JPH06214275A - Waveguide type optical nonlinear element - Google Patents

Waveguide type optical nonlinear element

Info

Publication number
JPH06214275A
JPH06214275A JP2184393A JP2184393A JPH06214275A JP H06214275 A JPH06214275 A JP H06214275A JP 2184393 A JP2184393 A JP 2184393A JP 2184393 A JP2184393 A JP 2184393A JP H06214275 A JPH06214275 A JP H06214275A
Authority
JP
Japan
Prior art keywords
core
polymer material
core parts
substrate
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2184393A
Other languages
Japanese (ja)
Other versions
JP2914545B2 (en
Inventor
Makoto Hikita
真 疋田
Yoshito Shudo
義人 首藤
Akira Tomaru
暁 都丸
Michiyuki Amano
道之 天野
Toshio Watanabe
俊夫 渡辺
Haruki Ozawaguchi
治樹 小澤口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5021843A priority Critical patent/JP2914545B2/en
Publication of JPH06214275A publication Critical patent/JPH06214275A/en
Application granted granted Critical
Publication of JP2914545B2 publication Critical patent/JP2914545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the waveguide type optical nonlinear element which has a high function and excellent light transparency and a novel multilayered structure by combining a high-polymer material exhibiting an electrooptical effect and a high-polymer material having excellent transparency in order to realize a multilayered electrooptical material. CONSTITUTION:This waveguide type optical nonlinear element has at least two pieces of core parts 1, 2, a clad part 3 having the refractive index lower than the refractive index of these core parts and upper and lower electrodes disposed in the form of holding the core parts. At least two pieces of the core parts are disposed to hold the clad part therebetween in a direction perpendicular to a substrate 6. The one core part is constituted of the nonlinear high- polymer material exhibiting a primary electrooptical effect and the other core part 1 is constituted of the high-polymer material which does not exhibit the electrooptical effect. This nonlinear element is combined with a switching element existing in a direction horizontal with the substrate in order for light to be switched between the waveguides disposed in a direction perpendicular to the substrate, by which the light is three-dimensionally guided and the high- function element having a high degree of integration is realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導波路型光非線形
素子、さらに詳細には、電気光学効果を示す光非線形材
料と透明性に優れた高分子材料の双方の特徴を生かし
た、小型でかつ、集積度の高い高機能な光導波路素子に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical non-linear element, and more particularly, to a small-sized optical element which makes use of the features of both an optical non-linear material exhibiting an electro-optical effect and a polymer material having excellent transparency. In addition, the present invention relates to a highly functional optical waveguide device having a high degree of integration.

【0002】[0002]

【従来の技術及び問題点】電気光学効果を利用した代表
的な素子としては、ニオブ酸リチウムを用いた光変調器
がある。この素子は、ニオブ酸リチウム基板の表面にチ
タンを拡散させ、この部分をコアとし、その上方に、金
属の電極を形成した構造を有する。一方、将来の高度な
光通信や光情報処理の分野では、小型でかつ、集積度の
高い高機能な光導波路素子が期待されている。その中
で、集積度を上げるためには、基板平面上だけではな
く、基板と垂直方向に高機能光導波路を何層にも積層す
る方法が考えられる。しかし、電気光学効果を示す材料
としてニオブ酸リチウムを用いた場合、ニオブ酸リチウ
ム結晶基板をそのまま積層することは困難であり、かと
いって、任意の基板の上に、ニオブ酸リチウムを結晶成
長させて多層化を図ることも極めて困難であった。
2. Description of the Related Art A typical element utilizing the electro-optic effect is an optical modulator using lithium niobate. This element has a structure in which titanium is diffused on the surface of a lithium niobate substrate, this portion serves as a core, and a metal electrode is formed above the core. On the other hand, in the fields of advanced optical communication and optical information processing in the future, compact and highly functional optical waveguide devices are expected. Among them, in order to increase the degree of integration, a method of stacking a number of high-performance optical waveguides not only on the substrate plane but also in the direction perpendicular to the substrate can be considered. However, when lithium niobate is used as the material exhibiting the electro-optical effect, it is difficult to stack the lithium niobate crystal substrate as it is, and therefore, lithium niobate is crystal-grown on any substrate. It was also extremely difficult to achieve multi-layering.

【0003】一方、電気光学効果を示す高分子材料を用
いると、ニオブ酸リチウムに比べ積層化の可能性は高い
が、光透過性に劣る材料が多く、この材料だけで光導波
路を構成すると高機能高集積化は困難である。
On the other hand, when a polymer material exhibiting an electro-optical effect is used, the possibility of stacking is higher than that of lithium niobate, but there are many materials having poor light transmittance, and it is high if an optical waveguide is composed of this material alone. Highly functional integration is difficult.

【0004】上記問題点を解決するため、本発明は、ニ
オブ酸リチウムを始め無機材料では困難であった電気光
学素子の多層化を実現するため、電気光学効果を示す高
分子材料と透明性に優れた高分子材料を組み合わせ、高
機能で光透明性に優れた新しい多層化構造を有する光機
能素子を提供するものである。
In order to solve the above problems, the present invention realizes multi-layering of an electro-optical element, which has been difficult with inorganic materials such as lithium niobate. It is intended to provide an optical functional device having a new multilayer structure which is highly functional and excellent in light transparency by combining excellent polymer materials.

【0005】[0005]

【問題点を解決するための手段】上述の問題点を解決す
るため、本発明による導波路型非線形素子は、少なくと
も2個のコア部と、これらのコア部より屈折率の低いク
ラッド部と、前記コア部を挟み込む形で配置された上部
及び下部電極とを有し、少なくとも2個の前記コア部は
基板と垂直な方向にクラッド部を挟んで配置された導波
路型光非線形素子において、一方の前記コア部が1次の
電気光学効果を示す非線形高分子材料で構成され、他方
の前記コア部が電気光学効果を示さない高分子材料で構
成されていることを特徴とする。
In order to solve the above-mentioned problems, a waveguide type non-linear element according to the present invention comprises at least two core parts, and a clad part having a refractive index lower than those of the core parts. A waveguide-type optical nonlinear element having upper and lower electrodes arranged so as to sandwich the core portion, wherein at least two core portions are arranged sandwiching the cladding portion in a direction perpendicular to the substrate. The core part is made of a non-linear polymer material exhibiting a first-order electro-optical effect, and the other core part is made of a polymer material not showing an electro-optical effect.

【0006】また、本発明の第二の導波路型光非線形素
子は、少なくとも2個のコア部と、これらのコア部より
屈折率の低いクラッド部と、前記クラッドの上方または
下方に配置された電極とを有し、少なくとも2個の前記
コア部は基板と垂直な方向にクラッド部を挟んで配置さ
れた導波路型光非線形素子において、一方の前記コア部
が1次の電気光学効果を示す非線形高分子材料で構成さ
れ、他方の前記コア部が電気光学効果を示さない高分子
材料で構成されていることを特徴とする。
Further, the second waveguide type optical nonlinear element of the present invention comprises at least two core parts, a clad part having a refractive index lower than those of the core parts, and above or below the clad. In a waveguide type optical non-linear element having an electrode and at least two core portions sandwiching a cladding portion in a direction perpendicular to a substrate, one of the core portions exhibits a first-order electro-optical effect. It is characterized in that it is made of a non-linear polymer material, and the other core part is made of a polymer material that does not exhibit an electro-optical effect.

【0007】本発明は、スピンコート法により容易に薄
膜が形成可能な電気光学効果を示す高分子材料を第1コ
ア層とし、光透過性に優れた高分子材料を第2コア層と
して用い、基板と垂直方向に光導波路を多層に形成する
とともに、電気光学素子に必要な電極も電気光学効果が
効率的に発揮できる任意の位置に容易に形成できること
を最も主要な特徴としている。さらに、スイッチ等の機
能的な動作は主として第1コア層に光を導波させて行
い、それ以外の部分は主として光透過性の良い第2コア
層に光を導波させることにより、素子全体としての光導
波損失を低減させることも特徴としている。ニオブ酸リ
チウムのような無機材料の単結晶を用いた素子では、導
波路のコア部を形成するのに表面からチタンのような無
機材料を拡散する必要があり、多層化が困難であり、ま
して、任意の位置に電極を形成するなど不可能に近い。
In the present invention, a polymer material exhibiting an electro-optical effect capable of easily forming a thin film by a spin coating method is used as the first core layer, and a polymer material having excellent light transmittance is used as the second core layer. The most important feature is that the optical waveguides are formed in multiple layers in the direction perpendicular to the substrate and that the electrodes required for the electro-optical element can be easily formed at any position where the electro-optical effect can be efficiently exhibited. Further, the functional operation of the switch or the like is performed mainly by guiding the light to the first core layer, and the other portions are mainly guided to the second core layer having a high light-transmitting property, so that the entire device is processed. It is also characterized by reducing the optical waveguide loss. In an element using a single crystal of an inorganic material such as lithium niobate, it is necessary to diffuse an inorganic material such as titanium from the surface to form the core part of the waveguide, and it is difficult to form a multilayer. It is almost impossible to form electrodes at arbitrary positions.

【0008】本発明の基本的構成と機能を図1及び図2
を用いて説明する。1は光透過性に優れた電気光学効果
を示さない高分子を用いたコア部、2は電気光学効果を
示す高分子を用いたコア部、3はクラッド部であって、
コア部がチャネル導波路として、光が導波する部分であ
る。コア部1および2は、クラッド部を挟んで光学的に
弱く結合しており、方向性結合器の結合部を構成してい
る。4は上部電極、5は下部電極であり、6は素子の基
板である。
The basic structure and function of the present invention are shown in FIGS.
Will be explained. Reference numeral 1 is a core portion made of a polymer having excellent electro-optical effect and not showing an electro-optical effect, 2 is a core portion made of a polymer showing an electro-optical effect, 3 is a clad portion,
The core portion is a portion where light is guided as a channel waveguide. The core portions 1 and 2 are optically weakly coupled to each other with the clad portion interposed therebetween, and form a coupling portion of the directional coupler. Reference numeral 4 is an upper electrode, 5 is a lower electrode, and 6 is a substrate of the device.

【0009】前記コア部1、2の一方のコア部2は1次
の電気光学効果を示す高分子で構成されているため、上
下電極4、5間に電圧を印加すると、コア部2の屈折率
が変化する。したがって、入射端から光を入射すると出
射端からは、印加した電圧の大きさに応じて、コア部2
の屈折率が変化し、上部コア1、または下部コア2とど
ちらかから光が出てくるため、電圧の制御により光のス
イッチ動作が行える。このようなスイッチ動作が上部下
部コア1、2間で行えることは、同一平面内でのスイッ
チ動作する導波路と組み合わせると1平面上だけでなく
3次元的な構成で多段スイッチが構成でき集積度は飛躍
的に向上する。
Since one core portion 2 of the core portions 1 and 2 is made of a polymer having a primary electro-optical effect, when a voltage is applied between the upper and lower electrodes 4 and 5, the core portion 2 is refracted. The rate changes. Therefore, when light is incident from the incident end, the core portion 2 is irradiated from the emission end according to the magnitude of the applied voltage.
Since the refractive index of the light changes and light is emitted from either the upper core 1 or the lower core 2, the light switching operation can be performed by controlling the voltage. Such a switch operation can be performed between the upper and lower cores 1 and 2 by combining with a waveguide that operates in the same plane to form a multistage switch not only on one plane but also in a three-dimensional configuration. Is dramatically improved.

【0010】以下、実施例で本発明について述べる。The present invention will be described below with reference to examples.

【0011】[0011]

【実施例1】図1は、本実施例主要部分の断面図であ
る。1は光透過性に優れたコア部、2は電気光学効果を
示すコア部、3はクラッド部であって、4は上部電極、
5は下部電極であり、6は素子の基板であり、ここで
は、熱酸化シリコン付シリコン基板を使用している。
[Embodiment 1] FIG. 1 is a sectional view of a main portion of this embodiment. Reference numeral 1 is a core portion having excellent light transmittance, 2 is a core portion showing an electro-optical effect, 3 is a cladding portion, 4 is an upper electrode,
Reference numeral 5 is a lower electrode, and 6 is a substrate of the device. Here, a silicon substrate with thermally oxidized silicon is used.

【0012】以下作製法について述べる。The manufacturing method will be described below.

【0013】熱酸化シリコンの上にスパッタリング法に
よりクロムを50Å付け真空を破らずに続けて金を10
00Å付けた。この上に通常のフォトプロセスにより電
極の形状にあわせたレジストパタンを形成し、アルゴン
ガス中のイオンミリングにより5で示す下層の電極5を
形成した。この上に、エポキシ系の紫外線硬化樹脂をス
ピンコート法により15μmの厚さに積層し、紫外線を
10分間照射した。次に、アゾ色素が結合したアクリル
系高分子(アゾ系アクリル樹脂)をスピンコート法によ
り5μmの厚さに積層した。この上に、通常のフォトプ
ロセスにより幅5μmのレジストパタンを形成し、酸素
ガス中の反応性リアクティブイオンエッチング(RI
E)を行った後、レジストを除去することにより、図
1、図2の下層の導波路コア部2を形成した。
Chromium (50 Å) was sprinkled on the thermally-oxidized silicon by the sputtering method and the gold was continuously spun on without breaking the vacuum.
I attached 00Å. A resist pattern matching the shape of the electrode was formed thereon by a normal photo process, and the lower layer electrode 5 shown by 5 was formed by ion milling in argon gas. An epoxy-based UV-curable resin was laminated thereon by a spin coating method to a thickness of 15 μm and irradiated with UV rays for 10 minutes. Next, an acrylic polymer (azo acrylic resin) having an azo dye bonded thereto was laminated to a thickness of 5 μm by spin coating. A resist pattern having a width of 5 μm is formed on this by a normal photo process, and reactive reactive ion etching (RI) in oxygen gas is performed.
After performing step E), the resist was removed to form the lower waveguide core portion 2 of FIGS.

【0014】次に、エピキシ系紫外線硬化樹脂を8μm
の厚さにスピンコートし紫外線を照射すると、エポキシ
系樹脂の最上面は、平坦になった。その結果、コア部上
面部とエポキシ系樹脂の最上面との距離は、3μmとな
った。次に、その上に、クラッド部の屈折率より0.5
%屈折率が高いエピキシ系紫外線硬化樹脂をスピンコー
トにより積層し紫外線を照射し、上記下部コア部2の作
製法と同様な方法によりコア部1を作製し、エポキシ系
紫外線硬化樹脂を20μmの厚さにスピンコートし、紫
外線を照射した。さらに、上記下部電極作製法と同じ方
法により上部電極4を作製した。
Next, an epixy type ultraviolet curing resin is added to a thickness of 8 μm.
When spin-coated to a thickness of 1 and irradiated with ultraviolet rays, the uppermost surface of the epoxy resin became flat. As a result, the distance between the upper surface of the core and the uppermost surface of the epoxy resin was 3 μm. Then, on top of that, add 0.5 from the refractive index of the cladding.
The epixy-based UV-curing resin having a high% refractive index is laminated by spin coating, and is irradiated with UV rays, and the core part 1 is manufactured by the same method as the method for manufacturing the lower core part 2 described above. It was spin-coated and irradiated with ultraviolet rays. Further, the upper electrode 4 was manufactured by the same method as the above lower electrode manufacturing method.

【0015】導波路部分の全体の厚さは、43μmであ
り、その中に、3μm厚の紫外線硬化樹脂を挟んで5×
5μmのアゾ系アクリル樹脂でできたチャネル導波路2
と5×5μmの紫外線硬化樹脂でできたチャネル導波路
1が形成された。この素子を140℃に加熱し1800
Vの電圧を上下電極間に印加し、そのまま室温に下げて
から、電圧を下ろした。このポーリング処理により、ア
ゾ系アクリル樹脂のチャネル導波路2は、電気光学効果
を示すようになる。
The overall thickness of the waveguide portion is 43 μm, and 5 × is formed by sandwiching a 3 μm thick ultraviolet curable resin therein.
Channel waveguide 2 made of 5 μm azo acrylic resin
Thus, the channel waveguide 1 made of 5 × 5 μm UV curable resin was formed. This element is heated to 140 ℃ and heated to 1800
A voltage of V was applied between the upper and lower electrodes, the temperature was lowered to room temperature, and then the voltage was lowered. By this poling treatment, the channel waveguide 2 of the azo type acrylic resin comes to exhibit the electro-optical effect.

【0016】できた素子の特性を測定するため、導波路
2より波長1.3μmの光をファイバーのバッティング
により導入し、電極に電圧を印加しながら赤外線カメラ
で出射端を見た。電圧0Vの時上部導波路が明るく下部
導波路2は暗かったが、電圧を15V印加した時、上部
導波路1は暗く、下部導波路2が明るくなることを確か
められ、電極の電圧制御により2個のチャネル導波路間
で光のスイッチングが起こることが確認された。
In order to measure the characteristics of the resulting device, light having a wavelength of 1.3 μm was introduced from the waveguide 2 by batting a fiber, and the emitting end was observed with an infrared camera while applying voltage to the electrodes. When the voltage was 0V, the upper waveguide was bright and the lower waveguide 2 was dark, but when a voltage of 15V was applied, it was confirmed that the upper waveguide 1 was dark and the lower waveguide 2 was bright. It was confirmed that light switching occurs between the individual channel waveguides.

【0017】[0017]

【実施例2】図2は、本実施例主要部分の断面図であ
る。7は電気光学効果を示すコア部であり、8は光透過
性に優れたコア部であり、9はクラッド部であって、1
0は素子の基板であり、11は電極である。
[Embodiment 2] FIG. 2 is a sectional view of a main portion of this embodiment. Reference numeral 7 is a core portion exhibiting an electro-optical effect, 8 is a core portion excellent in light transmittance, 9 is a cladding portion, and 1 is a core portion.
Reference numeral 0 is a substrate of the element, and 11 is an electrode.

【0018】以下作製法について述べる。The manufacturing method will be described below.

【0019】熱酸化シリコン付シリコン基板10の上
に、エポキシ系紫外線硬化樹脂をスピンコート法により
15μmの厚さに積層し、紫外線を10分間照射した。
次に、この紫外線硬化樹脂より屈折率が0.5%高いエ
ポキシ系紫外線硬化樹脂をスピンコート法により5μm
の厚さに積層し、紫外線を照射した。この上に、通常の
フォトプロセスにより幅5μmのレジストパタンを形成
し、酸素ガス中の反応性リアクティブイオンエッチング
(RIE)を行った後、レジストを除去することによ
り、下層コア部8を形成した。
On the silicon substrate 10 with thermally oxidized silicon, an epoxy ultraviolet curing resin was laminated by a spin coating method to a thickness of 15 μm, and ultraviolet rays were irradiated for 10 minutes.
Next, an epoxy-based UV curable resin having a refractive index of 0.5% higher than that of the UV curable resin was spin-coated to 5 μm
Was laminated to the thickness of and was irradiated with ultraviolet rays. A resist pattern having a width of 5 μm is formed on this by a normal photo process, reactive reactive ion etching (RIE) in oxygen gas is performed, and then the resist is removed to form the lower core portion 8. .

【0020】次に、エポキシ系紫外線硬化樹脂を8μm
の厚さにスピンコートし紫外線を照射すると、エポキシ
系樹脂の最上面は、平坦になった。その結果、コア部上
面部とクラッド部エピキシ系樹脂の最上面との距離は、
3μmとなった。次に、その上に、アゾ色素系アクリル
樹脂をスピンコートにより積層し、上記コア部の作製法
と同様な方法により上部コア部7を作製し、エポキシ系
紫外線硬化樹脂を20μmの厚さにスピンコートし、紫
外線を照射した。
Next, an epoxy-based UV curable resin is added to 8 μm.
When spin-coated to a thickness of 1 and irradiated with ultraviolet rays, the uppermost surface of the epoxy resin became flat. As a result, the distance between the upper surface of the core and the uppermost surface of the cladding epoxy resin is
It became 3 μm. Then, an azo dye-based acrylic resin is laminated thereon by spin coating, an upper core portion 7 is manufactured by a method similar to the above-described method for manufacturing the core portion, and an epoxy ultraviolet curing resin is spun to a thickness of 20 μm. It was coated and exposed to UV light.

【0021】さらに、スパッタリング法によりクロムを
50Å付け真空を破らずに続けて金を1000Å付け
た。この上に通常のフォトプロセスにより電極の形状に
あわせたレジストパタンを形成し、アルゴンガス中のイ
オンミリングにより上層の電極11を形成した。
Further, 50 Å of chromium was applied by the sputtering method, and 1000 Å of gold was continuously applied without breaking the vacuum. A resist pattern matching the shape of the electrode was formed thereon by a normal photo process, and the upper electrode 11 was formed by ion milling in argon gas.

【0022】導波路部分全体の厚さは、43μmであ
り、その中に、3μm厚の紫外線硬化樹脂を挟んで5×
5μmのアゾ系アクリル樹脂でできたチャネル導波路7
と5×5μmの紫外線硬化樹脂でできたチャネル導波路
8が形成された。
The total thickness of the waveguide portion is 43 μm, and 5 × 3 × 3 μm thick ultraviolet curable resin is sandwiched in the waveguide portion.
Channel waveguide 7 made of 5 μm azo acrylic resin
A channel waveguide 8 made of 5 × 5 μm UV curable resin was formed.

【0023】この素子を140℃に加熱し1800Vの
電圧を電極11とシリコン基板10との間で印加し、そ
のまま室温に下げてから、電圧を下ろした。このポーリ
ング処理により、アゾ系アクリル樹脂のチャネル導波路
7は、電気光学効果を示すようになる。ここで電極は、
コプレナー型の高周波用電極を構成しており、交流の電
界を印加すれば、コアを含むポリマー内にも電界が分布
し、コアの屈折率制御が可能である。
This device was heated to 140 ° C., a voltage of 1800 V was applied between the electrode 11 and the silicon substrate 10, and the temperature was lowered to room temperature as it was, and then the voltage was lowered. By this poling treatment, the channel waveguide 7 made of azo-based acrylic resin comes to exhibit the electro-optical effect. Where the electrodes are
It constitutes a coplanar type high frequency electrode, and when an alternating electric field is applied, the electric field is distributed in the polymer containing the core, and the refractive index of the core can be controlled.

【0024】できた素子の特性を測定するため、2の導
波路より波長1.3μmの光をファイバーのバッティン
グにより導入し、電極に100kHzの交流電圧を印加
しながら両方の出射端をそれぞれファイバーに接続し、
さらに赤外線検出器を接続し、赤外線検出器からの信号
をシンクロスコープにつなぎ波形の変化を観測した。印
加電圧0Vの時、上部導波路が明るく下部導波路は暗い
ことに対応した波形が観測され、印加電圧が18Vの
時、上部導波路は暗く、下部が明るくなることに対応し
た波形が観測された。電極の電圧制御により2個のチャ
ネル導波路間で光のスイッチングが起こることが確認さ
れた。
In order to measure the characteristics of the resulting device, light having a wavelength of 1.3 μm was introduced from the two waveguides by batting the fiber, and while applying an AC voltage of 100 kHz to the electrodes, both output ends were respectively connected to the fiber. connection,
Furthermore, an infrared detector was connected, the signal from the infrared detector was connected to a synchroscope, and changes in the waveform were observed. When the applied voltage is 0 V, a waveform corresponding to the upper waveguide being bright and the lower waveguide being dark is observed, and when the applied voltage is 18 V, a waveform corresponding to the upper waveguide being dark and the lower portion being bright is observed. It was It was confirmed that light switching occurs between the two channel waveguides by controlling the voltage of the electrodes.

【0025】[0025]

【発明の効果】以上説明したように、本発明は、基板と
垂直方向に配置された導波路間を光がスッチングするこ
とを可能にするため、基板と水平方向にあるスイッチン
グ素子と組み合わせることにより光を3次元的に導波さ
せることができ、集積度の高い高機能な素子が実現でき
る。実施例で示したアゾ色素系高分子の損失は、1.3
μmの波長で1.5dB/cm、一方、光透過性に優れ
た紫外線硬化樹脂の損失は1.3μmの波長で、0.3
dB/cmである。したがって、光の損失の観点から
は、素子を構成する場合、スイッチ機能をもたせるとこ
ろ以外は、できるだけ紫外線硬化樹脂を用いたコア部を
光導波させるほうが有利となる。このように、スイッチ
機能をもたせる部分を電気光学効果を示す高分子、この
部分をつなぐ導波部分を光透過性に優れた高分子とそれ
ぞれ役割を分担して素子を構成することにより、集積度
の高い高機能な素子でしかも光透過性に優れた素子を実
現できる。
As described above, according to the present invention, in order to allow light to be switched between the waveguides arranged in the vertical direction with respect to the substrate, the invention is combined with the switching element in the horizontal direction with respect to the substrate. Light can be guided three-dimensionally, and a highly integrated device with high integration can be realized. The loss of the azo dye-based polymer shown in the example is 1.3.
1.5 dB / cm at the wavelength of μm, on the other hand, the loss of the UV curable resin having excellent light transmittance is 0.3 at the wavelength of 1.3 μm.
It is dB / cm. Therefore, from the viewpoint of light loss, it is more advantageous to optically guide the core portion using the ultraviolet curable resin as much as possible in the case of configuring the element, except for providing the switch function. In this way, by configuring the device by sharing the role of the polymer that exhibits the electro-optical effect for the part that has the switch function and the polymer with excellent light transmission for the waveguide part that connects this part, the integration degree can be improved. It is possible to realize a highly functional element having high light transmission property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極が導波路を挟む構造をした導波路
型光非線形素子の断面図。
FIG. 1 is a cross-sectional view of a waveguide type optical nonlinear element having a structure in which electrodes of the present invention sandwich a waveguide.

【図2】上記導波路型型光非線形素子の斜視図。FIG. 2 is a perspective view of the waveguide type optical nonlinear element.

【図3】本発明の電極が導波路の上にある構造をした導
波路型光非線形素子の断面図。
FIG. 3 is a cross-sectional view of a waveguide type optical nonlinear device having a structure in which an electrode of the present invention is on a waveguide.

【図4】上記導波路型型光非線形素子の斜視図。FIG. 4 is a perspective view of the waveguide type optical nonlinear element.

【符号の説明】[Explanation of symbols]

1 電気光学効果を示さない高分子を用いたコア部 2 電気光学効果を示す高分子を用いたコア部 3 クラッド部 4 上部電極 5 下部電極 6 素子の基板 7 電気光学効果を示す高分子を用いたコア部 8 電気光学効果を示さない高分子を用いたコア部 9 クラッド部 10 素子の基板 11 電極 1 Core part made of polymer showing no electro-optical effect 2 Core part made of polymer showing electro-optical effect 3 Cladding part 4 Upper electrode 5 Lower electrode 6 Substrate of element 7 Use polymer showing electro-optical effect The core part 8 The core part using the polymer which does not show the electro-optic effect 9 The clad part 10 The substrate of the element 11 The electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天野 道之 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 渡辺 俊夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 小澤口 治樹 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Michiyuki Amano 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Toshio Watanabe 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo No. Japan Telegraph and Telephone Corp. (72) Inventor Haruki Ozawaguchi 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corp.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも2個のコア部と、これらのコ
ア部より屈折率の低いクラッド部と、前記コア部を挟み
込む形で配置された上部及び下部電極とを有し、少なく
とも2個の前記コア部は基板と垂直な方向にクラッド部
を挟んで配置された導波路型光非線形素子において、一
方の前記コア部が1次の電気光学効果を示す非線形高分
子材料で構成され、他方の前記コア部が電気光学効果を
示さない高分子材料で構成されていることを特徴とする
導波路型光非線形素子。
1. At least two core parts, a clad part having a refractive index lower than those of the core parts, and an upper electrode and a lower electrode arranged so as to sandwich the core parts, and at least two of the core parts are provided. The core portion is a waveguide type optical non-linear element arranged with a cladding portion sandwiched in a direction perpendicular to the substrate, wherein one of the core portions is made of a non-linear polymer material exhibiting a first-order electro-optical effect, and the other of the core portions is formed. A waveguide type optical non-linear element, characterized in that the core portion is made of a polymer material that does not exhibit an electro-optical effect.
【請求項2】少なくとも2個のコア部と、これらのコア
部より屈折率の低いクラッド部と、前記クラッドの上方
または下方に配置された電極とを有し、少なくとも2個
の前記コア部は基板と垂直な方向にクラッド部を挟んで
配置された導波路型光非線形素子において、一方の前記
コア部が1次の電気光学効果を示す非線形高分子材料で
構成され、他方の前記コア部が電気光学効果を示さない
高分子材料で構成されていることを特徴とする導波路型
光非線形素子。
2. At least two core parts, a clad part having a refractive index lower than those of the core parts, and an electrode arranged above or below the clad, wherein at least two core parts are provided. In a waveguide type optical non-linear element arranged with a clad part sandwiched in a direction perpendicular to a substrate, one of the core parts is composed of a non-linear polymer material exhibiting a first-order electro-optical effect, and the other core part is A waveguide type optical non-linear element characterized by being composed of a polymer material which does not exhibit an electro-optic effect.
JP5021843A 1993-01-14 1993-01-14 Waveguide type optical nonlinear element Expired - Lifetime JP2914545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5021843A JP2914545B2 (en) 1993-01-14 1993-01-14 Waveguide type optical nonlinear element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5021843A JP2914545B2 (en) 1993-01-14 1993-01-14 Waveguide type optical nonlinear element

Publications (2)

Publication Number Publication Date
JPH06214275A true JPH06214275A (en) 1994-08-05
JP2914545B2 JP2914545B2 (en) 1999-07-05

Family

ID=12066376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5021843A Expired - Lifetime JP2914545B2 (en) 1993-01-14 1993-01-14 Waveguide type optical nonlinear element

Country Status (1)

Country Link
JP (1) JP2914545B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040783A1 (en) * 1997-03-11 1998-09-17 Lightwave Microsystems Corporation Hybrid digital electro-optic switch
EP0905546A2 (en) * 1997-09-26 1999-03-31 Nippon Telegraph and Telephone Corporation Stacked thermo-optic switch, switch matrix and add-drop multiplexer having the stacked thermo-optic switch
US6022671A (en) * 1997-03-11 2000-02-08 Lightwave Microsystems Corporation Method of making optical interconnects with hybrid construction
US6144779A (en) * 1997-03-11 2000-11-07 Lightwave Microsystems Corporation Optical interconnects with hybrid construction
US6311004B1 (en) 1998-11-10 2001-10-30 Lightwave Microsystems Photonic devices comprising thermo-optic polymer
US7171064B2 (en) * 1999-08-06 2007-01-30 Brinkman Michael J Thermo-optic switch having fast rise-time
JP2010210830A (en) * 2009-03-09 2010-09-24 Fuji Xerox Co Ltd Waveguide element and method of manufacturing the same
US11226451B2 (en) 2019-01-24 2022-01-18 Electronics And Telecommunications Research Institute Three-dimensional optical switch

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175172A (en) * 1992-07-13 1994-06-24 Fujitsu Ltd Nonlinear optical material, its production, and nonlinear optical device and directional coupler-type optical switch using it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06175172A (en) * 1992-07-13 1994-06-24 Fujitsu Ltd Nonlinear optical material, its production, and nonlinear optical device and directional coupler-type optical switch using it

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6449417B1 (en) 1997-03-11 2002-09-10 Lightwave Microsystems, Corp. Optical interconnects with hybrid construction
WO1998040783A1 (en) * 1997-03-11 1998-09-17 Lightwave Microsystems Corporation Hybrid digital electro-optic switch
US5970186A (en) * 1997-03-11 1999-10-19 Lightwave Microsystems Corporation Hybrid digital electro-optic switch
US6022671A (en) * 1997-03-11 2000-02-08 Lightwave Microsystems Corporation Method of making optical interconnects with hybrid construction
US6434282B1 (en) 1997-03-11 2002-08-13 Lightwave Microsystems, Corporation Optical interconnects with hybrid construction
US6144779A (en) * 1997-03-11 2000-11-07 Lightwave Microsystems Corporation Optical interconnects with hybrid construction
US6122416A (en) * 1997-09-26 2000-09-19 Nippon Telegraph And Telephone Corporation Stacked thermo-optic switch, switch matrix and add-drop multiplexer having the stacked thermo-optic switch
EP0905546A2 (en) * 1997-09-26 1999-03-31 Nippon Telegraph and Telephone Corporation Stacked thermo-optic switch, switch matrix and add-drop multiplexer having the stacked thermo-optic switch
EP0905546A3 (en) * 1997-09-26 2002-06-19 Nippon Telegraph and Telephone Corporation Stacked thermo-optic switch, switch matrix and add-drop multiplexer having the stacked thermo-optic switch
US6311004B1 (en) 1998-11-10 2001-10-30 Lightwave Microsystems Photonic devices comprising thermo-optic polymer
US7171064B2 (en) * 1999-08-06 2007-01-30 Brinkman Michael J Thermo-optic switch having fast rise-time
JP2010210830A (en) * 2009-03-09 2010-09-24 Fuji Xerox Co Ltd Waveguide element and method of manufacturing the same
US8107778B2 (en) 2009-03-09 2012-01-31 Fuji Xerox Co., Ltd. Waveguide element and method of production thereof
US11226451B2 (en) 2019-01-24 2022-01-18 Electronics And Telecommunications Research Institute Three-dimensional optical switch

Also Published As

Publication number Publication date
JP2914545B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
US6122416A (en) Stacked thermo-optic switch, switch matrix and add-drop multiplexer having the stacked thermo-optic switch
US4828362A (en) Optical switch
EP0642052A1 (en) Polymeric thermo-optical waveguide device
US4720172A (en) Liquid crystal optical switching device
US6321009B1 (en) Cascade thermo-optical device
EP2513715A1 (en) Apparatus and method for guiding optical waves
JPH01248142A (en) Optical switch
JP2914545B2 (en) Waveguide type optical nonlinear element
WO2003010592A3 (en) Waveguides and devices incorporating optically functional cladding regions
US8218226B2 (en) Surface-plasmon-based optical modulator
JPH05216079A (en) Waveguide type nonlinear optical element and production thereof
JP2004013155A (en) Single mode optical switch, thin film optical switch, optical switch, and method for manufacturing single mode optical switch
JPH0667232A (en) Waveguide type optical nonlinear element
CN107102454A (en) Unrelated absorption-type electrooptic modulator is polarized based on tin indium oxide optical-fiber type
KR20030068463A (en) Waveguide type liquid-crystal optical switch
CN111458795A (en) Full-wave-band polarizer based on silicon waveguide
CA2130605A1 (en) Polymeric thermo-optic device
JPH052116A (en) Optical waveguide
CN110426865B (en) Thermo-optical switch utilizing guided mode reflection displacement effect and multimode interference effect in silicon waveguide corner mirror
JP2805027B2 (en) Waveguide type optical modulator
JPH0675256A (en) Waveguide type optical modulator
JPH06214274A (en) Waveguide type optical element
JPH03168705A (en) Three-dimensional optical circuit
JPH1115028A (en) High-polymer thermooptical optical switch
JP2007140045A (en) Method of manufacturing waveguide device and waveguide device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 14