JPH0621368A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0621368A
JPH0621368A JP4172248A JP17224892A JPH0621368A JP H0621368 A JPH0621368 A JP H0621368A JP 4172248 A JP4172248 A JP 4172248A JP 17224892 A JP17224892 A JP 17224892A JP H0621368 A JPH0621368 A JP H0621368A
Authority
JP
Japan
Prior art keywords
voltage element
breakdown voltage
substrate
insulating layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4172248A
Other languages
Japanese (ja)
Other versions
JP2940308B2 (en
Inventor
Kenichiro Suzuki
健一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4172248A priority Critical patent/JP2940308B2/en
Publication of JPH0621368A publication Critical patent/JPH0621368A/en
Application granted granted Critical
Publication of JP2940308B2 publication Critical patent/JP2940308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize a semiconductor device being easy to manufacture, by a method wherein a bottom-side part between a lowwithstand-voltage element and a high-withstand-voltage element is made a P-N junction isolation structure and a lateral-side part between them is made a dielectric isolation structure. CONSTITUTION:A high-withstand-voltage element 41 and a low-withstandvoltage element 42 are isolated from each other electrically in the vertical direction by P-N junction isolation using a P insulating layer 11, while they are isolated electrically in the lateral direction by dielectric isolation using a groove 23, and the groove 23 is filled up with an insulating film 1 and a buried layer 2, so as to be made firm also mechanically. The high-withstand-voltage element 41 can make a large current flow through a region in which the P insulating layer 11 is not provided, while the low-withstand-voltage element 42 is isolated electrically from the high-withstand-voltage element 42 by the P insulating layer 11 and the groove 23. Accordingly, it is possible to manufacture an integrated circuit in which the high-withstand-voltage element 41 and the low- withstand-voltage element 42 are isolated from each other electrically, and reduction of power consumption and a speed increase can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高耐圧素子と低耐圧素
子とを集積形成してなる半導体装置およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device in which a high breakdown voltage element and a low breakdown voltage element are integrally formed, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】低耐圧素子からなる制御回路と基板表面
から裏面に電流経路を持つ高耐圧素子をモノリシックに
集積化したパワーデバイス構造は、高耐圧素子の電流容
量を大きくできるために大電流制御用デバイスとして注
目されている。このデバイスでは低耐圧素子と高耐圧素
子の間の絶縁が重要であり、従来からpn接合分離ある
いは誘電体分離等の素子分離技術がよく知られている。
しかし、誘電体分離構造は、確実に電気的分離を行うこ
とができる反面、基板表面から裏面に電流経路をもつ高
耐圧素子を作製することが困難であるという問題がある
ために、誘電体分離構造は従来から電流が基板の横方向
に流れる比較的に小電流の高耐圧デバイスに用いられて
きた。一方、pn接合分離構造を用いると電流を基板に
垂直に流す大電流の高耐圧素子構造の作製が可能であ
る。以下にこのpn接合分離を用いたモノリシック高耐
圧回路素子構造の説明を行い、続いてこの欠点を述べ
る。
2. Description of the Related Art A power device structure in which a control circuit composed of a low withstand voltage element and a high withstand voltage element having a current path from the front surface to the back surface of a substrate are monolithically integrated has a large current control because the current capacity of the high withstand voltage element can be increased. Is attracting attention as a device for mobile phones. In this device, insulation between a low breakdown voltage element and a high breakdown voltage element is important, and conventionally, element isolation techniques such as pn junction isolation or dielectric isolation have been well known.
However, while the dielectric isolation structure enables reliable electrical isolation, it has the problem that it is difficult to fabricate a high breakdown voltage element having a current path from the substrate front surface to the back surface. The structure has been conventionally used for a high breakdown voltage device with a relatively small current flowing in the lateral direction of the substrate. On the other hand, when the pn junction isolation structure is used, it is possible to fabricate a high-current high-breakdown-voltage element structure in which a current flows vertically in the substrate. The structure of the monolithic high breakdown voltage circuit element using the pn junction isolation will be described below, and then this defect will be described.

【0003】pn接合分離構造を用いて高耐圧回路とC
MOS低耐圧回路を集積形成した従来構造を図4に示
す。このような構造は例えば特公平3−65025号公
報に記載されている。まず高耐圧回路を説明を行う。4
3はN+ ドレイン低抵抗領域、44はN- ドレイン高抵
抗領域、48はPボディ、49はN+ ソース電極、47
はゲート電極である。
High breakdown voltage circuit and C using pn junction isolation structure
FIG. 4 shows a conventional structure in which a MOS low breakdown voltage circuit is integrally formed. Such a structure is described in, for example, Japanese Patent Publication No. 3-65025. First, the high voltage circuit will be described. Four
3 is an N + drain low resistance region, 44 is an N drain high resistance region, 48 is a P body, 49 is an N + source electrode, 47
Is a gate electrode.

【0004】次にMOS低耐圧回路の説明を行う。50
はCMOSトランジスタが形成されるN- 領域、51は
Pウェル、53aおよび53bはPウェル内部に形成さ
れるNチャンネル型MOSFETのN+ ソースおよびN
+ ドレイン、52はNチャンネルFETのゲート電極で
ある。また、55aおよび55bはPチャンネル型MO
SFETのP+ ソースおよびP+ ドレイン、54はこの
PチャンネルFETのゲート電極である。一方、45お
よび46は、CMOS低電圧回路とMOSFET高耐圧
回路をpn接合分離構造により電気的に分離するための
P領域およびP+ 領域である。このようにpn接合分離
構造を用いることにより、基板表面から裏面に電流が流
れる高耐圧回路素子とこの制御を行う低耐圧回路素子を
同一基板上に集積形成することができる。
Next, the MOS low breakdown voltage circuit will be described. Fifty
Is an N region where a CMOS transistor is formed, 51 is a P well, and 53a and 53b are N + source and N of an N channel type MOSFET formed inside the P well.
+ Drain, 52 is a gate electrode of the N-channel FET. Also, 55a and 55b are P-channel MO
The P + source and P + drain of the SFET, 54 is the gate electrode of this P-channel FET. On the other hand, 45 and 46 are a P region and a P + region for electrically isolating the CMOS low voltage circuit and the MOSFET high voltage circuit by the pn junction isolation structure. By using the pn junction separation structure as described above, a high breakdown voltage circuit element through which a current flows from the front surface to the back surface of the substrate and a low breakdown voltage circuit element for performing this control can be integrated and formed on the same substrate.

【0005】[0005]

【発明が解決しようとする課題】図4に示した構造の作
製は、まずN+ 基板43にボロンを拡散してP領域45
を形成した後、シリコンをエピタキシャル成長させN-
領域44および50の形成を行い、続いて44および5
0の表面から43の方向にボロンを深く拡散することを
行うことによってP領域45に接続したP+ 領域46の
形成が行われる。この際、N- 領域44および50の厚
さが10μm程度のときには1100℃の高温度下で5
時間程度の拡散を行うことによりP+ 領域46とP領域
45が接続した構造が得られるが、もしN- 領域44お
よび50の厚さが30μmであるときには、40時間以
上の長い拡散時間が必要とされるという問題があった。
さらに、このような深い拡散では、拡散時間の長さの問
題に加えて、P+ 領域46がN- 領域44および50の
内部で基板の横方向に広がるという問題が生じた。この
結果、高耐圧素子41および低耐圧素子42が形成され
るN- 領域44および50の面積が縮小されるために、
半導体装置の集積密度の向上の阻害が生じた。さらに、
P領域45が長い拡散時間により44および50の基板
中に拡散するために、44および50の厚さが薄くなる
という問題も生じた。このため、所望のN- 領域44お
よび50の深さを最終的に得るためには、拡散の前のN
- 領域の厚さをかなり厚く作製しておくことが要求され
た。これにより、44および50の基板作製のためのエ
ピタキシャル成長時間がかなり長くなることに加えて、
46を45に接続させる拡散時間がさらに長くなるとい
う深刻なジレンマが起こった。
In the fabrication of the structure shown in FIG. 4, first, boron is diffused in the N + substrate 43 to diffuse the P region 45.
And then epitaxially grow silicon to form N −.
Forming regions 44 and 50, followed by 44 and 5
The P + region 46 connected to the P region 45 is formed by deeply diffusing boron in the direction 43 from the surface of 0. At this time, when the thickness of the N regions 44 and 50 is about 10 μm, it is 5 at a high temperature of 1100 ° C.
A structure in which the P + region 46 and the P region 45 are connected to each other can be obtained by performing diffusion for about time. However, if the thickness of the N regions 44 and 50 is 30 μm, a long diffusion time of 40 hours or more is required. There was a problem that was said.
Moreover, such deep diffusion presents a problem of P + region 46 extending laterally of the substrate within N regions 44 and 50, in addition to the problem of the length of diffusion time. As a result, the areas of the N regions 44 and 50 in which the high breakdown voltage element 41 and the low breakdown voltage element 42 are formed are reduced,
This hinders the improvement of the integration density of the semiconductor device. further,
There was also the problem that the thickness of 44 and 50 was reduced because the P region 45 diffused into the substrate of 44 and 50 due to the long diffusion time. Therefore, in order to finally obtain the desired depth of N regions 44 and 50, the N before diffusion must be
- it is kept considerably thicker produced the thickness of the region is required. This, in addition to significantly increasing the epitaxial growth time for making 44 and 50 substrates,
There has been a serious dilemma of increasing the diffusion time connecting 46 to 45.

【0006】[0006]

【課題を解決するための手段】本発明では以上の従来技
術の問題を解決するために、半導体基板上に高耐圧素子
と低耐圧素子とを同時に集積形成してなる半導体装置に
おいて、低耐圧素子と高耐圧素子間の底面側をpn接合
分離構造とし、その側面側を誘電体分離構造としたこと
を特徴とする半導体装置が得られる。
In order to solve the above problems of the prior art, the present invention provides a low breakdown voltage element in a semiconductor device in which a high breakdown voltage element and a low breakdown voltage element are simultaneously formed on a semiconductor substrate. A semiconductor device having a pn junction isolation structure on the bottom surface between the high voltage element and the dielectric breakdown structure on the side surface side is obtained.

【0007】また、本発明の構造を製造する方法とし
て、半導体基板の一部領域に当該基板と異なる型の不純
物層からなる絶縁層領域を形成し、続いて当該基板上に
基板と同じ型の不純物を含むシリコン層をエピタキシャ
ル成長させた後、エピタキシャルシリコン層を当該絶縁
層に達するまでエッチングした溝を設けることにより、
低耐圧素子形成のためのシリコン領域と高耐圧素子形成
のためのシリコン領域とを分離したことを特徴とする導
体基板上の製造方法、および、基板と異なる型の不純物
層からなる絶縁層を設けた一方の半導体基板と、エッチ
ング溝により作製された島状のシリコン領域の少なくと
も一部に先の絶縁層と異なる型の不純物層領域が設けら
れた、当該半導体基板と同じ型の他方の半導体基板とを
互いに張り合わせた後、他方の半導体基板に設けた不純
物を当該絶縁層の中を貫通するまで拡散させたことを特
徴とする半導体装置の製造方法とが得られる。
As a method of manufacturing the structure of the present invention, an insulating layer region made of an impurity layer of a type different from that of the substrate is formed in a partial region of the semiconductor substrate, and then the same type of substrate as that of the substrate is formed on the substrate. After epitaxially growing a silicon layer containing impurities, by providing a groove obtained by etching the epitaxial silicon layer until it reaches the insulating layer,
A method of manufacturing on a conductive substrate, characterized in that a silicon region for forming a low breakdown voltage element and a silicon region for forming a high breakdown voltage element are separated, and an insulating layer made of an impurity layer of a type different from that of the substrate is provided. One semiconductor substrate and the other semiconductor substrate of the same type as the semiconductor substrate, in which an impurity layer region of a different type from the previous insulating layer is provided in at least a part of the island-shaped silicon region formed by the etching groove And (a) are bonded to each other, and then the impurities provided on the other semiconductor substrate are diffused until they penetrate the insulating layer.

【0008】本発明の半導体装置の構造では、低耐圧素
子と高耐圧素子との電気的分離を二通りの方法を用いて
行う。すなわち、pn接合分離により低耐圧素子と高耐
圧素子の上下方向の間の分離を行い、誘電体分離により
低耐圧素子と高耐圧素子の横方向の間の分離が行われ
る。上下方向にpn接合分離を設けて電気的に分離する
ことにより、基板表面から裏面方向に電流が流れる大電
流用の高耐圧素子の形成が実現できる。また、横方向の
電気的分離のために設けられた誘電体分離は、低温下で
作製できるために従来例で必要とされた深い拡散工程を
必要としない。この結果、半導体装置の製造が容易にな
るとともに、PおよびP+ 領域の上下および横方向拡散
が無くなるためにデバイスの高密度化が実現できるとい
う著しい効果が生じる。
In the structure of the semiconductor device of the present invention, the low breakdown voltage element and the high breakdown voltage element are electrically separated by two methods. That is, the pn junction isolation separates the low breakdown voltage element and the high breakdown voltage element in the vertical direction, and the dielectric isolation splits the low breakdown voltage element and the high breakdown voltage element in the horizontal direction. By providing pn junction isolation in the vertical direction and electrically isolating the element, it is possible to realize the formation of a high breakdown voltage element for a large current in which a current flows from the front surface of the substrate to the back surface. Further, the dielectric isolation provided for the electrical isolation in the lateral direction does not require the deep diffusion step required in the conventional example because it can be manufactured at a low temperature. As a result, the semiconductor device can be easily manufactured, and since the vertical and lateral diffusion of the P and P + regions is eliminated, the device can be highly densified.

【0009】[0009]

【実施例】以下に実施例を用いて本発明の構造および製
造方法の説明を行う。図1は本発明の一実施例を示す図
である。同図において図4の構成要素と同じ番号をもつ
ものは同じ構成要素を表すものであり、ここではこれら
の説明を省略する。
EXAMPLES The structure and manufacturing method of the present invention will be described below with reference to examples. FIG. 1 is a diagram showing an embodiment of the present invention. In the figure, the components having the same numbers as the components in FIG. 4 represent the same components, and the description thereof will be omitted here.

【0010】図1の実施例に示された高耐圧素子41お
よび低耐圧素子42の間はP絶縁層11を用いたpn接
合分離により上下方向が電気的に分離されている。また
溝23を用いた誘電体分離によって横方向の電気的な分
離が行われる。この溝23は、酸化膜等の絶縁膜1およ
びポリシリコン等の埋め込み層2によって内部が充填さ
れているために、機械的にも強固となっている。高耐圧
素子41はP絶縁層11が設けられていない領域を通し
て大きな電流を流すことができる。また、低耐圧素子4
2はP絶縁層11(pn接合分離)と溝23(誘電体分
離)によって高耐圧素子42と電気的に分離されてい
る。
The high breakdown voltage element 41 and the low breakdown voltage element 42 shown in the embodiment of FIG. 1 are electrically separated in the vertical direction by the pn junction separation using the P insulating layer 11. In addition, electrical isolation in the lateral direction is performed by dielectric isolation using the groove 23. Since the inside of the groove 23 is filled with an insulating film 1 such as an oxide film and a buried layer 2 such as polysilicon, it is mechanically strong. The high breakdown voltage element 41 can pass a large current through a region where the P insulating layer 11 is not provided. In addition, the low breakdown voltage element 4
2 is electrically isolated from the high breakdown voltage element 42 by the P insulating layer 11 (pn junction isolation) and the groove 23 (dielectric isolation).

【0011】図2に図1の実施例を製造する方法の一実
施例を示す。まず、高耐圧素子のドレインとなるN+
リコン基板43の裏面に目合わせ用のマーク21を設け
る。この目合わせマーク21は、図2の例ではシリコン
基板43にアルカリエッチング液によってV溝を作製し
た例を示した。この他に不純物の拡散等によっても目合
せマークを形成することが可能である。続いて、21の
マークに目合わせを行いながら、目合わせマーク21が
形成された主面と反対の面にP絶縁層11を形成する
(図2(a))。この際、将来高耐圧素子が形成される
領域にはこの領域を保護膜で覆うことによりP絶縁層が
設けられないようにする。このように作製した基板の上
に、シリコン基板43と同じ型の不純物を含むシリコン
膜をエピタキシャル成長させる。目合わせマーク21に
目合わせを行った後、エピタキシャル成長シリコン膜2
2に溝23の底面がP絶縁膜にするまで深くエッチング
を行なう(図2(b))。このエッチングには、KO
H,EDP,ヒドラジン等の異方性エッチング液を用い
ることができる。また、反応性イオンエッチング(RI
E)等の異方性ドライエッチング装置によっても溝23
を形成することができる。この溝23の側面に酸化膜、
窒化膜等によって絶縁膜1を設けた後、ポリシリコンを
堆積して溝を埋め込む。最後に、ポリシリコン膜を研磨
してエピタキシャルシリコン膜22の面が現われるよう
にする(図2(C))。この後は、通常のMOSあるい
はバイポーラプロセスを用いることにより、図1の構造
を製造することができる。
FIG. 2 shows an embodiment of a method for manufacturing the embodiment of FIG. First, the mark 21 for alignment is provided on the back surface of the N + silicon substrate 43 which serves as the drain of the high breakdown voltage element. In the example of FIG. 2, this alignment mark 21 shows an example in which a V groove is formed on the silicon substrate 43 with an alkali etching solution. In addition to this, the alignment mark can be formed by diffusion of impurities or the like. Then, the P insulating layer 11 is formed on the surface opposite to the main surface on which the alignment marks 21 are formed while aligning the marks 21 (FIG. 2A). At this time, a P insulating layer is not provided in a region where a high breakdown voltage element will be formed in the future by covering this region with a protective film. A silicon film containing impurities of the same type as the silicon substrate 43 is epitaxially grown on the substrate thus manufactured. After the alignment mark 21 is aligned, the epitaxially grown silicon film 2
2 is deeply etched until the bottom surface of the groove 23 becomes a P insulating film (FIG. 2B). For this etching, KO
An anisotropic etching solution such as H, EDP or hydrazine can be used. In addition, reactive ion etching (RI
The groove 23 can be formed by an anisotropic dry etching device such as E).
Can be formed. An oxide film on the side surface of the groove 23,
After providing the insulating film 1 with a nitride film or the like, polysilicon is deposited to fill the groove. Finally, the polysilicon film is polished so that the surface of the epitaxial silicon film 22 is exposed (FIG. 2C). After that, the structure of FIG. 1 can be manufactured by using a normal MOS or bipolar process.

【0012】本発明の構造を製造する他の一実施例を図
3に示す。この製造方法では2枚のシリコン基板を使用
する。まず一方のシリコン基板31を先に述べたように
して絶縁膜1およびポリシリコン2によって埋め込まれ
たV溝を作製する(図3(a))。続いてV溝が設けら
れた主面上に拡散層32をイオン注入あるいは拡散によ
って作製する(図3(b))。この拡散層32はシリコ
ン基板31と同じ型の不純物を含んでいる。もう一方の
シリコン基板43の一方の主面に43と異なる不純物を
含む拡散層33を形成する。なお43と31のシリコン
基板は同じ型の不純物を含んだものである。この二つの
シリコン基板43と31を絶縁層33とV溝が形成され
た面とを向かい合わせて接着する(図3(c))。この
シリコン基板の接着にはシリコン直接接合の技術を使用
することができる。このようにして張り合わせたシリコ
ン基板を電気炉の中に置くことにより、拡散層32を絶
縁層33の中に拡散させる。この拡散は拡散層32の底
面がシリコン基板43に達するまで行なうことが必要で
ある。この結果、拡散層32は図3(d)に示すように
ドレイン貫通層34となって、二つのシリコン基板の間
に電流を流すことができるようになる。この後、シリコ
ン基板31を研磨してV溝の底面が現われるようにする
(図3(d))。このようにして、高耐圧素子が形成さ
れる領域44と低耐圧素子50が形成される領域の電気
的な分離を作製することが可能となった。
Another embodiment of manufacturing the structure of the present invention is shown in FIG. This manufacturing method uses two silicon substrates. First, the V-groove filled with the insulating film 1 and the polysilicon 2 is formed in the one silicon substrate 31 as described above (FIG. 3A). Then, the diffusion layer 32 is formed on the main surface provided with the V groove by ion implantation or diffusion (FIG. 3B). The diffusion layer 32 contains the same type of impurities as the silicon substrate 31. A diffusion layer 33 containing impurities different from 43 is formed on one main surface of the other silicon substrate 43. The silicon substrates 43 and 31 contain impurities of the same type. The two silicon substrates 43 and 31 are adhered so that the insulating layer 33 and the surface on which the V groove is formed face each other (FIG. 3C). A direct silicon bonding technique can be used for bonding the silicon substrate. The diffusion layer 32 is diffused into the insulating layer 33 by placing the silicon substrate thus bonded together in an electric furnace. This diffusion needs to be performed until the bottom surface of the diffusion layer 32 reaches the silicon substrate 43. As a result, the diffusion layer 32 becomes the drain penetration layer 34 as shown in FIG. 3D, and the electric current can flow between the two silicon substrates. After that, the silicon substrate 31 is polished so that the bottom surface of the V groove appears (FIG. 3D). In this way, it is possible to electrically separate the region 44 where the high breakdown voltage element is formed and the region where the low breakdown voltage element 50 is formed.

【0013】図3に示した実施例では拡散層32を絶縁
層33の中に拡散するために高温の処理が必要である。
しかし、この拡散の深さは、従来例と比べてはるかに浅
いものであるために、必要とされる拡散時間が短い。
In the embodiment shown in FIG. 3, a high temperature treatment is required to diffuse the diffusion layer 32 into the insulating layer 33.
However, since the depth of this diffusion is much shallower than that of the conventional example, the required diffusion time is short.

【0014】一方、図2の発明と比較して、絶縁層33
のパターニングが不要であること、裏面の目合わせマー
クが入らないこと等のために、作製のプロセスが簡略化
される等の特徴がある。
On the other hand, compared with the invention of FIG. 2, the insulating layer 33
Is unnecessary, and the alignment mark on the back surface is not included, so that the manufacturing process is simplified.

【0015】なお、上記の本発明の例ではシリコン基板
および回路が形成される基板をN型、絶縁層をP型とし
て説明したが、本発明はこれに限定されるものではな
い。すなわち、絶縁層がN型、シリコン基板および回路
形成基板がP型であっても本発明は有効である。また、
V溝を本実施例で示したように埋め込む必要もなく、内
部が中空の構造も本発明に含まれる。
In the above example of the present invention, the silicon substrate and the substrate on which the circuit is formed are described as N-type and the insulating layer is P-type. However, the present invention is not limited to this. That is, the present invention is effective even when the insulating layer is N type and the silicon substrate and the circuit forming substrate are P type. Also,
It is not necessary to embed the V-groove as shown in this embodiment, and a structure having a hollow inside is also included in the present invention.

【0016】[0016]

【発明の効果】本発明により、高耐圧素子と低耐圧素子
が電気的に分離された集積回路を製造することが可能と
なった。高耐圧素子は電流を基板に垂直に流すことがで
きるために、大きな電流の制御が必要である。また、低
耐圧素子と高耐圧素子は横方向が誘電体によって分離さ
れているために、従来のpn接合分離に比べて寄生容量
が小さく優れた電気特性を示した。この結果、消費電力
の低減化と高速化が実現できた。さらに、従来例のよう
に、長時間の拡散工程を必要としないことから分離層の
横方向の拡散が抑えられるため、素子の寸法を小さくす
ることができた。
According to the present invention, it becomes possible to manufacture an integrated circuit in which a high breakdown voltage element and a low breakdown voltage element are electrically separated. Since the high breakdown voltage element allows a current to flow perpendicularly to the substrate, it is necessary to control a large current. Further, since the low breakdown voltage element and the high breakdown voltage element are separated in the lateral direction by the dielectric, the parasitic capacitance is smaller than that of the conventional pn junction separation, and excellent electrical characteristics are exhibited. As a result, reduction of power consumption and speeding up were realized. Further, unlike the conventional example, since a long diffusion process is not required, lateral diffusion of the separation layer can be suppressed, so that the element size can be reduced.

【0017】この結果、集積回路の高密度化の向上が実
現できた。一方、本発明の製造方法では、従来例の長時
間の高温度工程を除去することができる。これは、プロ
セスを著しく簡略化することに役だった。特に、従来例
で問題であった、拡散プロファイルの大きな変動を低く
抑えることができたために、デバイスの設計が著しく単
純となったことは本発明の大きな効果である。
As a result, it has been possible to improve the density of the integrated circuit. On the other hand, in the manufacturing method of the present invention, the long-time high temperature process of the conventional example can be eliminated. This helped to significantly simplify the process. In particular, it is a great effect of the present invention that the device design is remarkably simple because the large fluctuation of the diffusion profile, which was a problem in the conventional example, can be suppressed to a low level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構造を示す図。FIG. 1 is a diagram showing a structure of an embodiment of the present invention.

【図2】本発明の構造を製造する一実施例を示す図。FIG. 2 is a diagram showing an example of manufacturing the structure of the present invention.

【図3】本発明の構造を製造する他の実施例を示す図。FIG. 3 is a diagram showing another embodiment for manufacturing the structure of the present invention.

【図4】従来技術の構造を示す図。FIG. 4 is a diagram showing a structure of a conventional technique.

【符号の説明】[Explanation of symbols]

1 絶縁膜 2 埋め込み層 11 P絶縁層 21 目合わせマーク 22 N- シリコン回路領域 23 溝 31 N- 基板 32 拡散層 33 絶縁層 34 ドレイン貫通層 41 高耐圧素子 42 低耐圧素子 43 N+ ドレイン低抵抗領域 44,50 N- ドレイン高抵抗領域 45 P絶縁層 46 P+ 絶縁層 47,52,54 ゲート 48 Pボディ 49 N+ ソース電極 51 Pウェル 53a,55a ソース 53b,55b ドレイン1 Insulating Film 2 Buried Layer 11 P Insulating Layer 21 Alignment Mark 22 N - Silicon Circuit Region 23 Groove 31 N - Substrate 32 Diffusion Layer 33 Insulating Layer 34 Drain Through Layer 41 High Voltage Element 42 Low Voltage Element 43 N + Drain Low Resistance Region 44,50 N - Drain High Resistance Region 45 P Insulating Layer 46 P + Insulating Layer 47, 52, 54 Gate 48 P Body 49 N + Source Electrode 51 P Well 53a, 55a Source 53b, 55b Drain

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に高耐圧素子と低耐圧素子
とを同時に集積形成してなる半導体装置において、低耐
圧素子と高耐圧素子間の底面側をpn接合分離構造と
し、側面側を誘電体分離構造としたことを特徴とする半
導体装置。
1. In a semiconductor device in which a high breakdown voltage element and a low breakdown voltage element are simultaneously formed on a semiconductor substrate, a bottom surface side between the low breakdown voltage element and the high breakdown voltage element has a pn junction isolation structure, and a side surface side is a dielectric. A semiconductor device having a body separation structure.
【請求項2】 半導体基板の一部領域に当該基板と異な
る型の不純物層からなる絶縁層領域を形成し、続いて当
該基板上に基板と同じ型の不純物を含むシリコン層をエ
ピタキシャル成長させた後、エピタキシャルシリコン層
中に当該絶縁層に達するエッチング溝を設けることによ
り低耐圧素子形成のためのシリコン領域を高耐圧素子形
成のためのシリコン領域から分離したことを特徴とする
半導体装置の製造方法。
2. An insulating layer region made of an impurity layer of a type different from that of the substrate is formed in a partial region of the semiconductor substrate, and subsequently, a silicon layer containing impurities of the same type as the substrate is epitaxially grown on the substrate. A method of manufacturing a semiconductor device, wherein an etching groove reaching the insulating layer is provided in an epitaxial silicon layer to separate a silicon region for forming a low breakdown voltage element from a silicon region for forming a high breakdown voltage element.
【請求項3】 基板と異なる型の不純物層からなる絶縁
層を設けた一方の半導体基板と、エッチング溝により作
製された島状のシリコン領域の少なくとも一部に先の絶
縁層と異なる型の不純物層領域が設けられた当該半導体
基板と同じ型の他方の半導体基板とを互いに張り合わせ
た後、他方の半導体基板に設けた不純物を拡散させて当
該絶縁層の中を貫通させたことを特徴とする半導体装置
の製造方法。
3. One semiconductor substrate provided with an insulating layer made of an impurity layer of a type different from that of the substrate, and an impurity of a type different from that of the previous insulating layer in at least part of an island-shaped silicon region formed by an etching groove. The semiconductor substrate provided with the layer region and the other semiconductor substrate of the same type are bonded to each other, and then the impurities provided in the other semiconductor substrate are diffused to penetrate through the insulating layer. Manufacturing method of semiconductor device.
JP4172248A 1992-06-30 1992-06-30 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2940308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172248A JP2940308B2 (en) 1992-06-30 1992-06-30 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172248A JP2940308B2 (en) 1992-06-30 1992-06-30 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0621368A true JPH0621368A (en) 1994-01-28
JP2940308B2 JP2940308B2 (en) 1999-08-25

Family

ID=15938372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172248A Expired - Lifetime JP2940308B2 (en) 1992-06-30 1992-06-30 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2940308B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344839B1 (en) * 2000-07-28 2002-07-20 주식회사 하이닉스반도체 High Voltage Device and Method for the Same
JP2009111426A (en) * 2003-12-05 2009-05-21 Internatl Rectifier Corp Structure of group iii nitride monolithic power ic and its manufacturing method
US20140014656A1 (en) * 2011-01-28 2014-01-16 Ciosure Systems International Inc. Closure and liner compositions essentially free of ethylene vinyl acetate copolymer
JP2019102550A (en) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 Semiconductor substrate manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100344839B1 (en) * 2000-07-28 2002-07-20 주식회사 하이닉스반도체 High Voltage Device and Method for the Same
JP2009111426A (en) * 2003-12-05 2009-05-21 Internatl Rectifier Corp Structure of group iii nitride monolithic power ic and its manufacturing method
US20140014656A1 (en) * 2011-01-28 2014-01-16 Ciosure Systems International Inc. Closure and liner compositions essentially free of ethylene vinyl acetate copolymer
US9617405B2 (en) * 2011-01-28 2017-04-11 Closure Systems International Inc. Closure and liner compositions essentially free of ethylene vinyl acetate copolymer
JP2019102550A (en) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 Semiconductor substrate manufacturing method

Also Published As

Publication number Publication date
JP2940308B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
US5294823A (en) SOI BICMOS process
JP2788269B2 (en) Semiconductor device and manufacturing method thereof
US4879584A (en) Semiconductor device with isolation between MOSFET and control circuit
US4951102A (en) Trench gate VCMOS
US5087580A (en) Self-aligned bipolar transistor structure and fabrication process
JPH08227998A (en) Back source mosfet
US5356827A (en) Method of manufacturing semiconductor device
US5040043A (en) Power semiconductor device
US5547886A (en) Method of producing a semiconductor device
US5476809A (en) Semiconductor device and method of manufacturing the same
JPH0548936B2 (en)
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
JPH07326742A (en) Semiconductor device and manufacture thereof
US4884116A (en) Double diffused mosfet with potential biases
US5059547A (en) Method of manufacturing double diffused mosfet with potential biases
JP2940308B2 (en) Semiconductor device and manufacturing method thereof
JP2003303960A (en) Vertical mos semiconductor device and manufacturing method thereof
KR100383357B1 (en) Cmos interface circuit formed in silicon-on-insulator substrate
JPH06151728A (en) Semiconductor integrated circuit device
JPS5932163A (en) C-mos integrated circuit
KR100482950B1 (en) Semiconductor device and manufacturing method thereof
JPS6159543B2 (en)
JP2508218B2 (en) Complementary MIS integrated circuit
USRE34025E (en) Semiconductor device with isolation between MOSFET and control circuit
JPS63293938A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 14