JPH06212906A - Stress control device for bolt for clamping divided pressure vessel - Google Patents

Stress control device for bolt for clamping divided pressure vessel

Info

Publication number
JPH06212906A
JPH06212906A JP405293A JP405293A JPH06212906A JP H06212906 A JPH06212906 A JP H06212906A JP 405293 A JP405293 A JP 405293A JP 405293 A JP405293 A JP 405293A JP H06212906 A JPH06212906 A JP H06212906A
Authority
JP
Japan
Prior art keywords
bolt
stress
pressure vessel
temperature
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP405293A
Other languages
Japanese (ja)
Inventor
Masabumi Wani
正文 和仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP405293A priority Critical patent/JPH06212906A/en
Publication of JPH06212906A publication Critical patent/JPH06212906A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a control device capable of positively keeping the stresses of bolts for clamping the flanges of a divided pressure vessel, into which high temperature fluid is introduced, below a yield stress. CONSTITUTION:A room-temperature measuring thermocouple 7 and a bolt-temperature measuring thermocouple 8 are attached to a divided pressure vessel in order to measure the temperatures of vertically divided rooms 1 and room-clamping bolts 4 for clamping the rooms 4, respectively. A control device (not shown) is connected to the thermocouples 7, 8 and a high temperature fluid inflow control valve 9 for the rooms 1. The coefficient of linear expansion and the Young's modulus of the rooms are determined as functions of the room-temperatures detected by the room-temperature measuring thermocouple 7. Similarly, the coefficient of linear expansion and the Young' s modulus of bolts are determined as functions of the bolt-temperatures detected by the bolt-temperature measuring thermocouple 8. Thus, the stress of the bolts can be determined. On the other hand, the yield stress of the bolts are determined as functions of the bolt temperatures. The control device controls an inflow control valve 9 so that the difference between the bolt-yield stress and the bolt stress may not be below a specific value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蒸気タービンの二分割
車室または弁室などの分割圧力容器を組立てる締付けボ
ルトに発生する応力を制御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling a stress generated in a tightening bolt for assembling a split pressure vessel such as a two-split casing or a valve chamber of a steam turbine.

【0002】[0002]

【従来の技術】圧力容器の例として、ここでは、水平面
で上下に二分割され、ボルトで一体に締付けられる蒸気
タービンの車室について述べる。蒸気タービンの車室の
組立てられた状態を図5に、図5のA−A断面を図6に
示す。これらの図において、符号1は車室、2は車室締
付ナット、3は座金、4は車室締付ボルト、5はロー
タ、6はフランジを示している。
2. Description of the Related Art As an example of a pressure vessel, a casing of a steam turbine which is vertically divided into two parts and which is integrally fastened with a bolt will be described. FIG. 5 shows the assembled state of the passenger compartment of the steam turbine, and FIG. 6 shows a cross section taken along the line AA of FIG. In these drawings, reference numeral 1 is a vehicle compartment, 2 is a vehicle interior fastening nut, 3 is a washer, 4 is a vehicle interior fastening bolt, 5 is a rotor, and 6 is a flange.

【0003】蒸気タービンの車室1は車室内部に収めら
れたロータ5などの開放を容易にするため、水平面で上
下に二分割されている。この二分割にて制作された車室
1はそのフランジ6に穿設された孔を介して設置された
車室締付ボルト4及び車室締付ナット2による締付けに
よって圧力容器として組立てられる。このようにして組
立てられた車室1の内部はその運転中に高温高圧の作動
流体、たとえば蒸気タービンの場合は蒸気が流れる。
The passenger compartment 1 of the steam turbine is divided into upper and lower parts in a horizontal plane in order to facilitate opening of the rotor 5 and the like housed inside the passenger compartment. The vehicle compartment 1 produced by dividing into two parts is assembled as a pressure vessel by tightening with a vehicle compartment tightening bolt 4 and a vehicle compartment tightening nut 2 installed through holes formed in the flange 6 of the vehicle compartment. A high-temperature and high-pressure working fluid, such as steam in the case of a steam turbine, flows through the interior of the vehicle interior 1 assembled in this way during its operation.

【0004】常温でボルトを締付けることによって組立
てられた車室1に蒸気が流入すると、車室1の温度は上
昇するが、このときの車室1の温度変化を車室締付ボル
ト4の温度変化と共に図7に示してある。蒸気タービン
の起動中は、まず車室1が蒸気にさらされるため、図7
に実線で示した車室温度は破線で示したボルト温度より
も速く上昇するが、定常運転になれば、車室温度とボル
ト温度とはほぼ等しくなる。このように、起動中にはボ
ルト4と車室1に温度差が発生し、この温度によってボ
ルト4の応力に変化が生じる。
When steam flows into the vehicle interior 1 assembled by tightening the bolts at room temperature, the temperature of the vehicle interior 1 rises. At this time, the temperature change of the vehicle interior 1 is caused by the temperature of the vehicle interior fastening bolt 4. It is shown in FIG. 7 along with the changes. When the steam turbine is being started, the passenger compartment 1 is first exposed to steam, and therefore, as shown in FIG.
Although the vehicle interior temperature shown by the solid line rises faster than the bolt temperature shown by the broken line, the vehicle interior temperature and the bolt temperature become almost equal under steady operation. As described above, a temperature difference occurs between the bolt 4 and the vehicle interior 1 during startup, and the stress of the bolt 4 changes due to this temperature.

【0005】このボルト応力σB の変化を図示すると図
8のようになる。ここで点aは常温TO での初期ボルト
応力を示し、起動中b点で最大となり、点cは定常運転
中のボルト応力を示している。この最大値のb点の値は
図7に示した起動中のボルト4及び車室1の温度変化に
よって決まるが、起動の時間が短かければボルト4と車
室1との温度差ΔTが大きくなるため、b点はより大き
くなるが、この最大応力は少なくともボルト降伏応力よ
り小さくなるように起動する必要がある。
The change in the bolt stress σ B is shown in FIG. Here, the point a indicates the initial bolt stress at the normal temperature T O , the point b is the maximum at the start point b, and the point c indicates the bolt stress during the steady operation. The value at the point b of this maximum value is determined by the temperature changes of the bolt 4 and the passenger compartment 1 during startup shown in FIG. 7, but if the startup time is short, the temperature difference ΔT between the bolt 4 and the passenger compartment 1 is large. Therefore, the point b becomes larger, but it is necessary to start such that the maximum stress is at least smaller than the bolt yield stress.

【0006】このためには、ボルト4の応力σB を知る
必要があるが、ボルト応力を求める方法の一つとして、
ボルト4に歪ゲージを添付し歪みを計測することによる
方法がある。しかし、これに使用する高温歪ゲージは高
価なばかりか、図9に示すように計測すべき歪に比べ高
温での歪ゲージのドリフト分が数倍と大きく、その結果
精度が悪く実用化に到っていない。
For this purpose, it is necessary to know the stress σ B of the bolt 4, and one of the methods for obtaining the bolt stress is as follows.
There is a method in which a strain gauge is attached to the bolt 4 and the strain is measured. However, the high temperature strain gauge used for this is not only expensive, but also the drift amount of the strain gauge at high temperature is several times as large as the strain to be measured as shown in FIG. 9, resulting in poor accuracy and practical application. Not.

【0007】このため、便宜上車室1とボルト4の温度
差ΔTを計測し、このΔTを一定値以内となるよう起動
するものが従来採用されている。この従来採用されてい
るものの問題点を次に述べる。ボルト応力σB は近似的
For this reason, conventionally, a device has been conventionally used in which the temperature difference ΔT between the vehicle compartment 1 and the bolt 4 is measured and the ΔT is started to be within a fixed value. The problems of this conventional type will be described below. The bolt stress σ B is approximately

【0008】[0008]

【数1】 [Equation 1]

【0009】この数式1により求めたボルト応力の例を
図8に示している。また、ボルト応力を求めるための線
膨張係数及びヤング率の例を図10及び図11に示す。
いずれも温度の関数として求められるので、数式1中の
記号を用いて、車室及びボルトの線膨張係数とヤング率
を EF =EF (TF ),EB =EB (TB ) αF =αF (TF ),αB =αB (TB ) とここで表すこととする。
FIG. 8 shows an example of the bolt stress obtained by the mathematical expression 1. 10 and 11 show examples of the linear expansion coefficient and Young's modulus for obtaining the bolt stress.
Since both determined as a function of temperature, using the symbols in Equation 1, E F = E F ( T F) linear expansion coefficient and Young's modulus of the passenger compartment and bolts, E B = E B (T B) Here, α F = α F (T F ), α B = α B (T B ) will be expressed.

【0010】ここで従来採用されている車室とボルトの
温度差ΔT(ΔT=TF −TB )を一定値以内(例えば
ΔT=100℃)としたときのボルト応力σB の変化を
図12に示す。ここでTB =TF −ΔT=TF −100
であるから、車室及びボルトの線膨張係数及びヤング率
を求めれば EF =EF (TF ),EB =EB (TF −100) αF =αF (TF ),αB =αF (TF −100) となり、ボルト応力σB はこれを使って前述の数式1か
ら求められる。
Here, the change of the bolt stress σ B when the temperature difference ΔT (ΔT = T F −T B ) between the passenger compartment and the bolt which has been conventionally adopted is kept within a certain value (for example, ΔT = 100 ° C.) is shown. 12 shows. Here, T B = T F −ΔT = T F −100
Therefore, if the linear expansion coefficient and the Young's modulus of the passenger compartment and the bolt are calculated, E F = E F ( TF ), E B = E B ( TF −100) α F = α F (T F ), α B = α F (T F −100) and the bolt stress σ B can be obtained from the above Equation 1 using this.

【0011】この図12から明らかなように、ΔTを一
定値(図12の例ではΔT=100℃)とした場合、車
室の温度TF が低い範囲ではΔTを小さく制限しすぎ
る。すなわち、起動時間を長く取りすぎている。逆にT
F が高い場合はΔTが大きすぎる。すなわち、起動時間
をもっと長くとる必要があることが解る。
As is apparent from FIG. 12, when ΔT is set to a constant value (ΔT = 100 ° C. in the example of FIG. 12), ΔT is limited too small in the range where the vehicle compartment temperature T F is low. That is, the startup time is too long. Conversely, T
When F is high, ΔT is too large. That is, it can be seen that it is necessary to take a longer startup time.

【0012】図12に、実際の起動中のボルト応力σB
の変化の一例を併せて示すが、起動によってはボルト応
力は降伏応力を越える事もある事を示すものである。つ
まり、車室の温度によってΔTの制限値を変えないと降
伏してしまうこととなり、ボルトが降伏すればボルトの
締付力は低下し圧力容器の二分割面より内部の作動流体
が洩れることとなる。
FIG. 12 shows the bolt stress σ B during actual starting.
An example of the change in is also shown, but it shows that the bolt stress may exceed the yield stress depending on the starting. In other words, if the limit value of ΔT is not changed depending on the temperature of the passenger compartment, it will yield. If the bolt yields, the tightening force of the bolt will decrease and the working fluid inside will leak from the two-divided surface of the pressure vessel. Become.

【0013】[0013]

【発明が解決しようとする課題】本発明は、高温流体が
導入される分割圧力容器のフランジを締付けるボルトの
応力をボルトの降伏応力以下に確実に保つことのできる
制御装置を提供することを課題としている。また、本発
明は、装置の起動時において圧力容器の温度が低い場合
にボルト応力を懸念して不必要に起動時間を長く取るこ
とを避けて起動時間を短縮することを可能とするよう
な、ボルトの応力制御装置を提供することを課題として
いる。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a control device capable of reliably maintaining the stress of a bolt for fastening a flange of a divided pressure vessel into which a high temperature fluid is introduced, at a yield stress of the bolt or less. I am trying. Further, the present invention makes it possible to shorten the start-up time by avoiding unnecessarily taking a long start-up time because of concern about bolt stress when the temperature of the pressure vessel is low at the time of starting the apparatus, An object is to provide a stress control device for bolts.

【0014】[0014]

【課題を解決するための手段】高温流体が導入される分
割圧力容器のフランジを締付けるボルト応力に関する前
記課題を解決するため、本発明によるボルト応力制御装
置では、分割圧力容器及びボルトの温度をそれぞれ計測
する温度計測手段と、この温度計測手段によって計測さ
れた温度からボルトに発生する応力を算出し、この算出
応力に応じて、分割圧力容器に導入される高温流体の流
入制御弁を作動させ、ボルトの応力を降伏応力の許容値
以内に保つ制御装置を有する構成を採用する。
In order to solve the above-mentioned problems relating to the bolt stress for tightening the flange of the divided pressure vessel into which the high temperature fluid is introduced, in the bolt stress control device according to the present invention, the temperatures of the divided pressure vessel and the bolt are respectively adjusted. A temperature measuring means for measuring and a stress generated in the bolt from the temperature measured by this temperature measuring means are calculated, and in accordance with the calculated stress, an inflow control valve of the high temperature fluid introduced into the divided pressure vessel is operated, A structure having a control device for keeping the stress of the bolt within the allowable value of the yield stress is adopted.

【0015】[0015]

【作用】本発明によるボルトの応力制御装置は前記した
構成を採用しているので、分割圧力容器及びボルトの各
計測温度から求められるボルト応力が降伏応力に近づけ
ば、高温作動流体の流入制御弁の開度が固定され起動時
間が長くなりボルト応力は降伏応力以下に保たれる。
Since the bolt stress control device according to the present invention employs the above-mentioned configuration, if the bolt stress obtained from the respective measured temperatures of the divided pressure vessel and the bolt approaches the yield stress, the inflow control valve for the high-temperature working fluid is controlled. The opening degree of is fixed and the starting time becomes longer, and the bolt stress is kept below the yield stress.

【0016】一方、分割圧力容器の温度が低い場合には
ボルト応力は降伏応力と差があるので作動流体の流入制
御弁が開かれ起動時間を短縮させることができる。
On the other hand, when the temperature of the divided pressure vessel is low, the bolt stress is different from the yield stress, so that the working fluid inflow control valve is opened and the starting time can be shortened.

【0017】[0017]

【実施例】以下本発明による分割圧力容器を締付けるボ
ルトの応力制御装置を図示した実施例に基づいて具体的
に説明する。本発明によるボルトの応力制御装置の1実
施例を示す図1において、図6に示した装置と同一部分
には同じ符号を付してある。図1は、圧力容器として蒸
気タービンの車室に対し本発明によるボルトの応力制御
装置を適用した例を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A bolt stress control device for fastening a divided pressure vessel according to the present invention will be specifically described below with reference to the illustrated embodiments. In FIG. 1 showing one embodiment of a bolt stress control device according to the present invention, the same parts as those of the device shown in FIG. 6 are designated by the same reference numerals. FIG. 1 shows an example in which the bolt stress control device according to the present invention is applied to a passenger compartment of a steam turbine as a pressure vessel.

【0018】図1において、符号1は上下に二分割され
た車室、2は車室締付ナット、3は座金、4は車室締付
ボルト、6はフランジである。車室1及び車室締付ボル
ト4の温度を計測するため、車室1(図示の例ではフラ
ンジ6)に車室温度計測用熱電対7が取付けられ、車室
締付ボルト4にボルト温度計測用熱電対8が取付けられ
ている。また、作動流体は流入制御弁9を介して車室1
に流入している。そして、これら熱電対7,8と流入制
御弁9には図示しない制御装置が接続されている。
In FIG. 1, reference numeral 1 is a compartment vertically divided into two, 2 is a compartment fastening nut, 3 is a washer, 4 is a compartment fastening bolt, and 6 is a flange. In order to measure the temperatures of the passenger compartment 1 and the passenger compartment tightening bolt 4, a passenger compartment temperature measuring thermocouple 7 is attached to the passenger compartment 1 (flange 6 in the illustrated example), and the passenger compartment tightening bolt 4 has a bolt temperature. The thermocouple 8 for measurement is attached. Further, the working fluid is passed through the inflow control valve 9 to the passenger compartment 1
Is flowing into. A control device (not shown) is connected to the thermocouples 7 and 8 and the inflow control valve 9.

【0019】この制御装置の制御機能の一例を図2に示
す。図2によれば、熱電対7から車室温度TF が計測さ
れ、この計測温度の関数として車室の線膨張係数αF
びヤング率EF が求められる。同様に、熱電対8からボ
ルト温度TB が計測され、この計測温度の関数としてボ
ルトの線膨張係数αB及びヤング率EB が求められ、ま
た、TB の関数としてボルト降伏応力σY も求められ
る。αF ,EF ,αB ,EB が求まれば、数式1よりT
F 及びTB の関数としてボルト応力σB が求められる。
An example of the control function of this control device is shown in FIG. According to FIG. 2, the vehicle interior temperature T F is measured from the thermocouple 7, and the linear expansion coefficient α F and the Young's modulus E F of the vehicle interior are obtained as a function of the measured temperature. Similarly, the bolt temperature T B is measured from the thermocouple 8, the linear expansion coefficient α B and Young's modulus E B of the bolt are obtained as a function of the measured temperature, and the bolt yield stress σ Y is also a function of T B. Desired. If α F , E F , α B , and E B are obtained, then from Equation 1, T
The bolt stress σ B is determined as a function of F and T B.

【0020】ここで求められたボルト降伏応力σY とボ
ルト応力σB の差Δがある値(図2の例では5kg/mm2
より大きければ流入制御弁9を開けて起動を続ける。Δ
がある値より小さければ、ボルト応力σB はボルト降伏
応力σY に近づくので流入制御弁9の開度を保持(固
定)しσB が小さくなるまで起動を一時中止(保持)す
る。また、Δが負となれば流入制御弁9を閉じて起動を
停止する。以上述べた応力等の算出と制御弁9の制御を
行う制御装置の回路構成については当業者が適宜設計で
きる事項なので、詳しい説明は省略する。
There is a difference Δ between the bolt yield stress σ Y and the bolt stress σ B obtained here (5 kg / mm 2 in the example of FIG. 2 )
If it is larger, the inflow control valve 9 is opened and the activation is continued. Δ
If it is smaller than a certain value, the bolt stress σ B approaches the bolt yield stress σ Y , so that the opening degree of the inflow control valve 9 is held (fixed) and the start is temporarily stopped (held) until σ B becomes smaller. When Δ becomes negative, the inflow control valve 9 is closed and the activation is stopped. Since the circuit configuration of the control device for calculating the stress and the like and controlling the control valve 9 described above can be appropriately designed by those skilled in the art, detailed description thereof will be omitted.

【0021】この制御手段により起動した例を図3に示
す。図3によれば起動中に流入制御弁の開度を保持する
事により回転数又は負荷(図3の例では両方を示す)上
昇を一時保持する事により、車室の温度上昇が抑えられ
るのでボルト応力も過大となるのを防止できる。その結
果、図4に示すように起動中のボルト応力σB はボルト
降伏応力σY を越える事なく制御する事ができる。
FIG. 3 shows an example of activation by this control means. According to FIG. 3, by keeping the opening of the inflow control valve during startup to temporarily hold the rotation speed or the load (both are shown in the example of FIG. 3) rise, the temperature rise in the passenger compartment can be suppressed. It is possible to prevent excessive bolt stress. As a result, as shown in FIG. 4, the bolt stress σ B during startup can be controlled without exceeding the bolt yield stress σ Y.

【0022】以上、本発明による装置を図示した実施例
に基づいて具体的に説明したが、本発明はこの実施例に
限定されないことはいうまでもない。例えば、図示した
ものでは、分割応力容器として二分割したものを示して
あるが、三分割以上された圧力容器に対して本発明によ
る装置を適用してよい。
The device according to the present invention has been specifically described above based on the illustrated embodiment, but it goes without saying that the present invention is not limited to this embodiment. For example, in the illustrated one, the split stress container is shown divided into two, but the device according to the present invention may be applied to a pressure container divided into three or more.

【0023】[0023]

【発明の効果】以上のとおり、本発明による分割圧力容
器を締付けるボルトの応力制御装置は、分割応力容器及
びボルトの温度をそれぞれ計測する温度計測手段と、同
手段によって計測された温度からボルトに発生する応力
を算出し同算出応力に応じて前記圧力容器に導入される
高温流体の流入制御弁を作動させ、ボルトの応力を降伏
応力の許容値以内に保つ制御装置を有しているので、本
発明による装置によれば、圧力容器に導入される高温流
体を制御することによって分割圧力容器を締付けている
ボルトの応力を起動中もボルト降伏応力より小さくする
よう制御でき、ボルトが降伏して圧力容器の分割面より
作動流体が洩れる事が防止される。
As described above, the stress control device for a bolt for tightening a divided pressure vessel according to the present invention includes temperature measuring means for measuring the temperature of the divided stress vessel and the temperature of the bolt, respectively. By operating the inflow control valve of the high temperature fluid introduced into the pressure vessel according to the calculated stress generated and the calculated stress, since it has a control device for keeping the stress of the bolt within the allowable value of the yield stress, According to the device according to the present invention, by controlling the high temperature fluid introduced into the pressure vessel, the stress of the bolt fastening the divided pressure vessel can be controlled to be smaller than the bolt yield stress even during start-up, and the bolt yields. The working fluid is prevented from leaking from the dividing surface of the pressure vessel.

【0024】また、ボルト応力に応じて流入制御弁を制
御するので、車室温度が低い場合に不必要に起動時間を
長くする事も避けられ、起動時間の短縮にも寄与する。
Further, since the inflow control valve is controlled according to the bolt stress, it is possible to avoid unnecessarily lengthening the starting time when the passenger compartment temperature is low, which contributes to shortening the starting time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による装置を適用した蒸気タービン車室
の一例を示した断面図。
FIG. 1 is a sectional view showing an example of a steam turbine casing to which an apparatus according to the present invention is applied.

【図2】本発明による応力制御装置の1実施例における
制御機能を示すブロック図。
FIG. 2 is a block diagram showing a control function in one embodiment of the stress control system according to the present invention.

【図3】本発明を実施した場合の車室及びボルトの温度
変化を示す線図。
FIG. 3 is a diagram showing temperature changes in a vehicle compartment and bolts when the present invention is implemented.

【図4】本発明によるボルトの応力制御装置を採用した
場合のボルト応力の変化を示す線図。
FIG. 4 is a diagram showing a change in bolt stress when the bolt stress control device according to the present invention is adopted.

【図5】圧力容器の一例としての蒸気タービンの車室の
斜視図。
FIG. 5 is a perspective view of a cabin of a steam turbine as an example of a pressure vessel.

【図6】図5のA−A線に沿う断面図。6 is a sectional view taken along the line AA of FIG.

【図7】本発明を適用しない従来の車室及びボルトの温
度変化の一例を示す線図。
FIG. 7 is a diagram showing an example of temperature changes of a conventional passenger compartment and bolts to which the present invention is not applied.

【図8】従来のボルト応力を示す線図。FIG. 8 is a diagram showing a conventional bolt stress.

【図9】高温歪ゲージの温度による特性を示す線図。FIG. 9 is a diagram showing characteristics of a high temperature strain gauge according to temperature.

【図10】車室及びボルトの線膨張係数の一例を示す線
図。
FIG. 10 is a diagram showing an example of linear expansion coefficients of a passenger compartment and a bolt.

【図11】車室及びボルトのヤング率係数の一例を示す
線図。
FIG. 11 is a diagram showing an example of Young's modulus coefficients of a passenger compartment and a bolt.

【図12】従来の装置における起動中のボルト応力とボ
ルト降伏応力を比較した線図。
FIG. 12 is a diagram comparing a bolt stress during starting and a bolt yield stress in a conventional device.

【符号の説明】[Explanation of symbols]

1 車室 2 ナット 3 座金 4 車室締付けボルト 5 ロータ 6 フランジ 7,8 熱電対 9 流入制御弁 1 Cabin 2 Nut 3 Washer 4 Cabin tightening bolt 5 Rotor 6 Flange 7,8 Thermocouple 9 Inflow control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温流体が導入される分割圧力容器のフ
ランジを締付けるボルトの応力を許容値以内に制御する
装置において、前記分割圧力容器及びボルトの温度をそ
れぞれ計測する温度計測手段と、同手段によって計測さ
れた温度から前記ボルトに発生する応力を算出し同算出
応力に応じて前記高温流体の流入制御弁を作動させ、前
記ボルトを降伏応力の許容値以内に保つ制御装置を有す
ることを特徴とする分割圧力容器を締付けるボルトの応
力制御装置。
1. A device for controlling the stress of a bolt for tightening a flange of a divided pressure vessel into which a high temperature fluid is introduced within an allowable value, and temperature measuring means for measuring the temperature of the divided pressure vessel and the temperature of the bolt, respectively. The stress generated in the bolt is calculated from the temperature measured by, and the inflow control valve of the high temperature fluid is operated according to the calculated stress, and the control device keeps the bolt within the allowable value of the yield stress. A stress control device for the bolts that tighten the divided pressure vessel.
JP405293A 1993-01-13 1993-01-13 Stress control device for bolt for clamping divided pressure vessel Withdrawn JPH06212906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP405293A JPH06212906A (en) 1993-01-13 1993-01-13 Stress control device for bolt for clamping divided pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP405293A JPH06212906A (en) 1993-01-13 1993-01-13 Stress control device for bolt for clamping divided pressure vessel

Publications (1)

Publication Number Publication Date
JPH06212906A true JPH06212906A (en) 1994-08-02

Family

ID=11574126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP405293A Withdrawn JPH06212906A (en) 1993-01-13 1993-01-13 Stress control device for bolt for clamping divided pressure vessel

Country Status (1)

Country Link
JP (1) JPH06212906A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156762A (en) * 2015-02-26 2016-09-01 コニカミノルタ株式会社 Deformation sensor and method for measuring amount of deformation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156762A (en) * 2015-02-26 2016-09-01 コニカミノルタ株式会社 Deformation sensor and method for measuring amount of deformation
CN105928465A (en) * 2015-02-26 2016-09-07 柯尼卡美能达株式会社 Strain sensor and method of measuring strain amount

Similar Documents

Publication Publication Date Title
US5080496A (en) Method and apparatus for compensated temperature prediction
US3446224A (en) Rotor stress controlled startup system
KR100650095B1 (en) Method and apparatus for use in control and compensation of clearances in a gas turbine engine
EP3409927B1 (en) Transient control to extend part life in gas turbine engine
KR950000938B1 (en) Method and apparatus for controlling engine characteristic test
JPS5814718B2 (en) Response delay compensation circuit
US9476690B2 (en) Method for controlling the clearance at the tips of blades of a turbine rotor
US5379584A (en) Synthesis of critical temperature of a turbine engine
GB2417762A (en) Turbine case cooling to provide blade tip clearance
US11313761B2 (en) Test system
US6694742B2 (en) Gas turbine system operation based on estimated stress
JPH06212906A (en) Stress control device for bolt for clamping divided pressure vessel
JPS5877630A (en) Temperature measuring device
RU2324628C2 (en) Method of condition diagnostics of fuel tank separator of displacing system of fuel supply to space object
JPS611809A (en) Casing of steam turbine
JPH06174597A (en) Engine bench test system
JP2003106170A (en) Gas turbine, gas turbine combined plant and method for controlling cooling steam pressure
US5046318A (en) Turbine power plant automatic control system
US5060160A (en) Method for calculating the quantity of fuel to be supplied to an internal combustion engine
JP5374317B2 (en) Steam turbine and method of operating steam turbine
GB2338793A (en) Force measurement system for a jet engine
JPS5867906A (en) Method for controlling thermal stress of a rotor
JPH07243399A (en) Tightening for pump casing
JPH0822304A (en) Method and unit for controlling gas turbine
JP2977340B2 (en) gas turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404