic wave shield of the present invention in the form of a composite sheet from the conductive composition and the thermoplastic synthetic resin as described above, the thermoplastic synthetic resin is made into a single sheet by a heating roll or the like, and then the conductive sheet is prepared. When the composition layer is sandwiched in the middle and pressure-bonded and laminated by a heating roll or heat press, or when the thermoplastic synthetic resin is formed into a sheet by a heating roll or the like, the conductive composition layer is sandwiched in the middle and both surface layers are simultaneously formed into a sheet. To obtain a composite sheet that is laminated all at once, apply a coating composition of a conductive composition on a thermoplastic synthetic resin sheet obtained by a heating roll, etc. to form a conductive composition layer by drying, and further apply the thermoplastic composition. A method of pressure-bonding and laminating a synthetic resin sheet with a heating roll or a heat press can be used, but the method is not limited to this, and an appropriate method can be used, and the method is not particularly limited.

【0014】以上のようにして得られた複合シートはそ
のままで壁面や床面等に貼り付ける電磁波遮蔽体として
利用することもできるが、熱プレスや真空成形等の加熱
成形加工手段により箱状その他の種々の形状を有する電
磁波遮蔽体、例えば電子機器用筐体や電子装置用シール
ドケースなどを一挙に成形することができる。この際の
成形手段としては、使用されている熱可塑性合成樹脂の
加工性や導電性組成物層の加工性を考慮して、目的とす
る形状を備えた電磁波遮蔽体の成形に適した加熱成形方
法を適宜選択することが望ましい。
The composite sheet obtained as described above can be used as it is as an electromagnetic wave shield attached to a wall surface, a floor surface or the like, but it can be formed into a box shape or the like by a heat forming processing means such as hot pressing or vacuum forming. It is possible to mold electromagnetic wave shields having various shapes, such as a housing for electronic devices and a shield case for electronic devices, all at once. As the molding means at this time, in consideration of the processability of the thermoplastic synthetic resin used and the processability of the conductive composition layer, heat molding suitable for forming an electromagnetic wave shield having a target shape. It is desirable to select an appropriate method.

【0015】[0015]

【作用】本発明の電磁波遮蔽体は、加熱成形することに
より箱状などの高加工度の電磁波遮蔽体とすることがで
きるが、加工が容易であるばかりでなく、加工に際して
導電性組成物層の破壊が発生することがなく安定した電
磁波遮蔽性能が保持されるものである。
The electromagnetic wave shield of the present invention can be formed into a box-shaped electromagnetic wave shield having a high degree of workability by heat molding, but it is not only easy to process, but also a conductive composition layer during processing. Stable electromagnetic wave shielding performance is maintained without the occurrence of damage.

【0016】[0016]

【実施例】(第1参考例)低密度ポリエチレン(ミラソ
ン3530、三井石油化学商品名)を二本ロールを用い
て140℃で素練りしたのちシート状に引き出し、熱プ
レスを用いて厚さ0.5mmの熱可塑性合成樹脂シートを
作成した。
Example (First Reference Example) Low-density polyethylene (Mirason 3530, trade name of Mitsui Petrochemical) was masticated at 140 ° C. using a two-roll mill, drawn out into a sheet, and heated to a thickness of 0. A thermoplastic synthetic resin sheet of 0.5 mm was prepared.

【0017】(第2参考例)炭素供給源としてのベンゼ
ンと触媒としてのフェロセンとをキャリヤガスとしての
水素とともに1100℃の分解炉内に送り込み、生成し
た長さ50μm以下で径0.01〜0.5μmの気相成
長炭素繊維を、更にアルゴンガス雰囲気中で3000℃
に30分間熱処理して導電材料としての炭素繊維を製造
した。
(Second Reference Example) Benzene as a carbon source and ferrocene as a catalyst were sent into a cracking furnace at 1100 ° C. together with hydrogen as a carrier gas, and the generated length was 50 μm or less and the diameter was 0.01 to 0. 0.5 μm vapor-grown carbon fiber was further added at 3000 ° C. in an argon gas atmosphere.
Then, it was heat-treated for 30 minutes to manufacture carbon fiber as a conductive material.

【0018】(第1実施例)低密度ポリエチレン(ミラ
ソン3530、三井石油化学商品名)100重量部に対
して、第2参考例の炭素繊維40重量部と径10μmで
長さ300μmの銅繊維20重量部とを配合し、二本ロ
ールを用いて150〜160℃で30分間混練りしたの
ちシート状に引き出し、熱プレスを用いて厚さ0.2mm
の導電性シートを作成した。次いでこの導電性シートを
第1参考例の熱可塑性合成樹脂シート2枚の間に挟み、
再び熱プレスして厚さ1.0mmで150mm角の複合シー
トAを作成した。
(First Example) For 100 parts by weight of low-density polyethylene (Mirason 3530, trade name of Mitsui Petrochemical), 40 parts by weight of carbon fiber of the second reference example and copper fiber 20 having a diameter of 10 μm and a length of 300 μm were used. Parts by weight, kneaded for 30 minutes at 150 to 160 ° C. using a two-roll mill, and then drawn out into a sheet, using a hot press to give a thickness of 0.2 mm.
A conductive sheet was prepared. Next, this conductive sheet is sandwiched between two thermoplastic synthetic resin sheets of the first reference example,
By hot pressing again, a composite sheet A having a thickness of 1.0 mm and 150 mm square was prepared.

【0019】(第2実施例)エチレン酢ビ共重合樹脂
(EV250、三井デュポン化学商品名)100重量部
に対して、第2参考例の炭素繊維50重量部と第1実施
例で用いたと同じ銅繊維20重量部とを配合し、二本ロ
ールを用いて150〜160℃で30分間混練りしたの
ちシート状に引き出ししたのちペレタイザを用いペレッ
ト化し、トルエンに溶解させて、ザーン粘度計 No.3で
30秒の粘度を有する導電性塗料を作成した。次いで第
1参考例の熱可塑性合成樹脂シートの片面に上記の導電
性塗料を塗布して厚さが40μmの導電性塗膜を形成
し、更にこの塗膜上に同じく第1参考例の熱可塑性合成
樹脂シートを載せ、熱プレスして厚さ1.0mmで150
mm角の複合シートBを作成した。
(Second Example) 50 parts by weight of carbon fiber of the second reference example and the same as those used in the first example per 100 parts by weight of ethylene vinyl acetate copolymer resin (EV250, trade name of DuPont Mitsui Chemicals). 20 parts by weight of copper fibers were mixed, kneaded with a two-roll mill at 150 to 160 ° C. for 30 minutes, drawn out into a sheet, pelletized with a pelletizer, and dissolved in toluene. Zahn viscometer No. A conductive paint having a viscosity of 3 and 30 seconds was prepared. Then, the above-mentioned conductive paint is applied to one surface of the thermoplastic synthetic resin sheet of the first reference example to form a conductive coating film having a thickness of 40 μm, and the thermoplastic resin of the first reference example is also formed on the conductive coating film. Put a synthetic resin sheet on it and heat press it to a thickness of 1.0mm for 150
A mm-square composite sheet B was prepared.

【0020】(第3実施例)針葉樹クラフトパルプをビ
ーターで叩解してカナダ標準ろ水度(JIS P081
2)が430であるフィブリル化パルプを得た。次にこ
のパルプ100重量部に対して第2参考例の炭素繊維1
20重量部と第1実施例で用いたと同じ銅繊維20重量
部との水分散液を加えて攪拌混合し、JIS P820
9の手漉き紙調製法に準じて抄紙し、加圧脱水、熱風乾
燥して厚さ0.2mmの導電性シートを得た。次いでこの
導電性シートを第1実施例と同様にして熱可塑性合成樹
脂シート2枚の間に挟み、熱プレスして厚さ1.0mmで
150mm角の複合シートCを作成した。
(Third Example) Softwood kraft pulp was beaten with a beater to obtain Canadian standard freeness (JIS P081).
A fibrillated pulp having 2) of 430 was obtained. Next, for 100 parts by weight of this pulp, carbon fiber 1 of the second reference example
An aqueous dispersion of 20 parts by weight and 20 parts by weight of the same copper fiber as used in the first embodiment was added and mixed by stirring to obtain JIS P820.
Paper was made according to the method for preparing handmade paper of 9, and was dehydrated under pressure and dried with hot air to obtain a conductive sheet having a thickness of 0.2 mm. Then, this conductive sheet was sandwiched between two thermoplastic synthetic resin sheets in the same manner as in Example 1 and hot pressed to form a composite sheet C having a thickness of 1.0 mm and a size of 150 mm square.

【0021】(第1比較例)厚さ15μmのアルミニウ
ム箔を第1実施例と同様にして第1参考例の熱可塑性合
成樹脂シート2枚の間に挟み、熱プレスして厚さ1.0
mmで150mm角の複合シートDを作成した。
(First Comparative Example) An aluminum foil having a thickness of 15 μm was sandwiched between two thermoplastic synthetic resin sheets of the first reference example in the same manner as in the first example, and hot pressed to a thickness of 1.0.
A composite sheet D having a size of 150 mm square was prepared.

【0022】(第2比較例)第3実施例で用いたと同じ
フィブリル化パルプ100重量部に対して第1実施例で
用いたと同じ銅繊維100重量部の水分散液を加えて攪
拌混合し、以下第3実施例と同様にして導電性シートを
得、更に第3実施例と同様にして厚さ1.0mmで150
mm角の複合シートEを作成した。
(Second Comparative Example) To 100 parts by weight of the same fibrillated pulp used in the third example, an aqueous dispersion of 100 parts by weight of the same copper fibers used in the first example was added and mixed by stirring. Thereafter, a conductive sheet is obtained in the same manner as in the third embodiment, and further, in the same manner as in the third embodiment, a sheet having a thickness of 1.0 mm and a thickness of 150 mm is used.
A mm-square composite sheet E was prepared.

【0023】(試験例)各実施例及び比較例で作成した
複合シートを用いて、加熱プレスにより縦5cm、横5c
m、深さ3cmで、厚さ1.0mmの評価用筺体を成形し
た。シールドボックス内に設けた長さ10mmの発信用ポ
ールアンテナが中心に位置するようにこの筺体をアンテ
ナに被せて取付け、接地した。発信用ポールアンテナか
ら500MHzで発信した電波を、50mm離れた位置に
ある同形状のポールアンテナで受信し、筺体の有無によ
る電界強度の比較を行って、シールド効果を算出した。
その結果は表1のとおりであった。
(Test Example) Using the composite sheet prepared in each of the examples and comparative examples, 5 cm in length and 5 c in width by hot pressing.
An evaluation housing having a size of m, a depth of 3 cm and a thickness of 1.0 mm was formed. This housing was attached to the antenna so that the pole antenna for transmission having a length of 10 mm provided in the shield box was located at the center, and the antenna was grounded. Radio waves transmitted at 500 MHz from the transmitting pole antenna were received by a pole antenna of the same shape located at a position 50 mm away, the electric field strengths were compared with and without the case, and the shield effect was calculated.
The results are shown in Table 1.

【0024】[0024]

【表1】 表 1 ─────────────────────── 試 料 シールド効果(dB) ─────────────────────── A 30 B 25 C 40 D* 15 E* 12 ─────────────────────── * : 比較例[Table 1] Table 1 ─────────────────────── Sample Shielding effect (dB) ────────────── ───────── A 30 B 25 C 40 D * 15 E * 12 ──────────────────────── *: Comparative example

【0025】[0025]

【発明の効果】本発明の電磁波遮蔽体は、炭素繊維と金
属繊維と熱可塑性合成樹脂とからなる導電性組成物層が
良好な導電性と高度な折り曲げや延伸にも耐える加工性
とを有しており、また良好な加工性ばかりでなく電気絶
縁性等の必要な物性を備えた熱可塑性合成樹脂で表層が
形成されているので、軽量であって耐食性がよく、安定
した電磁波遮蔽特性を有する高加工度の箱状の電磁波遮
蔽体を加熱成形方法によって容易に製造することができ
る。
INDUSTRIAL APPLICABILITY The electromagnetic wave shield of the present invention has good conductivity of a conductive composition layer composed of carbon fiber, metal fiber and thermoplastic synthetic resin, and processability capable of withstanding a high degree of bending and stretching. In addition, because the surface layer is formed of a thermoplastic synthetic resin that has not only good processability but also necessary physical properties such as electrical insulation, it is lightweight, has good corrosion resistance, and has stable electromagnetic wave shielding properties. It is possible to easily manufacture the box-shaped electromagnetic wave shield having a high degree of processing by a heat molding method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電磁波遮蔽体の構成を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing a configuration of an electromagnetic wave shield of the present invention.

【図2】本発明の電磁波遮蔽体の例を示す斜視図であ
る。
FIG. 2 is a perspective view showing an example of an electromagnetic wave shield of the present invention.

【符号の説明】[Explanation of symbols]

1、1′ 電磁波遮蔽体 2 導電性組成物層 3 熱可塑性合成樹脂層 1, 1'Electromagnetic wave shield 2 Conductive composition layer 3 Thermoplastic synthetic resin layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/12 7258−4F // B29K 105:08 4F B29L 9:00 4F 31:34 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location B32B 27/12 7258-4F // B29K 105: 08 4F B29L 9:00 4F 31:34 4F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維と金属繊維と熱可塑性合成樹脂
とからなる導電性組成物層を中間に挟んで両側に熱可塑
性合成樹脂層を設けた積層構造を有する複合シートから
なることを特徴とする電磁波遮蔽体。
1. A composite sheet having a laminated structure in which a thermoplastic synthetic resin layer is provided on both sides of a conductive composition layer composed of carbon fiber, metal fiber and thermoplastic synthetic resin sandwiched in between. Electromagnetic wave shield.
【請求項2】 炭素繊維と金属繊維と熱可塑性合成樹脂
とからなる導電性組成物層を中間に挟んで両側に熱可塑
性合成樹脂層を設けた積層構造を有する複合シートを加
熱成形することを特徴とする電磁波遮蔽体の製造法。
2. A composite sheet having a laminated structure in which a thermoplastic synthetic resin layer is provided on both sides of a conductive composition layer composed of carbon fibers, metal fibers and a thermoplastic synthetic resin sandwiched in between, and heat-molded. A method of manufacturing a characteristic electromagnetic wave shield.
【請求項3】 電子機器用筐体又は電子装置用シールド
ケースである請求項1記載の電磁波遮蔽体。
3. The electromagnetic wave shield according to claim 1, which is a housing for electronic equipment or a shield case for electronic equipment.
JP4172759A 1992-06-30 1992-06-30 Electromagnetic shield and manufacture thereof Pending JPH0621683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172759A JPH0621683A (en) 1992-06-30 1992-06-30 Electromagnetic shield and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172759A JPH0621683A (en) 1992-06-30 1992-06-30 Electromagnetic shield and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0621683A true JPH0621683A (en) 1994-01-28

Family

ID=15947809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172759A Pending JPH0621683A (en) 1992-06-30 1992-06-30 Electromagnetic shield and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0621683A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000013892A1 (en) * 1998-09-03 2000-03-16 Linlan Induction Ab Sandwich construction
US6214451B1 (en) 1996-12-10 2001-04-10 Takiron Co., Ltd. Formable antistatic resin molded article
JP2002271468A (en) * 2001-03-09 2002-09-20 Nec Tokin Corp Electromagnetic wave protective device and portable communication apparatus fixed with that device
KR100375416B1 (en) * 1997-12-20 2006-03-24 주식회사 금강고려화학 Flooring with electromagnetic and water wave blocking function
JP2012109452A (en) * 2010-11-18 2012-06-07 Mitsubishi Plastics Inc Electromagnetic-wave shielding composite material, electronic device housing, and battery case
CN102695408A (en) * 2011-03-24 2012-09-26 鸿富锦精密工业(深圳)有限公司 Container data center
US8657066B2 (en) 2011-06-29 2014-02-25 Tangitek, Llc Noise dampening energy efficient enclosure, bulkhead and boot material
US8692137B2 (en) 2011-06-29 2014-04-08 Tangitek, Llc Noise dampening energy efficient tape and gasket material
US9055667B2 (en) 2011-06-29 2015-06-09 Tangitek, Llc Noise dampening energy efficient tape and gasket material
US9782948B2 (en) 2011-03-03 2017-10-10 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
US10262775B2 (en) 2011-07-11 2019-04-16 Tangitek, Llc Energy efficient noise dampening cables

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138685A (en) * 1979-04-16 1980-10-29 Tokyo Shibaura Electric Co Fuel assembly
JPS59111396A (en) * 1982-12-17 1984-06-27 富士ゼロックス株式会社 Sheath unit for electronic device
JPS6423600A (en) * 1987-07-20 1989-01-26 Hitachi Ltd Plastic molding housing for electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138685A (en) * 1979-04-16 1980-10-29 Tokyo Shibaura Electric Co Fuel assembly
JPS59111396A (en) * 1982-12-17 1984-06-27 富士ゼロックス株式会社 Sheath unit for electronic device
JPS6423600A (en) * 1987-07-20 1989-01-26 Hitachi Ltd Plastic molding housing for electronic device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214451B1 (en) 1996-12-10 2001-04-10 Takiron Co., Ltd. Formable antistatic resin molded article
WO2004073970A1 (en) * 1996-12-10 2004-09-02 Makoto Ihira Moldable antistatic resin molded article
KR100375416B1 (en) * 1997-12-20 2006-03-24 주식회사 금강고려화학 Flooring with electromagnetic and water wave blocking function
WO2000013892A1 (en) * 1998-09-03 2000-03-16 Linlan Induction Ab Sandwich construction
JP2002271468A (en) * 2001-03-09 2002-09-20 Nec Tokin Corp Electromagnetic wave protective device and portable communication apparatus fixed with that device
JP4598975B2 (en) * 2001-03-09 2010-12-15 Necトーキン株式会社 Portable communication equipment with an electromagnetic wave protection device
JP2012109452A (en) * 2010-11-18 2012-06-07 Mitsubishi Plastics Inc Electromagnetic-wave shielding composite material, electronic device housing, and battery case
US9782948B2 (en) 2011-03-03 2017-10-10 Tangitek, Llc Antenna apparatus and method for reducing background noise and increasing reception sensitivity
CN102695408A (en) * 2011-03-24 2012-09-26 鸿富锦精密工业(深圳)有限公司 Container data center
US8657066B2 (en) 2011-06-29 2014-02-25 Tangitek, Llc Noise dampening energy efficient enclosure, bulkhead and boot material
US8692137B2 (en) 2011-06-29 2014-04-08 Tangitek, Llc Noise dampening energy efficient tape and gasket material
US9055667B2 (en) 2011-06-29 2015-06-09 Tangitek, Llc Noise dampening energy efficient tape and gasket material
US10262775B2 (en) 2011-07-11 2019-04-16 Tangitek, Llc Energy efficient noise dampening cables

Similar Documents

Publication Publication Date Title
Kato et al. Stretchable electromagnetic-interference shielding materials made of a long single-walled carbon-nanotube–elastomer composite
Xu et al. Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films
JPH0621683A (en) Electromagnetic shield and manufacture thereof
US9111658B2 (en) CNS-shielded wires
EP1763563B1 (en) Diamond like coatings of nanofillers
KR970004754B1 (en) Method for producing a printed circuit board and the printed circuit board by the method
US20060148966A1 (en) Expanded graphite and products produced therefrom
CN104412337A (en) Compositions, methods, and devices providing shielding in communications cables
EP2837006A1 (en) Cns-shielded wires
TWI786278B (en) Electromagnetic wave absorbing sheet and manufacturing method thereof
JP2018026527A (en) Heat-dissipating material arranged by use of mixed graphite, and method for manufacturing the same
KR102645530B1 (en) Multifunctional composite film having heat dissipation and electronmagnetic shielding/absorption cpapticy and method for manufacturing thereof
Bouriche et al. Smart membrane absorbing electromagnetic waves based on polyvinyl chloride/graphene composites
KR20190024275A (en) Manufacturing method of conductive carbon papers/epoxy composites using electroless nickel-plating
CN109326375B (en) In-car high-voltage cable with flexible super A-class aluminum alloy core for new energy automobile
KR101935052B1 (en) Manufacturing method for electro-magnetic interfernce shielding film and electro-magnetic interference shielding film using the same
JPH11353947A (en) Antistatic resin molding and secondary molding thereof
KR101926453B1 (en) Composition for electromagnetic wave shielding sheet and electromagnetic wave shielding sheet
JP2006152207A (en) Electromagnetic wave-shielding rubber material
KR20200038709A (en) Electric cable using cable sheath and its cable sheath
CN116728935A (en) Hierarchical structure aramid fiber electromagnetic shielding sheet and preparation method thereof
JP2017123390A (en) Electromagnetic wave noise suppression member and method for producing the same
JP2001207143A (en) Electroconductive adhesive composition, electroconductive adhesive sheet, electromagnetic shielding material and flexible printed circuit board using the same
JPS585299Y2 (en) electrical insulation materials
JP3420950B2 (en) Metallic fiber sheet for electromagnetic wave shielding

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990302