JPH06204599A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH06204599A
JPH06204599A JP34915692A JP34915692A JPH06204599A JP H06204599 A JPH06204599 A JP H06204599A JP 34915692 A JP34915692 A JP 34915692A JP 34915692 A JP34915692 A JP 34915692A JP H06204599 A JPH06204599 A JP H06204599A
Authority
JP
Japan
Prior art keywords
layer
quantum well
gaas
superlattice
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34915692A
Other languages
Japanese (ja)
Inventor
Toshiro Hayakawa
利郎 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Japan Ltd
Original Assignee
Eastman Kodak Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Japan Ltd filed Critical Eastman Kodak Japan Ltd
Priority to JP34915692A priority Critical patent/JPH06204599A/en
Publication of JPH06204599A publication Critical patent/JPH06204599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To use InGaAs and InGaAlAs as a quantum well active layer, and to provide a semiconductor laser having low threshold currents, stable temperature characteristics, high reliability and high performance. CONSTITUTION:When an N-GaAs buffer layer 2, an N-Al0.6Ga0.4As clad layer 3, an undoped superlattice optical guide layer 4, an undoped In0.2Ga0.8As quantum well layer 5, an undoped superlattice optical guide layer 6, a P-Al0.6Ga0.4As clad layer 7 and a P-GaAs cap 8 are formed continuously onto an N-GaAs substrate 1 by using an MBE method, GaAs three molecule layers and Al0.6Ga0.4 As two molecule layers are laminated alternately at fifty periods in the superlattice optical guide layers 4, 6, and a growth temperature is changed during the formation of the superlattice optical guide layer 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ、特に約7
70nmから1100nmの範囲に発振波長を有する半
導体レーザよびその製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a semiconductor laser, and more particularly to about 7
The present invention relates to a semiconductor laser having an oscillation wavelength in the range of 70 nm to 1100 nm and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年における光通信技術や光情報処理技
術は各種の分野において中心的な役割を果たすようにな
っており、例えば光ファイバを用いたデジタル光通信は
データ通信密度の飛躍的な増大を可能とし、また光ディ
スクやレーザプリンターは光情報処理の応用範囲を著し
く拡大している。このような光通信技術や光情報処理技
術の発展は光源である半導体レーザ(レーザダイオー
ド)の進歩に負うところが大きく、小型かつ高効率とい
う優れた特徴を利用してコンパクトディスクやビデオデ
ィスク、光通信網などの光源として幅広く応用されてい
る。周知のごとく、半導体レーザはPN接合を用いて、
活性層に多数のキャリアを注入することにより励起状態
を実現させレーザ発振を行うものである。そして、最近
の半導体技術の進歩、特に分子線エピタキシー(MB
E)法や有機金属気相成長(MOCVD)法の進歩によ
り10Å程度以下の原子オーダに至る極薄膜のエピタキ
シャル成長層の制御が可能になった。それに伴い、20
0Å程度以下の量子井戸を活性領域とする半導体レーザ
が実現され、高効率・低駆動電流化が進んだ(参考文
献:W.T.Tsang,in Semiconductors and Semimetals vo
l.24,"pp.397 edited by R.Dingle,Academic Press,San
Diego(1987) )。
2. Description of the Related Art In recent years, optical communication technology and optical information processing technology have come to play a central role in various fields. For example, digital optical communication using an optical fiber dramatically increases the data communication density. In addition, optical discs and laser printers have significantly expanded the application range of optical information processing. The development of such optical communication technology and optical information processing technology largely depends on the progress of the semiconductor laser (laser diode) which is a light source. Utilizing the excellent features of small size and high efficiency, compact disks, video disks, optical communication Widely used as a light source for nets. As is well known, a semiconductor laser uses a PN junction,
By injecting a large number of carriers into the active layer, an excited state is realized and laser oscillation is performed. And recent advances in semiconductor technology, especially molecular beam epitaxy (MB
E) method and metal-organic vapor phase epitaxy (MOCVD) method have made it possible to control an ultra-thin epitaxial growth layer to an atomic order of about 10 Å or less. Along with that, 20
A semiconductor laser having an active region of a quantum well of about 0 Å or less has been realized, and high efficiency and low driving current have been advanced (reference: WTTsang, in Semiconductors and Semimetals vo
l.24, "pp.397 edited by R.Dingle, Academic Press, San
Diego (1987)).

【0003】最近では周囲の半導体と格子定数の異なる
歪量子井戸を用いた半導体レーザが注目されている。こ
れは臨界膜厚以内であれば格子欠陥を生じることなく結
晶を積層できるという点においてMBE法やMOCVD
法の利点を生かしたデバイスということができる。特に
980nmに発振波長をもつInGaAsを量子井戸活
性層とする歪量子井戸レーザは光ファイバ増幅器の励起
用光源として重要視されている。従来この種の半導体レ
ーザにおいてはAlを含まないGaAsを障壁層として
用いることが多くなされてきた。これはInGaAsが
蒸気圧の高いInを含むため比較的低い温度で量子井戸
層を成長する必要があり、低温で良好な結晶性を得るこ
とができるGaAsで量子井戸を挟み込むことにより、
高品質のヘテロ構造を作製できるためである。
Recently, a semiconductor laser using a strained quantum well having a lattice constant different from that of the surrounding semiconductor has been attracting attention. This is because the MBE method or MOCVD method is capable of stacking crystals without causing lattice defects as long as they are within the critical film thickness.
It can be said that the device takes advantage of the law. In particular, a strained quantum well laser using InGaAs having an oscillation wavelength of 980 nm as a quantum well active layer is regarded as an important light source for pumping an optical fiber amplifier. Conventionally, in this type of semiconductor laser, GaAs not containing Al has been often used as a barrier layer. This is because InGaAs contains In having a high vapor pressure, so it is necessary to grow the quantum well layer at a relatively low temperature, and by sandwiching the quantum well with GaAs, which can obtain good crystallinity at a low temperature,
This is because a high quality heterostructure can be manufactured.

【0004】一方、Alを含むAlGaAsを障壁層に
用いた場合には発光効率が著しく低下するなどの欠点が
報告されている(参考文献:B.Pezeshki,S.M.Lord,and
J.S.Harris,Jr.,in Proceedings of International Sym
posium on Gallium Arsenideand Related Compounds,Se
attle,1991;Inst.Phys.Conf.Ser.No.120(IOP,London)p.
437.) 。
On the other hand, it has been reported that when AlGaAs containing Al is used for the barrier layer, the luminous efficiency is significantly lowered (reference: B. Pezeshki, SM Lord, and
JSHarris, Jr., in Proceedings of International Sym
posium on Gallium Arsenideand Related Compounds, Se
attle, 1991; Inst.Phys.Conf.Ser.No.120 (IOP, London) p.
437.).

【0005】つまり、MBE法によりAlGaAsをク
ラッド層として、InGaAsあるいはInGaAlA
sのようにInを含む量子井戸を活性層とした半導体レ
ーザを製造する場合、それぞれに最適成長温度が異なる
ため、クラッド層は700℃以上の高温で、量子井戸層
は550℃以下の低温で成長する必要がある。この時の
最適成長温度を実現する方法として、結晶成長を休止し
て、温度を変えることもできるが、成長の中断を行った
界面には非発光再結合中心が高密度に存在するため、デ
バイスの効率や信頼性を損なうため通常は採用されてい
ない。このように、Inを含む混晶を量子井戸活性層と
する場合には低温でAlGaAs障壁層を成長するかあ
るいはAlGaAs障壁層の成長中に温度を変える必要
があった。そのため、レーザ特性を満足するほど高品質
のヘテロ構造を製造することができなかった。
That is, InGaAs or InGaAlA is formed by the MBE method using AlGaAs as a cladding layer.
When manufacturing a semiconductor laser having an In-containing quantum well as an active layer such as s, the optimum growth temperature is different for each, so that the cladding layer is at a high temperature of 700 ° C. or higher and the quantum well layer is at a low temperature of 550 ° C. or lower. Need to grow. As a method of achieving the optimum growth temperature at this time, the temperature can be changed by suspending the crystal growth, but since the non-radiative recombination centers are present at a high density at the interface where the growth is interrupted, It is not usually adopted because it impairs the efficiency and reliability of. Thus, when a mixed crystal containing In is used as the quantum well active layer, it is necessary to grow the AlGaAs barrier layer at a low temperature or change the temperature during the growth of the AlGaAs barrier layer. Therefore, it was not possible to manufacture a high-quality heterostructure that satisfies the laser characteristics.

【0006】しかし、In0.2 Ga0.8 Asの単一量子
井戸(6nm)をAlx Ga1-x As障壁層(xはAl
の混晶比)で挟んだ試料をMBE法により520℃で作
製し、室温300Kにおいてフォトルミネッセンスの発
光強度を測定した結果、図3に示すように発光強度は障
壁層のAl混晶比xと共に指数関数的に増大することが
分かった。従って、GaAsを障壁層として用いるかわ
りにAlGaAsを障壁層に用いることにより、閾値電
流の低下や温度特性の改善を行うことができる。 とこ
ろが、前述したように、MBE法においては、約640
〜700℃の温度範囲においてAlGaAsが鏡面状に
成長しない温度領域が存在する(参考文献:T.Hayakaw
a,M.Morishima,M.Nagai,H.Horie,and K.Matsumoto,Appl
ied Physics Letters vol.59,No.19,pp.2415(1991))。
そこで、InGaAs量子井戸活性層とAlGaAsの
間に薄いGaAsの障壁層を設けて、この層の成長中に
温度を変化させることが必要であった。
However, a single quantum well (6 nm) of In 0.2 Ga 0.8 As is used as an Al x Ga 1-x As barrier layer (x is Al.
(A mixed crystal ratio) of the sample was prepared by MBE method at 520 ° C., and the emission intensity of photoluminescence was measured at room temperature of 300 K. As a result, as shown in FIG. It was found to increase exponentially. Therefore, by using AlGaAs as the barrier layer instead of using GaAs as the barrier layer, it is possible to reduce the threshold current and improve the temperature characteristics. However, as described above, in the MBE method, about 640
There is a temperature region where AlGaAs does not grow like a mirror surface in the temperature range of up to 700 ° C (reference: T. Hayakaw
a, M.Morishima, M.Nagai, H.Horie, and K.Matsumoto, Appl
ied Physics Letters vol.59, No.19, pp.2415 (1991)).
Therefore, it was necessary to provide a thin GaAs barrier layer between the InGaAs quantum well active layer and AlGaAs and change the temperature during the growth of this layer.

【0007】従来の歪量子井戸レーザの形成手順を図4
を用いて説明する。
A conventional procedure for forming a strained quantum well laser is shown in FIG.
Will be explained.

【0008】(100)方位を有するn−GaAs基板
41上にn−GaAsバッファ層42、n−Al0.6
0.4 Asクラッド層43を設け、該クラッド層43か
らAl混晶比を後述するInGaAs量子井戸46に近
づくに従って徐々に0.6から0.05に減少させるG
RIN(graded index)光ガイド層44、さらに比較的
薄いGaAs障壁層45を形成した後、InGaAs量
子井戸46を形成する。以下、該InGaAs量子井戸
46を挟むように、GaAs障壁層47、GRIN光ガ
イド層48、p−Al0.6 Ga0.4 Asクラッド層4
9、p−GaAsキャップ層50をMBE法を用いて連
続的に形成する。前記MBE法による結晶成長の後、プ
ラズマCVDにより、SiNx 膜51を形成し、フォト
リソグラフィー法と希釈したHFによる化学エッチング
により、一部のSiNx 膜を除去して幅50μmのスト
ライブ状の窓54を形成する。最後に、p−GaAsキ
ャップ層49側にMo/Au52、n−GaAs基板4
1側にAuGe/Ni/Au53を真空蒸着後、460
℃でアニールしてオーミック電極を形成する。このよう
に、歪量子井戸レーザを形成し、GRIN光ガイド層4
4、48によってクラッド層へのキャリア漏れを低減す
るとともに量子井戸への光の閉じ込めを増大させてい
る。また、量子井戸46を比較的薄いGaAs障壁層4
5,47で挟んで、これらのGaAs層成長中に温度を
変化させることによって、結晶の最適成長温度を実現
し、組成による温度不整合を解消すると共に、結晶性の
劣化を防止している。
An n-GaAs buffer layer 42 and n-Al 0.6 G are formed on an n-GaAs substrate 41 having a (100) orientation.
a 0.4 As clad layer 43 is provided, and the Al mixed crystal ratio is gradually reduced from 0.6 to 0.05 as the clad layer 43 approaches an InGaAs quantum well 46 described later.
After forming a RIN (graded index) optical guide layer 44 and a relatively thin GaAs barrier layer 45, an InGaAs quantum well 46 is formed. Hereinafter, the GaAs barrier layer 47, the GRIN optical guide layer 48, the p-Al 0.6 Ga 0.4 As clad layer 4 so as to sandwich the InGaAs quantum well 46.
9. The p-GaAs cap layer 50 is continuously formed using the MBE method. After the crystal growth by the MBE method, a SiN x film 51 is formed by plasma CVD, and a part of the SiN x film is removed by photolithography and chemical etching by diluted HF to form a stripe shape with a width of 50 μm. The window 54 is formed. Finally, Mo / Au 52 and n-GaAs substrate 4 are provided on the p-GaAs cap layer 49 side.
After vacuum deposition of AuGe / Ni / Au53 on the 1 side, 460
Anneal at ℃ to form an ohmic electrode. In this way, the strained quantum well laser is formed, and the GRIN optical guide layer 4 is formed.
4 and 48 reduce carrier leakage to the cladding layer and increase light confinement in the quantum well. In addition, the quantum well 46 is formed into a relatively thin GaAs barrier layer 4
By sandwiching between 5, 47, the temperature is changed during the growth of these GaAs layers to realize the optimum crystal growth temperature, eliminate the temperature mismatch due to the composition, and prevent the deterioration of the crystallinity.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来の歪量子
井戸レーザは余分なGaAs障壁層を有するため全体と
して光ガイド層の厚み(44〜48層の合計)が大きく
なりpn接合に垂直方向のレーザ光のビーム広がりが大
きくなって光学系との結合効率が小さくなる欠点があっ
た。更にGaAsを障壁層として用いる場合には、ヘテ
ロ障壁が十分にとれないためGaAsに近いエネルギー
ギャップをもつ低In混晶比のInGaAsや更にエネ
ルギーギャップの大きなInGaAlAsを量子井戸活
性層としたレーザを実現できなかった。
However, since the conventional strained quantum well laser has an extra GaAs barrier layer, the thickness of the optical guide layer (the total of 44 to 48 layers) becomes large as a whole, and the thickness of the optical guide layer in the direction perpendicular to the pn junction is increased. There is a drawback that the beam spread of the laser light becomes large and the coupling efficiency with the optical system becomes small. Furthermore, when GaAs is used as a barrier layer, a heterobarrier cannot be sufficiently taken, so that a laser with InGaAs having a low In mixed crystal ratio having an energy gap close to that of GaAs or InGaAlAs having a larger energy gap as a quantum well active layer is realized. could not.

【0010】また、MBE法、MOCVD法を用いて結
晶成長を行う場合に最適成長温度が混晶の種類により狭
い範囲に限定されるため条件の選定が困難であった。
Further, when the crystal growth is carried out using the MBE method or the MOCVD method, the optimum growth temperature is limited to a narrow range depending on the kind of the mixed crystal, so that it is difficult to select the conditions.

【0011】そこで本発明は、InGaAsやInGa
AlAsを量子井戸活性層とし、低閾値電流かつ温度特
性が安定し高信頼性を有した高性能の半導体レーザを容
易に提供することを目的としたものである。
Therefore, the present invention is based on InGaAs and InGa.
The objective is to easily provide a high-performance semiconductor laser having a low threshold current, stable temperature characteristics, and high reliability, using AlAs as a quantum well active layer.

【0012】[0012]

【課題を解決するための手段】本発明は、前記問題点を
解決するため、活性層が少なくとも1層の量子井戸層よ
り成り、かつ該量子井戸層が少なくともIn,Ga,A
sを含む半導体より成る半導体レーザにおいて、該量子
井戸層に隣接する障壁層の少なくとも一つがGaAsお
よびAlGaAsあるいはAlAsを交互に積層した超
格子層より成ることを特徴とするものであり、前記半導
体レーザの製造の時に前記超格子層の少なくとも一つの
成長中に成長温度を変化させることを特徴とするもので
ある。
In order to solve the above-mentioned problems, the present invention has an active layer composed of at least one quantum well layer, and the quantum well layer comprises at least In, Ga, and A.
In the semiconductor laser made of a semiconductor containing s, at least one of the barrier layers adjacent to the quantum well layer is a superlattice layer in which GaAs and AlGaAs or AlAs are alternately laminated. The growth temperature is changed during the growth of at least one of the superlattice layers at the time of manufacturing.

【0013】[0013]

【作用】本発明においては、少なくともIn,Ga,A
sを含む量子井戸を活性層とする半導体レーザにおい
て、単一または多重の量子井戸活性層を挟む障壁層とし
てGaAsおよびAlGaAsあるいはAlAsを交互
に積層した超格子層を用いることにより等価的に高品質
のAlGaAs障壁層を有する量子井戸半導体レーザと
同等の高効率高信頼性を得る。また、この超格子障壁層
の成長中に成長温度を変化させる方法をとることにより
障壁層の結晶性を損なうことなく成長温度が比較的低温
が適したIn,Ga,Asを含む量子井戸と比較的高温
が適したAlGaAsクラッド層と共に最適な温度にお
いて製造できる。
In the present invention, at least In, Ga, A
In a semiconductor laser having a quantum well active layer containing s as an active layer, a superlattice layer in which GaAs and AlGaAs or AlAs are alternately stacked is used as a barrier layer sandwiching a single or multiple quantum well active layers, and equivalently high quality is obtained. The same high efficiency and high reliability as the quantum well semiconductor laser having the AlGaAs barrier layer can be obtained. Further, by adopting a method of changing the growth temperature during the growth of the superlattice barrier layer, the growth temperature is relatively low without compromising the crystallinity of the barrier layer, which is suitable for a quantum well containing In, Ga, As. It can be manufactured at an optimum temperature with a suitable AlGaAs cladding layer.

【0014】[0014]

【実施例】本発明の良好な実施例を図面を利用して説明
する。図1に本発明の第1実施例であるInGaAs/
AlGaAs量子井戸レーザの断面を模式的に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows InGaAs / which is a first embodiment of the present invention.
The cross section of an AlGaAs quantum well laser is shown typically.

【0015】(100)方位を有するn−GaAs基板
1(Si=2×1018cm-3)上にn−GaAsバッフ
ァ層2(Si=1×1018cm-3,0.5μm)、n−
Al0.6 Ga0.4 Asクラッド層3(Si=1×1018
cm-3,1.5μm)、ノンドープ超格子光ガイド層
4、ノンドープIn0.2 Ga0.8 As量子井戸層5
(0.006μm)、ノンドープ超格子光ガイド層6、
p−Al0.6 Ga0.4 Asクラッド層7(Be=1×1
18cm-3,1.5μm)、p−GaAsキャップ8
(Be=1×1019cm-3,0.5μm)をMBE法を
用いて連続的に形成する。ここで、ノンドープ超格子光
ガイド層4および6はGaAs3分子層Al0.6Ga
0.4 As2分子層を交互に50周期積層したものであ
る。この時、平均のAl混晶比は0.24である。ま
た、成長温度はn−Al0.6 Ga0.4 Asクラッド層3
を720℃で成長後、ノンドープ超格子光ガイド層4の
成長開始と同時に温度を下げノンドープ超格子光ガイド
層4の成長中に520℃に安定させノンドープIn0.2
Ga0.8 As量子井戸層5は520℃で成長を行う。次
にノンドープ超格子光ガイド層6の成長開始と同時に温
度を上げノンドープ超格子光ガイド層6成長中に720
℃に安定させ、その後の成長は720℃において行う。
このようにGaAsを含む超格子中で成長温度を変化さ
せても完全に鏡面の成長が可能であり素子特性を劣化さ
せることなくMBE法による結晶成長が可能である。こ
こでノンドープIn0.2 Ga0.8 As量子井戸層は成長
温度が±20℃程度変化しても大きな特性劣化とならな
いが、Al0.6 Ga0.4 Asクラッド層3および7は結
晶性が成長温度に敏感なため±5℃以内に温度を安定さ
せる必要がある。MBE成長の後、プラズマCVDによ
り、SiNx 膜9(3000Å)を形成し、フォトリソ
グラフィー法と希釈したHFによる化学エッチングによ
り、一部のSiNx 膜を除去して幅50μmのストライ
ブ状の窓12を形成する。最後に、p−GaAsキャッ
プ層側にMo/Au10、n−GaAs基板側にAuG
e/Ni/Au11を真空蒸着後、460℃で5分間ア
ニールしてオーミック電極を形成する。
On the n-GaAs substrate 1 (Si = 2 × 10 18 cm -3 ) having the (100) orientation, the n-GaAs buffer layer 2 (Si = 1 × 10 18 cm -3 , 0.5 μm), n −
Al 0.6 Ga 0.4 As clad layer 3 (Si = 1 × 10 18
cm −3 , 1.5 μm), non-doped superlattice optical guide layer 4, non-doped In 0.2 Ga 0.8 As quantum well layer 5
(0.006 μm), non-doped superlattice optical guide layer 6,
p-Al 0.6 Ga 0.4 As clad layer 7 (Be = 1 × 1)
0 18 cm −3 , 1.5 μm), p-GaAs cap 8
(Be = 1 × 10 19 cm −3 , 0.5 μm) is continuously formed using the MBE method. Here, the non-doped superlattice optical guide layers 4 and 6 are composed of GaAs trimolecular layer Al 0.6 Ga.
It is formed by alternately stacking 50 cycles of 0.4 As2 molecular layers. At this time, the average Al mixed crystal ratio is 0.24. The growth temperature is n-Al 0.6 Ga 0.4 As clad layer 3.
After growth at 720 ° C., an undoped In 0.2 stabilizes the undoped growth initiation of the superlattice optical guide layer 4 at the same time as 520 ° C. during the growth of the non-doped superlattice optical guide layer 4 lowers the temperature
The Ga 0.8 As quantum well layer 5 is grown at 520 ° C. Next, at the same time when the growth of the non-doped superlattice light guide layer 6 is started, the temperature is raised to 720 during the growth of the non-doped superlattice light guide layer 6.
Stabilize to 0 ° C and subsequent growth at 720 ° C.
In this way, even if the growth temperature is changed in the superlattice containing GaAs, perfect mirror growth is possible, and crystal growth by the MBE method is possible without deteriorating the device characteristics. Here, the undoped In 0.2 Ga 0.8 As quantum well layer does not cause significant deterioration in characteristics even if the growth temperature changes by about ± 20 ° C., but the crystallinity of the Al 0.6 Ga 0.4 As clad layers 3 and 7 is sensitive to the growth temperature. It is necessary to stabilize the temperature within ± 5 ° C. After MBE growth, a SiN x film 9 (3000 Å) is formed by plasma CVD, a part of the SiN x film is removed by photolithography and chemical etching using diluted HF, and a striped window 12 having a width of 50 μm is formed. To form. Finally, Mo / Au10 on the p-GaAs cap layer side and AuG on the n-GaAs substrate side.
After e / Ni / Au11 is vacuum-deposited, it is annealed at 460 ° C. for 5 minutes to form an ohmic electrode.

【0016】このようにして製造したウエハを、共振器
長500μmに劈開し、前端面に反射率10%のAl2
3 膜、後端面に反射率95%のAl2 3 とアモルフ
ァスSiを交互に二周期積層した多層膜のコーティング
を電子ビーム蒸着により施した後、幅500μmのチッ
プに切り出し、Inはんだを用いて銅ヒートシンク上に
マウントする。このようにして製造した歪量子井戸レー
ザの特性を測定すると、25℃において閾値電流55m
Aで発振し、前端面より1W以上の光出力を得ることが
できる。また、この時の発振波長は約980nmであ
る。さらに、この歪量子井戸レーザは、温度特性にすぐ
れ、閾値電流をAexp(T/T0 )[Aは定数、Tは
温度]で表した時の特性温度T0 の値は従来のGaAs
を光ガイド層に用いた場合の120度程度に比べて18
0度以上に向上した。これは量子井戸から障壁層(光ガ
イド層)へのキャリア、主として電子の漏れが低減でき
たためである。
The wafer thus manufactured was cleaved to have a cavity length of 500 μm, and Al 2 having a reflectance of 10% was formed on the front end face.
After coating the O 3 film and the rear end surface of Al 2 O 3 having a reflectance of 95% and amorphous Si by two cycles alternately by electron beam vapor deposition, the chip is cut into a chip with a width of 500 μm and In solder is used. Mount it on a copper heat sink. When the characteristics of the strained quantum well laser manufactured in this way are measured, the threshold current is 55 m at 25 ° C.
It oscillates at A, and a light output of 1 W or more can be obtained from the front end face. The oscillation wavelength at this time is about 980 nm. Further, this strained quantum well laser has excellent temperature characteristics, and the characteristic temperature T 0 when the threshold current is expressed by Aexp (T / T 0 ) [A is a constant, T is temperature] is the same as that of the conventional GaAs.
Compared to about 120 degrees when using as a light guide layer,
It improved to 0 degrees or more. This is because leakage of carriers, mainly electrons, from the quantum well to the barrier layer (optical guide layer) could be reduced.

【0017】図2に本発明の第2実施例であるInGa
AlAs/AlGaAs歪多重量子井戸レーザの断面を
模式的に示す。
FIG. 2 shows InGa which is a second embodiment of the present invention.
1 schematically shows a cross section of an AlAs / AlGaAs strained multiple quantum well laser.

【0018】(100)方位を有するn−GaAs基板
21(Si=2×1018cm-3)上にn−GaAsバッ
ファ層22(Si=1×1018cm-3,0.5μm)、
n−Al0.7 Ga0.3 Asクラッド層23(Si=1×
1018cm-3,1.4μm)、ノンドープ超格子光ガイ
ド層24、ノンドープIn0.1 (Ga0.85Al0.15
0.9 As歪多重量子井戸活性層25、ノンドープ超格子
光ガイド層26、p−Al0.7 Ga0.3 Asクラッド層
27(Be=1×1018cm-3,1.4μm)、p−G
aAsキャップ28(Be=1×1019cm-3,0.7
μm)をMBE法を用いて連続的に形成する。ここで、
ノンドープ超格子光ガイド層24および26はGaAs
2分子層Al0.7 Ga0.3 As2分子層を交互に61周
期積層したもので、平均のAl混晶比は0.35であ
る。歪多重量子井戸活性層25は3つのIn0.1 (Ga
0.85Al0.150.9 As歪量子井戸(0.006μm)
をGaAs2分子層Al0.7 Ga0.3 As2分子層を交
互に8周期(Al0.7 Ga0.3Asは量端で9層)積層
した超格子障壁層で隔てられている。本実施例において
も第1の実施例と同様に成長温度はAlGaAsクラッ
ド層23、27を720℃で成長、ノンドープ超格子光
ガイド層24,26の成長中に温度を変化させて歪多重
量子井戸活性層25は520℃で成長した。MBE成長
の後第1の実施例と同様の50μm幅SiNx ストライ
プレーザ32を作製する。
An n-GaAs buffer layer 22 (Si = 1 × 10 18 cm -3 , 0.5 μm) on an n-GaAs substrate 21 (Si = 2 × 10 18 cm -3 ) having a (100) orientation,
n-Al 0.7 Ga 0.3 As clad layer 23 (Si = 1 ×
10 18 cm −3 , 1.4 μm), non-doped superlattice optical guide layer 24, non-doped In 0.1 (Ga 0.85 Al 0.15 ).
0.9 As strained multiple quantum well active layer 25, non-doped superlattice optical guide layer 26, p-Al 0.7 Ga 0.3 As clad layer 27 (Be = 1 × 10 18 cm −3 , 1.4 μm), p-G
aAs cap 28 (Be = 1 × 10 19 cm −3 , 0.7
μm) are continuously formed using the MBE method. here,
The undoped superlattice optical guide layers 24 and 26 are made of GaAs.
Two molecular layers of Al 0.7 Ga 0.3 As 2 molecular layers are alternately laminated for 61 cycles, and the average Al mixed crystal ratio is 0.35. The strained multiple quantum well active layer 25 includes three In 0.1 (Ga)
0.85 Al 0.15 ) 0.9 As Strained quantum well (0.006 μm)
Are separated by superlattice barrier layers in which GaAs bilayers Al 0.7 Ga 0.3 As bilayers are alternately laminated for 8 periods (Al 0.7 Ga 0.3 As is 9 layers at the volume end). Also in this embodiment, as in the first embodiment, the growth temperature is such that the AlGaAs cladding layers 23 and 27 are grown at 720 ° C., and the temperature is changed during the growth of the non-doped superlattice optical guide layers 24 and 26 to obtain strained multiple quantum wells. The active layer 25 was grown at 520 ° C. After MBE growth, a 50 μm wide SiN x stripe laser 32 similar to that of the first embodiment is produced.

【0019】このようにして作製したウエハを、共振器
長500μmに劈開し、前端面に反射率10%のAl2
3 膜、後端面に反射率95%のAl2 3 とアモルフ
ァスSiを交互に二周期積層した多層膜のコーティング
を電子ビーム蒸着により施した後、幅500μmのチッ
プに切り出し、Inはんだを用いて銅ヒートシンク上に
マウントする。この様にして製造した歪量子レーザの特
性を測定すると、25℃において閾値電流75mAで発
振し、前端面より1W以上の光出力を得ることができ
る。この時の発振波長は約830nmである。Inを含
む歪量子井戸を用いているため同じ発振波長を有するA
lGaAs無歪量子井戸のレーザより低閾値電流および
高信頼性を得ることができる。
The wafer thus produced was cleaved to have a cavity length of 500 μm, and Al 2 having a reflectance of 10% was formed on the front end face.
After coating the O 3 film and the rear end surface of Al 2 O 3 having a reflectance of 95% and amorphous Si by two cycles alternately by electron beam vapor deposition, the chip is cut into a chip with a width of 500 μm and In solder is used. Mount it on a copper heat sink. When the characteristics of the strained quantum laser manufactured as described above are measured, it is possible to oscillate at a threshold current of 75 mA at 25 ° C. and obtain an optical output of 1 W or more from the front end face. The oscillation wavelength at this time is about 830 nm. Since a strained quantum well containing In is used, A having the same oscillation wavelength
It is possible to obtain a lower threshold current and higher reliability than the laser of the 1GaAs unstrained quantum well.

【0020】このようにGaAsとAlGaAsの短周
期超格子を障壁層として用いることによって従来のIn
を含まないAlGaAsレーザがカバーしていた750
〜880nmの波長範囲の半導体レーザの特性を改善す
ることが可能である。また、従来カバーできていなかっ
た、約880〜940nmの波長範囲の半導体レーザも
特性の劣化なく実現することが可能になる。
As described above, by using the short period superlattice of GaAs and AlGaAs as the barrier layer, the conventional In
750 not covered by AlGaAs laser
It is possible to improve the characteristics of the semiconductor laser in the wavelength range of ˜880 nm. Further, a semiconductor laser in the wavelength range of about 880 to 940 nm, which has not been covered in the past, can be realized without deterioration of characteristics.

【0021】上記実施例はひとつの素子中で同一構造の
超格子障壁層を有する半導体レーザについて示したが、
それぞれの超格子障壁層の組成や周期を変えたり、ひと
つの超格子障壁層中で周期や組成を変化させる、あるい
は周期や組成の異なる複数の超格子層により超格子障壁
層を構成することが可能である。
The above embodiment shows a semiconductor laser having a superlattice barrier layer having the same structure in one device.
It is possible to change the composition or period of each superlattice barrier layer, change the period or composition within one superlattice barrier layer, or configure a superlattice barrier layer with multiple superlattice layers having different periods or compositions. It is possible.

【0022】また、上記実施例においては最も簡単な電
極ストライプ構造の素子についてのみ詳述したが、その
他各種の屈折率導波構造を含む種々のストライプ構造を
有する半導体レーザに適応できることは言うまでもな
い。
Further, in the above embodiments, only the element having the simplest electrode stripe structure has been described in detail, but it goes without saying that the invention can be applied to semiconductor lasers having various stripe structures including various refractive index guiding structures.

【0023】更に製造方法としてはMBE法を用いる必
要はなく、金属材料のかわりに気体原料を用いたMBE
法やさらにMOCVD法を用いる場合にも一般にAlG
aAsとInを含む化合物半導体では最適な製造温度が
大きく異なるためこれらの層の間で成長を休止すること
なく温度を変えることを可能ならしめることによって高
品質の半導体レーザを実現できる。
Furthermore, it is not necessary to use the MBE method as a manufacturing method, and MBE using a gas raw material instead of the metal material is used.
Method and also when using the MOCVD method, AlG is generally used.
Since the optimum manufacturing temperature greatly differs between compound semiconductors containing aAs and In, it is possible to realize a high-quality semiconductor laser by making it possible to change the temperature between these layers without stopping the growth.

【0024】[0024]

【発明の効果】以上説明したように、本発明に係る半導
体レーザによれば、InGaAlAsあるいはInGa
As歪量子井戸を活性層とする場合に量子井戸のヘテロ
障壁のエネルギーを従来より高くとることが可能になり
低電流・高効率で温度特性にすぐれた素子を実現でき
る。また、InGaAlAs歪量子井戸はAlGaAs
の無歪量子井戸より低閾値などの特性向上が実現できる
ばかりでなく信頼性を向上することができる。さらに本
発明の製造方法を用いることによりクラッド層と活性層
がそれぞれ最適な条件で製造可能となるため、結晶性を
損ねることなく高信頼性を有する素子を再現性良く製造
することが可能となる。特にMBE法やそれに類する製
造方法を用いる場合、これまではAlGaAsが非鏡面
成長となる温度領域の存在のため製造が極めて困難であ
ったAlGaAsを障壁層とするInGaAsあるいは
InGaAlAsの歪量子井戸を活性層とする低閾値電
流かつ温度特性が安定し高信頼性を有した高性能の半導
体レーザを容易に得ることができる。
As described above, according to the semiconductor laser of the present invention, InGaAlAs or InGa is used.
When the As-strained quantum well is used as the active layer, the energy of the hetero barrier of the quantum well can be made higher than in the conventional case, and an element having low current and high efficiency and excellent temperature characteristics can be realized. The InGaAlAs strained quantum well is AlGaAs.
It is possible to improve characteristics such as a lower threshold than that of the non-strained quantum well and also improve reliability. Further, by using the manufacturing method of the present invention, the clad layer and the active layer can be manufactured under the optimum conditions, respectively, so that it is possible to manufacture a highly reliable element with good reproducibility without impairing the crystallinity. . In particular, when the MBE method or a similar manufacturing method is used, the strained quantum well of InGaAs or InGaAlAs having AlGaAs as a barrier layer, which has been extremely difficult to manufacture due to the existence of a temperature region where AlGaAs causes non-mirror-like growth, is activated. It is possible to easily obtain a high-performance semiconductor laser having a layer with a low threshold current, stable temperature characteristics, and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る歪量子井戸レーザの第1実施例の
断面模式図である。
FIG. 1 is a schematic sectional view of a strained quantum well laser according to a first embodiment of the present invention.

【図2】本発明に係る歪量子井戸レーザの第2実施例の
断面模式図である。
FIG. 2 is a schematic sectional view of a second embodiment of the strained quantum well laser according to the present invention.

【図3】In0.2 Ga0.8 As/Alx Ga1-x As単
一歪量子井戸構造の300Kにおけるフォトルミネセン
ス発光強度のAl混晶比x依存性を示す説明図である。
FIG. 3 is an explanatory diagram showing the dependence of photoluminescence emission intensity at 300 K of an In 0.2 Ga 0.8 As / Al x Ga 1-x As single strain quantum well structure on the Al mixed crystal ratio x.

【図4】従来の歪量子井戸レーザの断面模式図である。FIG. 4 is a schematic sectional view of a conventional strained quantum well laser.

【符号の説明】[Explanation of symbols]

1 n−GaAs基板 2 n−GaAsバッファ層 3 n−AlGaAsクラッド層 4 アンドープ超格子光ガイド層 5 ノンドープInGaAs量子井戸層 6 ノンドープ超格子光ガイド層 7 p−AlGaAsクラッド層 8 p−GaAsキャップ層 9 SiNx 膜 10 p−電極 11 n−電極1 n-GaAs substrate 2 n-GaAs buffer layer 3 n-AlGaAs clad layer 4 undoped superlattice light guide layer 5 non-doped InGaAs quantum well layer 6 non-doped superlattice light guide layer 7 p-AlGaAs clad layer 8 p-GaAs cap layer 9 SiN x film 10 p-electrode 11 n-electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性層が少なくとも1層の量子井戸層よ
り成り、かつ該量子井戸層が少なくともIn,Ga,A
sを含む半導体より成る半導体レーザにおいて、 前記量子井戸層に隣接する障壁層の少なくとも一つがG
aAsおよびAlGaAsあるいはAlAsを交互に積
層した超格子層より成ることを特徴とする半導体レー
ザ。
1. The active layer comprises at least one quantum well layer, and the quantum well layer comprises at least In, Ga, A.
In a semiconductor laser made of a semiconductor containing s, at least one of the barrier layers adjacent to the quantum well layer is G
A semiconductor laser comprising a superlattice layer in which aAs and AlGaAs or AlAs are alternately laminated.
【請求項2】 活性層が少なくとも1層の量子井戸層よ
り成り、かつ該量子井戸層が少なくともIn,Ga,A
sを含む半導体より成る半導体レーザの製造方法におい
て、 前記量子井戸層に隣接する障壁層の少なくとも一つがG
aAsおよびAlGaAsあるいはAlAsを交互に積
層した超格子層より成り、前記超格子層の少なくとも一
つの成長中に成長温度を変化させることを特徴とする半
導体レーザの製造方法。
2. The active layer comprises at least one quantum well layer, and the quantum well layer comprises at least In, Ga, A.
In the method of manufacturing a semiconductor laser made of a semiconductor containing s, at least one of the barrier layers adjacent to the quantum well layer is G
A method of manufacturing a semiconductor laser, comprising a superlattice layer in which aAs and AlGaAs or AlAs are alternately laminated, and changing a growth temperature during growth of at least one of the superlattice layers.
JP34915692A 1992-12-28 1992-12-28 Semiconductor laser and manufacture thereof Pending JPH06204599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34915692A JPH06204599A (en) 1992-12-28 1992-12-28 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34915692A JPH06204599A (en) 1992-12-28 1992-12-28 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06204599A true JPH06204599A (en) 1994-07-22

Family

ID=18401853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34915692A Pending JPH06204599A (en) 1992-12-28 1992-12-28 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06204599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032348A (en) * 1996-07-12 1998-02-03 Toyoda Gosei Co Ltd Device and manufacture of group iii nitride semiconductor light emitting element
JP2006245595A (en) * 1996-08-27 2006-09-14 Ricoh Co Ltd Method for manufacturing semiconductor light emitting device
CN114256742A (en) * 2020-09-21 2022-03-29 山东华光光电子股份有限公司 High-power 980nm LD epitaxial wafer structure with superlattice narrow waveguide and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032348A (en) * 1996-07-12 1998-02-03 Toyoda Gosei Co Ltd Device and manufacture of group iii nitride semiconductor light emitting element
JP2006245595A (en) * 1996-08-27 2006-09-14 Ricoh Co Ltd Method for manufacturing semiconductor light emitting device
CN114256742A (en) * 2020-09-21 2022-03-29 山东华光光电子股份有限公司 High-power 980nm LD epitaxial wafer structure with superlattice narrow waveguide and preparation method thereof
CN114256742B (en) * 2020-09-21 2024-03-15 山东华光光电子股份有限公司 High-power 980nm LD epitaxial wafer structure with superlattice narrow waveguide and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3504742B2 (en) Laser diode
US7026182B2 (en) Semiconductor device, semiconductor laser, their manufacturing methods and etching methods
EP0661782B1 (en) A semiconductor laser
US5583878A (en) Semiconductor optical device
JPH04229689A (en) Light emitting semiconductor diode and its manufacture
JPH05275798A (en) Laser diode
JPH05235470A (en) Laser diode
JP3189791B2 (en) Semiconductor laser
JPH09116225A (en) Semiconductor light emitting device
JP2891348B2 (en) Nitride semiconductor laser device
JPH0774431A (en) Semiconductor optical element
JP4084506B2 (en) Manufacturing method of semiconductor light emitting device
JPH06204599A (en) Semiconductor laser and manufacture thereof
US5309466A (en) Semiconductor laser
JPH0794822A (en) Semiconductor light emitting element
JPH05267797A (en) Light-emitting semiconductor diode
JP2674382B2 (en) Semiconductor laser
JP3239821B2 (en) Method for producing strained semiconductor crystal
JPH06334272A (en) Semiconductor laser
JP2893990B2 (en) Semiconductor laser and manufacturing method thereof
JP2556270B2 (en) Strained quantum well semiconductor laser
JPH08181386A (en) Semiconductor optical element
JPH09181398A (en) Semiconductor light emitting device
JPH07254756A (en) Optical device
JP3326833B2 (en) Semiconductor laser and light emitting diode