JPH0620803A - Thin film resistor and manufacture thereof - Google Patents

Thin film resistor and manufacture thereof

Info

Publication number
JPH0620803A
JPH0620803A JP4178659A JP17865992A JPH0620803A JP H0620803 A JPH0620803 A JP H0620803A JP 4178659 A JP4178659 A JP 4178659A JP 17865992 A JP17865992 A JP 17865992A JP H0620803 A JPH0620803 A JP H0620803A
Authority
JP
Japan
Prior art keywords
thin film
resistance
film
temperature
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4178659A
Other languages
Japanese (ja)
Inventor
Mitsuhisa Honma
光尚 本間
Yukihiro Koyama
幸宏 小山
Miki Sato
美樹 佐藤
Kazuyuki Osuga
一行 大須賀
Isamu Sasaki
勇 佐々木
Yasunobu Oikawa
泰伸 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP4178659A priority Critical patent/JPH0620803A/en
Publication of JPH0620803A publication Critical patent/JPH0620803A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously accomplish excellent high temperature stability, resistance temperature characteristics and productivity using resistance thin film material consisting of a four-element alloy having specific ratio of component. CONSTITUTION:A quaternary alloy film, having the Cr-Ni ratio of 0.15 to 0.74, Al of 0.4 to 4.0wt.%, Si of 0.2 to 5.0wt.%, Al and Si of 1.5 to 8.0wt.% in total, is formed on an alumina substrate 2 using a vapor deposition method and the like, and a resistance thin film 3 is obtained. Then, the above-mentioned material is heat-treated at 300 to 700 deg.C for 1 to 20 hours in the atmosphere of oxygen concentration of 0.001 to 0.1ppm, and then another heat treatment is conducted at 200 to 500 deg.C for 1 to 10 hours in the atmosphere of oxygen concentration of 0.1 to 100ppm. Subsequently, an electrode film 4 is formed on the resistance thin film 3, the film 4 is coated with a photoresist film 5, and the resist on the part where an electrode part will be formed is removed by photoetching. Connection electrodes 8a and 8b are formed on the resist-removed part using a plating method. The resist film 5 is removed, electrode parts 4a and 4b are left by etching, and electrode parts 7a and 7b are formed on the resistance thin film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品に用いられる
抵抗薄膜材料、及びこの抵抗薄膜材料を用いた抵抗薄膜
の製造方法に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance thin film material used for electronic parts and a method of manufacturing a resistance thin film using this resistance thin film material.

【0002】[0002]

【従来の技術】チップ抵抗器・精密抵抗器・ネットワー
ク抵抗器・高圧抵抗器等の抵抗器、測温抵抗体・感温抵
抗器等の温度センサ及びハイブリットICとその複合モ
ジュール製品等の電子部品には抵抗薄膜を使用した抵抗
素子が用いられている。
2. Description of the Related Art Resistors such as chip resistors, precision resistors, network resistors, and high-voltage resistors, temperature sensors such as resistance temperature detectors and temperature-sensitive resistors, and electronic components such as hybrid ICs and their composite module products. A resistance element using a resistance thin film is used for.

【0003】この抵抗素子においては、多くの場合抵抗
薄膜材料としてTa金属、TaN化合物、Ni−Cr合
金が用いられており、中でもNi−Cr合金が最も一般
的に用いられている。
In this resistance element, Ta metal, TaN compound, and Ni--Cr alloy are often used as the resistance thin film material, and the Ni--Cr alloy is most commonly used among them.

【0004】抵抗材料は、その使用にあたって抵抗温度
係数と高温安定性が問題となるが、Ni−Cr合金は、
Crが多くなると抵抗温度特性を良好にすることができ
る反面、高温安定性が劣化するため、一般にはNi80
wt%−Cr20wt%を基調としたNiリッチの組成
である合金が用いられている。
The resistance temperature coefficient and the high temperature stability of the resistance material are problems in its use. However, the Ni--Cr alloy is
When the amount of Cr increases, the resistance temperature characteristic can be improved, but the high temperature stability deteriorates.
An alloy having a Ni-rich composition based on wt% -Cr20 wt% is used.

【0005】また、Ni及びCrのみからなる2元系合
金の場合は、Ni対Crの比を変えても同時に良好な高
温安定性と抵抗温度特性とを実現することは困難である
ため、微量のBe、Si、Al等を添加した3元系合金
とすることにより、高温安定性と抵抗温度特性とを改善
することが試みられている。
Further, in the case of a binary alloy consisting only of Ni and Cr, it is difficult to realize good high temperature stability and resistance temperature characteristics at the same time even if the ratio of Ni to Cr is changed. It has been attempted to improve high temperature stability and resistance temperature characteristics by using a ternary alloy containing Be, Si, Al, etc.

【0006】これらの3元系合金のうち、Ni−Cr−
Be合金及びNi−Cr−Si合金は、高温安定性及び
抵抗温度特性が改善されるが、絶縁基板上に膜を生成す
る時に基板温度を高温に維持する必要があるため、装置
依存性が大きくなり製造ロット間でのバラツキが大きく
大量生産に適していない。
Among these ternary alloys, Ni-Cr-
Be alloys and Ni-Cr-Si alloys have improved high-temperature stability and resistance-temperature characteristics, but since the substrate temperature needs to be maintained at a high temperature when a film is formed on an insulating substrate, device dependence is large. It is not suitable for mass production because there are large variations among manufacturing lots.

【0007】また、Ni−Cr−Al合金は、抵抗温度
特性が改善されるが、高温安定性が不十分である。この
ように、これらの両特性を同時に満足するNi−Cr3
元系合金抵抗材料は現在のところ得られていない。
Ni-Cr-Al alloys have improved resistance temperature characteristics, but their high temperature stability is insufficient. Thus, Ni-Cr3 satisfying both of these characteristics at the same time
Original alloy resistance materials have not been obtained so far.

【0008】この他に、抵抗薄膜を基板上に生成した
後、生成された抵抗薄膜を空気中において熱処理する抵
抗薄膜製造方法があるが、この方法は雰囲気の制御がな
されていないため、高温安定性が改善される反面、抵抗
温度特性が悪化する。このように、良好な高温安定性と
良好な抵抗温度特性とを有し、良好な生産性とを同時に
実現した抵抗薄膜材料は存在しない。
In addition to this, there is a resistance thin film manufacturing method in which a resistance thin film is formed on a substrate and then the generated resistance thin film is heat-treated in air. However, this method does not control the atmosphere, so that it is stable at high temperature. However, the resistance-temperature characteristic deteriorates. As described above, there is no resistive thin film material that has good high-temperature stability and good resistance-temperature characteristics and simultaneously achieves good productivity.

【0009】[0009]

【発明が解決しようとする課題】本発明は、このような
事情に対処してなされたものであって、これまでのNi
−Crの2元系合金あるいはNi−Cr−Al、Ni−
Cr−Si、Ni−Cr−Beの3元系合金によっては
実現することができなかった高い高温安定性と良好な抵
抗温度特性を得るとともに、良好な生産性とを同時に実
現することができる抵抗薄膜材料及び抵抗薄膜の製造方
法を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and has been made in the conventional Ni.
-Cr binary alloy or Ni-Cr-Al, Ni-
A resistance that can achieve high productivity at the same time as obtaining high temperature stability and good resistance temperature characteristics that could not be realized by a ternary alloy of Cr-Si and Ni-Cr-Be. It is an object to provide a thin film material and a method for manufacturing a resistive thin film.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、Ni−Cr−Al−Si4元系合金である抵抗薄膜
材料すなわち「Cr対Niの比が0.15〜0.74、A
lが0.4〜4.0wt%、Siが0.2〜5.0wt%、
AlとSiの総量が1.5〜8.0wt%」であることを
構成とする抵抗薄膜材料の発明、及び、Ni−Cr−A
l−Si4元系合金薄膜を熱処理する薄膜抵抗の製造方
法の発明すなわち「絶縁材料基板上にNi−Cr−Al
−Si4元系合金からなる合金薄膜を生成させ、該合金
薄膜を酸素濃度0.001〜0.1ppm、温度300℃
〜700℃で1〜20時間熱処理を行い、さらに酸素濃
度0.1〜100ppm、200℃〜500℃で1〜1
0時間熱処理を行う」ことを構成とする抵抗薄膜製造方
法の発明を提供する。
In order to solve the above problems, a resistance thin film material which is a Ni-Cr-Al-Si quaternary alloy, that is, "the ratio of Cr to Ni is 0.15 to 0.74, A
l is 0.4 to 4.0 wt%, Si is 0.2 to 5.0 wt%,
The invention of a resistive thin film material, wherein the total amount of Al and Si is 1.5 to 8.0 wt%, and Ni-Cr-A
Invention of a method of manufacturing a thin-film resistor for heat-treating an l-Si quaternary alloy thin film, that is, "Ni-Cr-Al on an insulating material substrate"
-An alloy thin film made of a Si quaternary alloy is generated, and the alloy thin film has an oxygen concentration of 0.001 to 0.1 ppm and a temperature of 300 ° C.
Heat treatment at ~ 700 ℃ for 1 ~ 20 hours, oxygen concentration 0.1 ~ 100ppm, 200 ~ 500 ℃ ~ 1
The present invention provides a method for manufacturing a resistance thin film, which is characterized in that "heat treatment is performed for 0 hours.

【0011】[0011]

【作用】上記構成を有する本願各発明においては、絶縁
基板上に生成されたNi−Cr−Al−Siの4元系合
金からなる薄膜を、酸素濃度0.001〜0.1ppm、
温度300℃〜700℃で1〜20時間熱処理を行うこ
とにより抵抗温度特性を制御し、酸素濃度0.1〜10
0ppm、200℃〜500℃で1〜10時間熱処理を
行うことにより高温安定性を制御する。
In each of the inventions of the present invention having the above-mentioned structure, a thin film made of a quaternary alloy of Ni-Cr-Al-Si formed on an insulating substrate is provided with an oxygen concentration of 0.001 to 0.1 ppm,
The temperature characteristic of resistance is controlled by heat treatment at a temperature of 300 ° C to 700 ° C for 1 to 20 hours, and the oxygen concentration is 0.1 to 10
The high temperature stability is controlled by performing a heat treatment at 0 ppm and 200 ° C to 500 ° C for 1 to 10 hours.

【0012】[0012]

【実施例】本願発明の実施例を説明する。初めに、本願
発明を実施した抵抗薄膜材料及び抵抗薄膜製造方法につ
いて例を挙げて説明する。
EXAMPLES Examples of the present invention will be described. First, a resistance thin film material and a resistance thin film manufacturing method embodying the present invention will be described with examples.

【0013】Cr対Niの比が0.69、Siが1.3w
t%,Alが3.5wt%である4元系合金抵抗薄膜材
料を高純度アルミナ基板上に成膜する。この、成膜工程
はカソードスパッタ法によって行い、5×10-5Paに
排気された真空室に、純度99.9995%のアルゴン
ガスを導入した後、0.4Paの圧力に保ち、145Å
/minの成膜速度で行う。
The ratio of Cr to Ni is 0.69 and Si is 1.3w.
A quaternary alloy resistance thin film material with t% and Al of 3.5 wt% is formed on a high-purity alumina substrate. This film forming process is performed by the cathode sputtering method, and after introducing argon gas having a purity of 99.99995% into a vacuum chamber evacuated to 5 × 10 −5 Pa, the pressure is kept at 0.4 Pa and 145 Å
The film formation rate is / min.

【0014】その後、酸素濃度0.01ppm、温度1
50℃で1時間熱処理を行う。このようにして製造した
抵抗薄膜材料は、−5〜+5ppm/℃の範囲の良好な
抵抗温度特性を示した。また、70℃の試験温度におい
て定格電圧を1.5時間ON、0.5時間OFFするとの
断続を1500回行なったが、抵抗値変化は+0.01
2%と良好な高温安定性を示した。この抵抗値変化につ
いての測定結果を図1に示す。
After that, the oxygen concentration was 0.01 ppm and the temperature was 1.
Heat treatment is performed at 50 ° C. for 1 hour. The resistance thin film material produced in this manner showed good resistance temperature characteristics in the range of -5 to +5 ppm / ° C. In addition, at the test temperature of 70 ° C, the rated voltage was turned on for 1.5 hours and turned off for 0.5 hours, and then intermittently performed 1500 times, but the resistance value change was +0.01.
It showed a good high temperature stability of 2%. The measurement result of this change in resistance value is shown in FIG.

【0015】また、その他種々の組成を有する本発明の
薄膜抵抗材料についてのデータを表1に示す。
Table 1 shows data on the thin film resistance material of the present invention having various other compositions.

【0016】[0016]

【表1】 [Table 1]

【0017】図2及び図3を用いて、本願各発明を適用
した薄膜抵抗器1の製造方法を説明する。図2に示すの
は、第1の実施例であり、電極が2層構造となってい
る。 (a)(1) 絶縁材料であるアルミナ基板2上にNi−C
r−Al−Si4元系合金材料を蒸着・スパッタリング
あるいはイオン注入により成膜して厚さ約0.025μ
mの抵抗薄膜3を形成する。 (2) アルミナ基板上に形成された抵抗薄膜3を、酸素濃
度が0.001〜0.1ppmの真空中において300℃
〜700℃の温度で1〜20時間の熱処理を行い、再結
晶化を制御することにより抵抗温度特性を調整する。 (3) 抵抗温度特性が調整された抵抗薄膜3を酸素濃度が
0.1〜100ppmの真空中または不活性ガス中で2
00℃〜500℃の温度で1〜10時間の熱処理を行
い、緻密な酸化膜層を形成することにより高温安定性を
良好にする。 (4) 抵抗薄膜3上に蒸着・スパッタリングあるいはイオ
ン注入によりにより厚さ約0.2μmのCuからなる電
極層4を形成する。 (b)フォトレジスト膜5を塗布し、フォトエッチング
を行うことにより、電極部が形成される部分のレジスト
膜を除去する。 (c)レジスト膜が除去された部分に、湿式メッキ法に
よって厚さ約5μmのCu接続電極8a,8bを形成す
る。 (d)レジスト膜5を除去する。 (e)レジスト膜5の下の電極層4のうち4a,4bを
除く他の部分を除去することにより、電極部7a,7b
が形成される。
A method of manufacturing the thin film resistor 1 to which each invention of the present application is applied will be described with reference to FIGS. 2 and 3. FIG. 2 shows the first embodiment, in which the electrodes have a two-layer structure. (A) (1) Ni-C on the alumina substrate 2 which is an insulating material
A film of r-Al-Si quaternary alloy material is formed by vapor deposition / sputtering or ion implantation to a thickness of about 0.025μ.
The resistance thin film 3 of m is formed. (2) The resistance thin film 3 formed on the alumina substrate is heated to 300 ° C. in a vacuum with an oxygen concentration of 0.001 to 0.1 ppm.
Heat resistance is performed at a temperature of up to 700 ° C. for 1 to 20 hours, and recrystallization is controlled to adjust the resistance temperature characteristic. (3) The resistance thin film 3 whose resistance temperature characteristic has been adjusted 2 in a vacuum or an inert gas with an oxygen concentration of 0.1 to 100 ppm.
Heat treatment is performed at a temperature of 00 ° C. to 500 ° C. for 1 to 10 hours to form a dense oxide film layer, thereby improving the high temperature stability. (4) An electrode layer 4 made of Cu and having a thickness of about 0.2 μm is formed on the resistance thin film 3 by vapor deposition / sputtering or ion implantation. (B) The photoresist film 5 is applied and photoetching is performed to remove the resist film in the portion where the electrode portion is formed. (C) Cu connection electrodes 8a and 8b having a thickness of about 5 μm are formed on the portion where the resist film is removed by a wet plating method. (D) The resist film 5 is removed. (E) The electrode portions 7a and 7b are removed by removing the portions other than 4a and 4b of the electrode layer 4 under the resist film 5.
Is formed.

【0018】図3に示すのは、第2の実施例であり、電
極が3層構造となっている。この実施例は、図2に示し
た薄膜抵抗器の電極が2層構造となっているのに対し、
接続電極8a,8bがさらに保護層を設けた3層構造と
なっている。そのため、接続電極8a,8b上に厚さ約
1μmのNi,Ag,Au,Sn等からなる金属層9
a,9bを湿式メッキ法によって形成する工程(d)が
追加されている。この金属層9a,9bは、最終的には
保護層6a,6bとなる。
FIG. 3 shows the second embodiment, in which the electrodes have a three-layer structure. In this embodiment, the electrodes of the thin film resistor shown in FIG. 2 have a two-layer structure,
The connection electrodes 8a and 8b have a three-layer structure in which a protective layer is further provided. Therefore, the metal layer 9 made of Ni, Ag, Au, Sn or the like having a thickness of about 1 μm is formed on the connection electrodes 8a and 8b.
A step (d) of forming a and 9b by a wet plating method is added. The metal layers 9a and 9b finally become the protective layers 6a and 6b.

【0019】なお、本発明に係る薄膜抵抗体の面積抵抗
は、一般的には20〜200Ω/□の範囲とする。
The sheet resistance of the thin film resistor according to the present invention is generally in the range of 20 to 200 Ω / □.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
に係る抵抗体は、Ni−Cr−Al−Siからなる4元
系合金で構成し、Cr対Niの比を0.15〜0.74の
範囲、Alを0.4〜4.0wt%、Siを0.2〜5.0
wt%、AlとSiの総量を1.5〜8.0wt%の範囲
とすることにより、従来のNi−Crの2元系または、
Ni−Cr−Al、Ni−Cr−Si、Ni−Cr−B
eの3元系では不可能であった抵抗温度特性と高温安定
性の改善を行うことができる。
As is apparent from the above description, the resistor according to the present invention is made of a quaternary alloy composed of Ni-Cr-Al-Si and has a Cr to Ni ratio of 0.15 to 0. 0.74 range, Al 0.4 to 4.0 wt%, Si 0.2 to 5.0
wt% and the total amount of Al and Si are set in the range of 1.5 to 8.0 wt% so that the conventional Ni-Cr binary system or
Ni-Cr-Al, Ni-Cr-Si, Ni-Cr-B
It is possible to improve resistance temperature characteristics and high temperature stability, which were not possible with the ternary system of e.

【0021】また、絶縁基板上に生成された以上の組成
の抵抗薄膜を酸素濃度が0.001〜0.1ppmの真空
中において300℃〜700℃の温度で1〜20時間の
安定した熱処理を行い、真空成膜された薄膜抵抗体の再
結晶化を制御しながら行い抵抗温度係数の調整を行なう
から、絶縁基板上に膜を生成する時に基板温度を高温に
維持する必要がなくなり、膜生成時の装置条件が緩和さ
れ大量生産が容易になる。
The resistive thin film having the above composition formed on the insulating substrate is subjected to a stable heat treatment for 1 to 20 hours at a temperature of 300 to 700 ° C. in a vacuum having an oxygen concentration of 0.001 to 0.1 ppm. The temperature coefficient of resistance is adjusted by controlling the recrystallization of the vacuum-deposited thin-film resistor, so there is no need to maintain the substrate temperature at a high temperature when forming a film on an insulating substrate. The equipment conditions at that time are eased and mass production becomes easy.

【0022】このように、本願各発明によれば、抵抗温
度特性と高温安定性がきわめて優れ、高精度が要求され
る電子部品に適した薄膜抵抗器を良好な生産性のもとに
得ることができる。
As described above, according to each invention of the present application, it is possible to obtain a thin film resistor having excellent resistance-temperature characteristics and high-temperature stability and suitable for electronic parts requiring high accuracy with good productivity. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】抵抗値変化の測定結果グラフ[Fig. 1] Measurement result graph of resistance change

【図2】第1の実施例の製造工程図FIG. 2 is a manufacturing process diagram of the first embodiment.

【図3】第2の実施例の製造工程図FIG. 3 is a manufacturing process diagram of the second embodiment.

【符号の説明】[Explanation of symbols]

1 薄膜抵抗器 2 アルミナ基板 3 抵抗薄膜 4 電極層 5 フォトレジスト膜 6a,6b 保護層 7a,7b 電極部 8a,8b 接続電極 9a,9b 金属層 1 Thin Film Resistor 2 Alumina Substrate 3 Resistive Thin Film 4 Electrode Layer 5 Photoresist Film 6a, 6b Protective Layer 7a, 7b Electrode Part 8a, 8b Connection Electrode 9a, 9b Metal Layer

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年3月1日[Submission date] March 1, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】その後、酸素濃度0. 01ppm、温度4
30℃で5時間熱処理を行う。続いて酸素濃度10pp
m、温度200℃で1時間の熱処理を行う。このように
して製造した抵抗薄膜材料は、−5〜+5ppm/℃の
範囲の良好な抵抗温度特性を示した。また、70℃の試
験温度において定格電圧を1. 5時間ON、0. 5時間
OFFするとの断続を1500回行なったが、抵抗値変
化は+0. 012%と良好な高温安定性を示した。この
抵抗値変化についての測定結果を図1に示す。
Thereafter, the oxygen concentration was 0.01 ppm and the temperature was 4.
Heat treatment is performed at 30 ° C. for 5 hours. Then oxygen concentration 10pp
m, a temperature of 200 ° C. for 1 hour. The resistance thin film material produced in this manner showed good resistance temperature characteristics in the range of -5 to +5 ppm / ° C. At the test temperature of 70 ° C., the rated voltage was turned on for 1.5 hours and turned off for 0.5 hours, and the operation was repeated 1500 times, but the resistance change was + 0.012%, indicating good high-temperature stability. The measurement result of this change in resistance value is shown in FIG.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】図2及び図3を用いて、本願各発明を適用
した薄膜抵抗器1の製造方法を説明する。図2に示すの
は、第1の実施例であり、電極が2層構造となってい
る。 (a)(1) 絶縁材料であるアルミナ基板2上にNi−C
r−Al−Si4元系合金材料を蒸着・スパッタリング
あるいはイオンプレーティングにより成膜して厚さ約
0. 025μmの抵抗薄膜3を形成する。 (2) アルミナ基板上に形成された抵抗薄膜3を、酸素濃
度が0. 001〜0. 1ppmの真空中において300
℃〜700℃の温度で1〜20時間の熱処理を行い、抵
抗温度特性を調整する。 (3) 抵抗温度特性が調整された抵抗薄膜3を酸素濃度が
0. 1〜100ppmの真空中または不活性ガス中で2
00℃〜500℃の温度で1〜10時間の熱処理を行
い、高温安定性を良好にする。 (4) 抵抗薄膜3上に蒸着・スパッタリングあるいはイオ
ンプレーティングにより厚さ約0. 2μmのCuからな
る電極層4を形成する。 (b)フォトレジスト膜5を塗布し、フォトエッチング
を行うことにより、電極部が形成される部分のレジスト
膜を除去する。 (c)レジスト膜が除去された部分に、湿式メッキ法に
よって厚さ約5μmのCu接続電極8a,8bを形成す
る。 (d)レジスト膜5を除去する。 (e)レジスト膜5の下の電極層4のうち4a,4bを
除く他の部分を除去することにより、電極部7a,7b
が形成される。
A method of manufacturing the thin film resistor 1 to which each invention of the present application is applied will be described with reference to FIGS. 2 and 3. FIG. 2 shows the first embodiment, in which the electrodes have a two-layer structure. (A) (1) Ni-C on the alumina substrate 2 which is an insulating material
A resistance thin film 3 having a thickness of about 0.025 μm is formed by depositing an r-Al-Si quaternary alloy material by vapor deposition / sputtering or ion plating. (2) The resistance thin film 3 formed on the alumina substrate is 300 times in a vacuum with an oxygen concentration of 0.001 to 0.1 ppm.
Heat resistance is performed at a temperature of ℃ to 700 ℃ for 1 to 20 hours to adjust the resistance temperature characteristic. (3) The resistance thin film 3 whose resistance temperature characteristic is adjusted is used in a vacuum or an inert gas with an oxygen concentration of 0.1 to 100 ppm.
Heat treatment is performed at a temperature of 00 ° C to 500 ° C for 1 to 10 hours to improve high temperature stability. (4) An electrode layer 4 of Cu having a thickness of about 0.2 μm is formed on the resistance thin film 3 by vapor deposition / sputtering or ion plating. (B) The photoresist film 5 is applied and photoetching is performed to remove the resist film in the portion where the electrode portion is formed. (C) Cu connection electrodes 8a and 8b having a thickness of about 5 μm are formed on the portion where the resist film is removed by a wet plating method. (D) The resist film 5 is removed. (E) The electrode portions 7a and 7b are removed by removing the portions other than 4a and 4b of the electrode layer 4 under the resist film 5.
Is formed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大須賀 一行 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 (72)発明者 佐々木 勇 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 (72)発明者 及川 泰伸 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Isuka Osuka, 13-1, Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor, Isamu Sasaki 1-1-13, Nihonbashi, Chuo-ku, Tokyo, TDK Incorporated (72) Inventor Yasunobu Oikawa 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Cr対Niの比が0.15〜0.74、A
lが0.4〜4.0wt%、Siが0.2〜5.0wt%、
AlとSiの総量が1.5〜8.0wt%であることを特
徴とする抵抗薄膜材料。
1. A Cr to Ni ratio of 0.15 to 0.74, A
l is 0.4 to 4.0 wt%, Si is 0.2 to 5.0 wt%,
A resistive thin film material characterized in that the total amount of Al and Si is 1.5 to 8.0 wt%.
【請求項2】 抵抗体の面積抵抗が20〜200Ω/□
であることを特徴とする請求項1記載の抵抗薄膜材料。
2. The sheet resistance of the resistor is 20 to 200 Ω / □.
2. The resistance thin film material according to claim 1, wherein
【請求項3】 絶縁材料基板上にNi−Cr−Al−S
i4元系合金からなる合金薄膜を生成させ、該合金薄膜
を酸素濃度0.001〜0.1ppm、温度300℃〜7
00℃で1〜20時間熱処理を行い、さらに酸素濃度
0.1〜100ppm、200℃〜500℃で1〜10
時間熱処理を行うことを特徴とする抵抗薄膜の製造方
法。
3. Ni-Cr-Al-S on an insulating material substrate
An alloy thin film made of an i-quaternary alloy is formed, and the alloy thin film has an oxygen concentration of 0.001 to 0.1 ppm and a temperature of 300 ° C to 7 ° C.
Heat treatment is performed at 00 ° C for 1 to 20 hours, and further oxygen concentration is 0.1 to 100 ppm, and 200 to 500 ° C is 1 to 10
A method of manufacturing a resistive thin film, which comprises performing a heat treatment for a period of time.
JP4178659A 1992-07-06 1992-07-06 Thin film resistor and manufacture thereof Withdrawn JPH0620803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4178659A JPH0620803A (en) 1992-07-06 1992-07-06 Thin film resistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4178659A JPH0620803A (en) 1992-07-06 1992-07-06 Thin film resistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0620803A true JPH0620803A (en) 1994-01-28

Family

ID=16052330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4178659A Withdrawn JPH0620803A (en) 1992-07-06 1992-07-06 Thin film resistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0620803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321206C (en) * 2003-11-04 2007-06-13 住友金属矿山株式会社 Metal resistor material, sputtering target material, resistor film and their manufactures
JP2012502468A (en) * 2008-09-05 2012-01-26 ヴィシェイ デール エレクトロニクス インコーポレイテッド Metal strip resistor and manufacturing method thereof
JP2014241451A (en) * 2014-09-18 2014-12-25 住友金属鉱山株式会社 Resistance thin film element with copper conductor layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321206C (en) * 2003-11-04 2007-06-13 住友金属矿山株式会社 Metal resistor material, sputtering target material, resistor film and their manufactures
JP2012502468A (en) * 2008-09-05 2012-01-26 ヴィシェイ デール エレクトロニクス インコーポレイテッド Metal strip resistor and manufacturing method thereof
US8686828B2 (en) 2008-09-05 2014-04-01 Vishay Dale Electronics, Inc. Resistor and method for making same
US9251936B2 (en) 2008-09-05 2016-02-02 Vishay Dale Electronics, Llc Resistor and method for making same
US9916921B2 (en) 2008-09-05 2018-03-13 Vishay Dale Electronics, Llc Resistor and method for making same
JP2014241451A (en) * 2014-09-18 2014-12-25 住友金属鉱山株式会社 Resistance thin film element with copper conductor layer

Similar Documents

Publication Publication Date Title
EP0245900B1 (en) Layered film resistor with high resistance and high stability
JPH06158272A (en) Resistance film and production thereof
US4338145A (en) Chrome-tantalum alloy thin film resistor and method of producing the same
JPH0620803A (en) Thin film resistor and manufacture thereof
JP2782288B2 (en) Electric resistance material
JP4083956B2 (en) Resistor
JPH071722B2 (en) Thin film resistor
JPH0786004A (en) Method of manufacture thin film resistor material and thin film resistor
JPH09503627A (en) Electrical resistance structure
JPH07120208A (en) Strain gauge
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JPS63261804A (en) Method of adjusting resistance- temperature coefficient of metal thin film
JPH0140511B2 (en)
JPS625602A (en) Thin film resistor
JPS6236622B2 (en)
JP2022031015A (en) Resistor and method for manufacturing resistor
EP2100313B1 (en) High resistivity thin film composition and fabrication method
JPH06213612A (en) Distortion resistance material and manufacture thereof and thin film distortion sensor
JPH045241B2 (en)
JPH04192302A (en) Thin film thermistor element
JPS5845163B2 (en) How to make resistors
JPH071721B2 (en) Thin film resistor
JPH044722B2 (en)
JPH07120573B2 (en) Method for manufacturing amorphous binary alloy thin film resistor
JPH06124802A (en) Resistor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005