JPH06204132A - Forming method and forming equipment of crystal film - Google Patents

Forming method and forming equipment of crystal film

Info

Publication number
JPH06204132A
JPH06204132A JP34745592A JP34745592A JPH06204132A JP H06204132 A JPH06204132 A JP H06204132A JP 34745592 A JP34745592 A JP 34745592A JP 34745592 A JP34745592 A JP 34745592A JP H06204132 A JPH06204132 A JP H06204132A
Authority
JP
Japan
Prior art keywords
film
substrate
crystal film
crystallization
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34745592A
Other languages
Japanese (ja)
Inventor
Yoshiki Nakatani
喜紀 中谷
Masataka Ito
政隆 伊藤
Shuhei Tsuchimoto
修平 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP34745592A priority Critical patent/JPH06204132A/en
Publication of JPH06204132A publication Critical patent/JPH06204132A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a crystal film of large grain diameter in a short time, by changing energy necessary to crystallization, according to the degree of crystallization of a non-single crystal film on a substrate. CONSTITUTION:By measuring the optical constants of a non-single crystal film on a substrate 11, the degree of crystallization of the non-single crystal film on the substrate 11 is obtained, and the energy necessary to crystallization is changed, according to the degree of crystallization of the non-single crystal film on the substrate 11. Values of the real part (n) and the imaginary part (k) of a complex refractive index are desirably observed as the monitor of crystal growth of a non-single crystal film. By processing the change of values of (n) and (k), the change of each process of crystal growth is obtained, and supply of energy necessary to crystal growth is controlled so as to conform to crystal growth of a non-single crystal film. Thereby process temperature is changed, and the film is effectively processed at the optimum temperature in each growth process. Hence a polycrystalline film of large grain diameter can be obtained in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、結晶体膜作製方法で
特にガラス等の絶縁性基板上に形成した非単結晶半導体
膜を結晶化することにより多結晶半導体膜を作製する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a crystalline semiconductor film, particularly to a method for producing a polycrystalline semiconductor film by crystallizing a non-single-crystal semiconductor film formed on an insulating substrate such as glass. is there.

【0002】[0002]

【従来の技術】基板上に化学蒸着法やスパッタ法等によ
り非単結晶体膜を作製したのち、熱、光、X線等のエネ
ルギーを当該非単結晶体膜に供給し、温度上昇により溶
融した液相または未溶融であっても固相にて原子の再配
列により結晶化させることによって、結晶体膜作製する
方法が知られている。一般に、こうした結晶体膜作製法
では、単結晶体膜にすることは非常に困難であることか
ら、多数の結晶粒からなる多結晶体膜となる。多結晶体
膜の電気的特性はその結晶粒の大きさ(以下、粒径)に
依存することから、結晶化を行う場合、粒径を制御する
ことが重要となる。
2. Description of the Related Art A non-single-crystal film is formed on a substrate by a chemical vapor deposition method, a sputtering method, or the like, and then energy such as heat, light, or X-ray is supplied to the non-single-crystal film to melt it by increasing the temperature. There is known a method for producing a crystalline film by crystallizing by rearrangement of atoms in the liquid phase or in the solid phase even in the unmelted state. In general, it is very difficult to form a single crystal film by such a method for producing a crystal film, so that a polycrystalline film composed of a large number of crystal grains is obtained. Since the electrical characteristics of the polycrystalline film depend on the size of the crystal grain (hereinafter referred to as grain size), it is important to control the grain size when performing crystallization.

【0003】以下、非晶質シリコン膜を加熱処理により
結晶化させ多結晶シリコン膜を作製する場合を例に説明
する。
An example of producing a polycrystalline silicon film by crystallizing an amorphous silicon film by heat treatment will be described below.

【0004】図2は化学蒸着法により膜厚100nm堆
積した非晶質シリコン膜をN2ガス雰囲気中600℃一
定の温度で加熱処理行った試料について、その処理時間
を変化に対し、顕微鏡観察を行い結晶化している部分の
面積より求めた結晶化率の変化を示した図である。非晶
質シリコン膜より、結晶の成長が開始される前の図2中
Iで示される過程、結晶粒が成長する図2中IIIで示さ
れる過程、結晶粒の成長が完了し粒内の不完全な結合手
が結合する図2中で示される過程の、各過程を経て多結
晶シリコン膜となる。更に、図2では明確に区別するこ
とはできないが、顕微鏡による観察で図2中Iで示され
る過程と図2中IIIで示される過程の間に結晶粒の種と
なる結晶核が生成される図2中IIで示される過程が存在
する。処理温度を上げることにより各過程の進行速度は
速くなり、短時間で多結晶シリコン膜を作製することが
出来る。しかし、図2中IIで示される過程では処理温度
を上げることにより結晶核生成密度は高くなり、多結晶
の粒径は核生成密度の逆数で示されることから、最終的
な粒径が小さくなる。そこで、図2中IIで示される過程
の処理温度のみを変化させることにより粒径を制御する
ことが考えられる。実際、経験的に処理温度と各過程の
進行速度の関係を調べておき、前以て各過程の処理時間
と処理温度を設定し、処理する方法がある。しかし、図
2からも分かるように、図2中Iで示される過程と図2
中IIで示される過程の境界、つまり結晶核が発生し始め
は不明確であるため、再現性良く処理することは困難で
ある。
FIG. 2 shows a sample obtained by subjecting an amorphous silicon film deposited by chemical vapor deposition to a thickness of 100 nm to a heat treatment at a constant temperature of 600 ° C. in an N 2 gas atmosphere, and observing it under a microscope with respect to a change in the treatment time. It is the figure which showed the change of the crystallization rate calculated | required from the area of the crystallized part. From the amorphous silicon film, the process indicated by I in FIG. 2 before the start of crystal growth, the process indicated by III in FIG. 2 in which crystal grains grow, and the crystal grain growth is completed A polycrystalline silicon film is obtained through each process of the process shown in FIG. 2 in which complete bonds are bonded. Further, although it cannot be clearly distinguished in FIG. 2, crystal nuclei as seeds of crystal grains are formed by a microscope observation between the process indicated by I in FIG. 2 and the process indicated by III in FIG. There is a process indicated by II in FIG. By increasing the processing temperature, the progress speed of each process is increased, and a polycrystalline silicon film can be formed in a short time. However, in the process indicated by II in FIG. 2, the crystal nucleation density is increased by increasing the treatment temperature, and the grain size of the polycrystal is represented by the reciprocal of the nucleation density, so that the final grain size is decreased. . Therefore, it is possible to control the particle size by changing only the processing temperature in the process indicated by II in FIG. Actually, there is a method in which the relationship between the processing temperature and the progressing speed of each process is empirically investigated, and the processing time and the processing temperature of each process are set in advance to perform the processing. However, as can be seen from FIG. 2, the process indicated by I in FIG.
Since the boundary of the process shown in Medium II, that is, the beginning of the generation of crystal nuclei is unclear, it is difficult to process with good reproducibility.

【0005】[0005]

【発明が解決しようとする課題】目的とする結晶粒径の
多結晶体膜を短時間に作製するためには、各過程に応じ
た温度で処理すれば良く、これを再現性良く行うために
は、非単結晶膜の結晶成長の過程をモニターすることが
不可欠で、特に、図2中Iの過程と図2中IIの過程との
間の変化を観察できることが重要である。結晶成長過程
を観察する方法としては、先に示したように直接顕微鏡
で観察する方法があるが、結晶化処理時にその場で観察
することは困難である。他に、結晶特有の性質を観察す
る方法、例えば、結晶が特定の波長または入射角度のX
線を反射する性質を利用した観察方法がある。図3は、
図2と同じく化学蒸着法により膜厚100nm堆積した
非晶質シリコン膜をN2ガス雰囲気中600℃一定の温
度で加熱処理行った試料について、X線による観察を行
いシリコン結晶の(111)軸方向を示すX線の反射強
度の変化を示した図である。図2とほとんど同じ変化を
示しているが、図2と同様に図2中Iで示される過程と
図2中IIで示される過程との境界が明確に区別すること
はできず、結晶核の発生を検知することはできない。
In order to produce a polycrystalline film having a desired crystal grain size in a short time, it suffices to process at a temperature according to each process, and in order to perform this with good reproducibility. It is essential to monitor the process of crystal growth of the non-single crystal film, and in particular, it is important to be able to observe the change between the process I in FIG. 2 and the process II in FIG. As a method of observing the crystal growth process, there is a method of directly observing with a microscope as described above, but it is difficult to observe it in situ during the crystallization treatment. Another method is to observe the properties peculiar to the crystal, for example, when the crystal has a specific wavelength or X
There is an observation method that utilizes the property of reflecting a line. Figure 3
As in FIG. 2, a sample obtained by heat-treating an amorphous silicon film having a film thickness of 100 nm deposited by the chemical vapor deposition method at a constant temperature of 600 ° C. in an N 2 gas atmosphere was observed by X-ray, and the (111) axis of the silicon crystal was observed. It is the figure which showed the change of the reflection intensity of the X-ray which shows a direction. Although it shows almost the same change as in FIG. 2, the boundary between the process indicated by I in FIG. 2 and the process indicated by II in FIG. 2 cannot be clearly distinguished as in FIG. Occurrence cannot be detected.

【0006】[0006]

【課題を解決するための手段】本発明の結晶体膜の作製
方法は、基板上に形成した非単結晶体膜を結晶化する方
法であって、該基板上の非単結晶体膜の光学定数を測定
することにより、該基板上の非単結晶体膜の結晶化の度
合を求め、該基板上の非単結晶体膜の結晶化の度合に応
じて結晶化に必要なエネルギーを変化させることを特徴
とする。
A method for producing a crystalline film according to the present invention is a method of crystallizing a non-single crystalline film formed on a substrate, which is an optical method of the non-single crystalline film on the substrate. By measuring the constant, the degree of crystallization of the non-single-crystal film on the substrate is obtained, and the energy required for crystallization is changed according to the degree of crystallization of the non-single-crystal film on the substrate. It is characterized by

【0007】好ましくは、非単結晶体膜の結晶成長のモ
ニターとして複屈折率の実数部nおよび虚数部kの値を
観察する。そして、nおよびkの値の変化を処理するこ
とにより、結晶成長の各過程をの変化を求め、該非単結
晶体膜の結晶成長に合わせて結晶成長に必要なエネルギ
ーの供給を制御することにより、処理温度を変化させ各
成長過程に最適な温度で効率よく処理する。
Preferably, the values of the real part n and the imaginary part k of the birefringence are observed as a monitor for crystal growth of the non-single crystal film. By processing the changes in the values of n and k, the changes in each process of crystal growth are obtained, and the supply of energy necessary for crystal growth is controlled in accordance with the crystal growth of the non-single crystal film. By changing the treatment temperature, the treatment is efficiently performed at the optimum temperature for each growth process.

【0008】そして好ましくは、上記光学定数を分光計
測が可能な偏光解析装置を用いて測定する。
Preferably, the above optical constant is measured using a polarization analyzer capable of spectroscopic measurement.

【0009】また、本発明の結晶体膜作製装置は、基板
上に形成した非単結晶体膜に所定のエネルギーを供給す
る手段と、該基板上の非単結晶体膜の光学定数を測定す
る分光計測が可能な偏光解析装置と、該偏光解析装置の
出力に追随し、該基板上の非単結晶体膜に供給するエネ
ルギーを制御する装置とからなることを特徴とする。
Further, the apparatus for producing a crystalline film of the present invention measures the means for supplying a predetermined energy to the non-single crystalline film formed on the substrate and the optical constant of the non-single crystalline film on the substrate. It is characterized by comprising a polarization analyzer capable of spectroscopic measurement and a device that follows the output of the polarization analyzer and controls the energy supplied to the non-single crystal film on the substrate.

【0010】[0010]

【作用】一般に物質の屈折率は複素数で示され実数部
n、虚数部kからなり、非単結晶体が結晶成長する過程
において、非単結晶体の状態や結晶部分の割合によって
nおよびkの値が連続的に変化する。特に、nおよびk
の値は光の波長に依存する値であり、物質の帯間準位幅
(エネルギーバンド幅)に相当する光の波長付近で、そ
の値は大きく変化することから、nおよびkの値の光波
長依存を観察することにより、結晶成長に伴う帯間準位
幅の変化をも観察することが可能となる。
In general, the refractive index of a substance is represented by a complex number and consists of a real part n and an imaginary part k. In the process of crystal growth of a non-single-crystal body, n and k can be adjusted depending on the state of the non-single-crystal body and the ratio of crystal parts. The value changes continuously. In particular n and k
The value of depends on the wavelength of light, and since the value greatly changes in the vicinity of the wavelength of light corresponding to the band width (energy band width) of a substance, the values of n and k By observing the wavelength dependence, it is possible to observe the change in the band level width accompanying the crystal growth.

【0011】物質の屈折率を求める方法としては、光の
透過または反射を測定することにより求めることが可能
である。しかし、測定の対象が膜、特にその厚みが薄い
場合には、光の波長との関係から光の干渉が生じるた
め、透過及び反射を同時に測定する等の処置が必要とな
る。また、膜の透過を測定する場合には当然のことなが
らその基板は透明な材料に限定される。これらの問題を
解決する方法として偏向解析法(エリプソメトリ)があ
る。
The refractive index of a substance can be determined by measuring the transmission or reflection of light. However, when the object of measurement is a film, especially when the thickness thereof is thin, light interference occurs due to the relationship with the wavelength of light, and therefore it is necessary to take measures such as simultaneous measurement of transmission and reflection. Also, when measuring the transmission of a membrane, the substrate is naturally limited to a transparent material. As a method for solving these problems, there is a deflection analysis method (ellipsometry).

【0012】偏光解析法は試料表面に斜め入射した光の
反射光の偏光状態、より詳しくは、入射面に対して水平
方向の偏向の光成分と垂直方向の偏向の光成分のそれぞ
れの光の位相の変化を測定することにより、試料表面に
存在する膜のnおよびkの値を求める方法である。さら
に、測定する光の波長を連続的に変化させることによ
り、nおよびkの値の波長依存性も測定することが可能
である。そこで、分光計測が可能な偏向解析装置(分光
エリプソメトリ)を用い、非単結晶体膜の結晶化の過程
を詳細に調べた。
The polarization analysis method is the polarization state of the reflected light of the light obliquely incident on the surface of the sample, and more specifically, the polarized light component of the light component in the horizontal direction and the light component of the light component in the vertical direction with respect to the incident surface. This is a method of determining the values of n and k of the film existing on the sample surface by measuring the change in phase. Furthermore, the wavelength dependence of the values of n and k can also be measured by continuously changing the wavelength of the light to be measured. Therefore, the crystallization process of the non-single crystal film was investigated in detail by using a deflection analyzer capable of spectroscopic measurement (spectral ellipsometry).

【0013】図4は、図2及び図3と同じく化学蒸着法
により膜厚100nm堆積した非晶質シリコン膜をN2
ガス雰囲気中600℃一定の温度で加熱処理を行った試
料について、分光計測が可能な偏向解析装置を用い測定
した結果の一例を示している。この図では、縦軸に結晶
化率を用いているが、これは分光計測が可能な偏向解析
装置の測定結果より、処理前の非晶質シリコン膜及び結
晶化処理完了後の多結晶シリコン膜の屈折率nおよびk
の値を基準に用い、各熱処理時間の試料のnおよびkの
値が多結晶シリコン膜の値に近づいているかの比率を示
したもので、実際の膜中の結晶成分の比率に完全に対応
している訳ではない。
[0013] Figure 4, an amorphous silicon film thickness 100nm is deposited similarly by chemical vapor deposition as in FIG. 2 and FIG. 3 N 2
An example of the result of measurement using a deflection analyzer capable of spectroscopic measurement is shown for a sample heat-treated at a constant temperature of 600 ° C. in a gas atmosphere. In this figure, the crystallization rate is used on the vertical axis. This is because the amorphous silicon film before the treatment and the polycrystalline silicon film after the crystallization treatment are completed based on the measurement result of the deflection analyzer capable of spectroscopic measurement. Refractive indices n and k of
Is used as a reference to show the ratio of whether the n and k values of the sample at each heat treatment time are close to the values of the polycrystalline silicon film, and correspond perfectly to the ratio of the crystalline components in the actual film. I'm not doing it.

【0014】図2および図3と同様に結晶が成長してい
る過程が示されている。さらに図4では図2中Iで示さ
れる過程においても変化が示されている。これは、屈折
率nおよびkの値は単に結晶化を反映しているだけでは
なく、非晶質シリコン内の水素の含有量や膜の堆積密度
等の物質の変化も反映したものであるためである。そし
て、図2中IIで示される結晶核が生成される過程が始ま
る所では逆のこの比率は小さくなっている。この様に、
分光計測が可能な偏向解析装置を用いることにより、よ
り詳細に結晶の成長過程の変化が測定できることが発見
された。本発明はこの原理を結晶成長の方法に応用した
ものである。
Similar to FIGS. 2 and 3, the process of crystal growth is shown. Further, FIG. 4 also shows changes in the process indicated by I in FIG. This is because the values of the refractive indices n and k simply reflect not only crystallization but also changes in substances such as hydrogen content in amorphous silicon and film deposition density. Is. Then, at the place where the process of generating crystal nuclei indicated by II in FIG. 2 starts, the opposite ratio is small. Like this
It was discovered that changes in the crystal growth process can be measured in more detail by using a deflection analyzer capable of spectroscopic measurement. The present invention applies this principle to a crystal growth method.

【0015】[0015]

【実施例】図1はこの発明による非単結晶体膜の結晶成
長法の一実施例を示す結晶成長装置の模式図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a crystal growth apparatus showing an embodiment of a crystal growth method for a non-single crystal film according to the present invention.

【0016】加熱ヒータ1内部に石英炉心管2が設置さ
れ、その内部に表面に非単結晶体膜を別の方法にて形成
された基板11及を炉心管に対して垂直方向にセットし
た石英ボート10がおかれる。炉心管2には、キャリア
ガスとしてN2ガスがバルブ3および流量計4通り、パ
イプ5を通じて供給される。排気ガスは炉心管キャップ
6に付けられた排気口7を通じて排出される。炉心管2
には観察用の窓8及び窓9が付けられ、ハロゲンランプ
及びモノクロメータを内蔵した偏光子12より窓8を通
じてボート10の最も手前にセットされた基板11の表
面に入射光21が照射される。
A quartz furnace core tube 2 is installed inside the heater 1, and a substrate 11 having a non-single crystal film formed on the surface thereof by another method and a quartz tube in which the quartz core tube 2 is set in a direction perpendicular to the furnace core tube. The boat 10 is placed. N 2 gas as a carrier gas is supplied to the core tube 2 through a pipe 5 through a valve 3 and a flow meter 4. Exhaust gas is discharged through an exhaust port 7 attached to the core tube cap 6. Core tube 2
An observation window 8 and a window 9 are attached to the surface of the substrate 11, and the incident light 21 is applied to the surface of the substrate 11 which is set on the foremost side of the boat 10 through the window 8 from a polarizer 12 having a halogen lamp and a monochromator. .

【0017】入射光21に対して基板11表面で反射し
た反射光22は窓9を通じて光検出器を内蔵した検光子
14にて検出され電気信号に変換される。偏光子及び検
光子は電気信号線17及び信号線18れ、さらに、信号
処理装置14で処理された信号がデジタルのデータとし
て信号線19を通じて電子計算機15に送られ、基板1
1表面の半導体膜の光学定数n及びkが計算される。電
子計算機15では、随時半導体薄膜の光学定数を求め、
記憶し、光学定数の変化を監視し、処理温度を判断し、
信号線20を通じて処理温度を制御するための電気信号
をヒータ制御器16に送られ、ヒーター制御器16によ
りヒータ温度が制御されるようになっている。
Reflected light 22 reflected from the surface of the substrate 11 with respect to the incident light 21 is detected by the analyzer 14 having a built-in photodetector through the window 9 and converted into an electric signal. The polarizer and the analyzer are electric signal lines 17 and signal lines 18, and the signal processed by the signal processing device 14 is sent as digital data to the computer 15 through the signal line 19 and the substrate 1
The optical constants n and k of the semiconductor film on one surface are calculated. In the computer 15, the optical constant of the semiconductor thin film is calculated at any time,
Memorize, monitor changes in optical constants, judge processing temperature,
An electric signal for controlling the processing temperature is sent to the heater controller 16 through the signal line 20, and the heater temperature is controlled by the heater controller 16.

【0018】上記装置により基板を石英基板としモノシ
ランを原料ガスとした化学蒸着法により膜厚100nm
堆積した非晶質シリコン膜を熱処理した例を示す。
A film thickness of 100 nm was formed by a chemical vapor deposition method using a quartz substrate as a substrate and monosilane as a source gas by the above apparatus.
An example of heat treatment of the deposited amorphous silicon film will be shown.

【0019】まず、比較例として、従来の方法である一
定の温度で処理を行った。図5及び図6は一定の温度で
処理した場合のその温度と処理完了時間及び処理完了後
の試料を顕微鏡観察し測定した多結晶シリコンの粒径と
の関係を示した図である。処理温度の上昇に伴い結晶核
発生過程での核発生密度が高くなり、結晶粒径が小さく
なっているのが図5で示されている。これに対して、処
理温度が高くなるに連れて各過程の進行速度が速くな
り、処理完了時間が短くなっているのが図6に示されて
いる。
First, as a comparative example, the treatment was carried out at a constant temperature, which is a conventional method. FIG. 5 and FIG. 6 are diagrams showing the relationship between the temperature when the treatment is performed at a constant temperature, the treatment completion time, and the grain size of the polycrystalline silicon measured by observing the sample after the treatment with a microscope. It is shown in FIG. 5 that the nucleation density in the crystal nucleation process increases and the crystal grain size decreases as the processing temperature rises. On the other hand, FIG. 6 shows that as the processing temperature becomes higher, the progress speed of each process becomes faster and the processing completion time becomes shorter.

【0020】例えば、650℃一定の温度で処理した場
合、結晶の粒径は0.4μm程度となる。一方、580
℃一定の温度で処理した場合、粒径は1.8μm程度と
なるが、処理完了までに約20時間を要した。これに対
して、電子計算機15に、核発生過程の処理温度を58
0℃、その他の過程を650℃とするように入力し、ま
た、結晶の各成長過程の経過を判断するため、図4で示
した分光計測が可能な偏光解析装置の測定結果より求め
た結晶化率のデーターを記憶させ、これと対応して処理
するように設定した。
For example, when the treatment is carried out at a constant temperature of 650 ° C., the crystal grain size becomes about 0.4 μm. Meanwhile, 580
When the treatment was carried out at a constant temperature of ° C, the particle diameter was about 1.8 µm, but it took about 20 hours to complete the treatment. On the other hand, the processing temperature of the nucleation process is set to 58 in the computer 15.
Crystals obtained from the measurement result of the ellipsometer capable of spectroscopic measurement shown in FIG. 4 in order to determine the progress of each crystal growth process by inputting 0 ° C. and other processes as 650 ° C. The conversion rate data was stored and set to be processed correspondingly.

【0021】具体的には、650℃で処理を開始し、図
4と同じく初め増加していた分光計測が可能な偏光解析
装置の測定結果より求めた結晶化率が減少し始めた時点
で処理温度を580℃に変化させた。再び結晶化率が増
加し始めた時点で処理温度を650℃に戻し残りの処理
を行った。結晶成長に要した時間は約7時間で顕微鏡の
観察結果より粒径1.8μmの多結晶シリコン膜が得ら
れた。
Specifically, the treatment was started at 650 ° C., and the treatment was started at the time when the crystallization rate obtained from the measurement result of the ellipsometer capable of spectroscopic measurement, which was increased initially as in FIG. 4, started to decrease. The temperature was changed to 580 ° C. When the crystallization rate started to increase again, the treatment temperature was returned to 650 ° C. and the rest of the treatment was performed. The time required for crystal growth was about 7 hours, and a polycrystalline silicon film having a grain size of 1.8 μm was obtained from the result of microscopic observation.

【0022】[0022]

【発明の効果】本発明の結晶体膜の作製方法及び結晶体
膜の作製装置によれば、短時間で粒径の大きな多結晶体
膜を再現性良く得ることが出来る。
According to the method for producing a crystalline film and the apparatus for producing a crystalline film of the present invention, a polycrystalline film having a large grain size can be obtained with good reproducibility in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で示す結晶成長装置の模式図である。FIG. 1 is a schematic diagram of a crystal growth apparatus shown in an example.

【図2】結晶の成長過程を示す説明図である。FIG. 2 is an explanatory diagram showing a crystal growth process.

【図3】結晶の成長過程を調べる方法の比較例であるX
線回折法による測定結果を示す説明図である。
FIG. 3 is a comparative example of a method for investigating a crystal growth process, X
It is explanatory drawing which shows the measurement result by a line diffraction method.

【図4】結晶の成長過程を分光計測可能な偏光解析装置
により測定した結果の一例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of a result of measurement of a crystal growth process by an ellipsometer capable of spectroscopic measurement.

【図5】実施例で示す結晶成長装置を用い従来の方法で
結晶成長したときの処理温度と結晶粒径との関係を示し
た説明図である。
FIG. 5 is an explanatory diagram showing the relationship between the processing temperature and the crystal grain size when crystal growth is performed by the conventional method using the crystal growth apparatus shown in the examples.

【図6】実施例で示す結晶成長装置を用い従来の方法で
結晶成長したときの処理温度と処理完了時間との関係を
示した説明図である。
FIG. 6 is an explanatory diagram showing the relationship between the processing temperature and the processing completion time when crystal growth is performed by the conventional method using the crystal growth apparatus shown in the example.

【符号の説明】[Explanation of symbols]

1…加熱ヒータ、2…石英炉心管、3…ガスバルブ、4
…ガス流量計、5…ガスパイプ、6…炉心管キャップ、
7…排気口、8・9…観察窓、10…石英ボート、11
…基板、12…偏光子、13…検光子、14…信号処理
装置、15…電子計算機、16…ヒータ制御器、17・
18…電気信号線、19・20…デジタル信号線、21
入射光、22…反射光
1 ... Heater, 2 ... Quartz core tube, 3 ... Gas valve, 4
… Gas flow meter, 5… gas pipe, 6… core tube cap,
7 ... Exhaust port, 8/9 ... Observation window, 10 ... Quartz boat, 11
... substrate, 12 ... polarizer, 13 ... analyzer, 14 ... signal processing device, 15 ... electronic calculator, 16 ... heater controller, 17 ...
18 ... Electrical signal line, 19/20 ... Digital signal line, 21
Incident light, 22 ... Reflected light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成した非単結晶体膜を結晶化
する方法であって、該基板上の非単結晶体膜の光学定数
を測定することにより、該基板上の非単結晶体膜の結晶
化の度合を求め、該基板上の非単結晶体膜の結晶化の度
合に応じて結晶化に必要なエネルギーを変化させること
を特徴とする結晶体膜の作製方法。
1. A method for crystallizing a non-single-crystal film formed on a substrate, comprising measuring the optical constant of the non-single-crystal film on the substrate to obtain the non-single-crystal film on the substrate. A method for producing a crystalline film, wherein the degree of crystallization of the film is obtained, and the energy required for crystallization is changed according to the degree of crystallization of the non-single crystalline film on the substrate.
【請求項2】 上記光学定数を分光計測が可能な偏光解
析装置を用いて測定することを特徴とする請求項1の結
晶体膜の作製方法。
2. The method for producing a crystalline film according to claim 1, wherein the optical constant is measured by using a polarization analyzer capable of spectroscopic measurement.
【請求項3】 基板上に形成した非単結晶体膜に所定の
エネルギーを供給する手段と、該基板上の非単結晶体膜
の光学定数を測定する分光計測が可能な偏光解析装置
と、該偏光解析装置の出力に追随し、該基板上の非単結
晶体膜に供給するエネルギーを制御する装置とからなる
結晶体膜作製装置。
3. A means for supplying a predetermined energy to a non-single crystal film formed on a substrate, and an ellipsometer capable of spectroscopic measurement for measuring an optical constant of the non-single crystal film on the substrate, An apparatus for producing a crystalline film, which comprises an apparatus that follows the output of the ellipsometer and controls the energy supplied to the non-single crystalline film on the substrate.
JP34745592A 1992-12-28 1992-12-28 Forming method and forming equipment of crystal film Pending JPH06204132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34745592A JPH06204132A (en) 1992-12-28 1992-12-28 Forming method and forming equipment of crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34745592A JPH06204132A (en) 1992-12-28 1992-12-28 Forming method and forming equipment of crystal film

Publications (1)

Publication Number Publication Date
JPH06204132A true JPH06204132A (en) 1994-07-22

Family

ID=18390350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34745592A Pending JPH06204132A (en) 1992-12-28 1992-12-28 Forming method and forming equipment of crystal film

Country Status (1)

Country Link
JP (1) JPH06204132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716283B2 (en) 1994-05-30 2004-04-06 Semiconductor Energy Laboratory Co., Ltd. Optical processing apparatus and optical processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6716283B2 (en) 1994-05-30 2004-04-06 Semiconductor Energy Laboratory Co., Ltd. Optical processing apparatus and optical processing method
US7078246B2 (en) 1994-05-30 2006-07-18 Semiconductor Energy Laboratory Co., Ltd. Optical processing apparatus and optical processing method

Similar Documents

Publication Publication Date Title
KR20030028696A (en) Process for producing polysilicon film
JP3357596B2 (en) Film deposition apparatus and method for measuring film thickness in-situ in film deposition process
Cai et al. Rapid growth and properties of large-aperture 98%-deuterated DKDP crystals
Xiao et al. Preparation of crystalline beta barium borate (β‐BaB2O4) thin films by pulsed laser deposition
Lukeš et al. Ellipsometric liquid immersion method for the determination of all the optical parameters of the system: Nonabsorbing film on an absorbing substrate
Toet et al. Growth of polycrystalline silicon on glass by selective laser‐induced nucleation
JPH06204132A (en) Forming method and forming equipment of crystal film
Barns et al. Production and perfection of “z-face” quartz
JPH0397219A (en) Manufacture and equipment of semiconductor device
Pickering Correlation of in situ ellipsometric and light scattering data of silicon-based materials with post-deposition diagnostics
Mchedlidze et al. Light induced solid-phase crystallization of Si nanolayers in Si/SiO2 multiple quantum wells
CN109782377B (en) High damage threshold laser lens and manufacturing method thereof
Borghesi et al. Ellipsometric characterization of amorphous and polycrystalline silicon films deposited using a single wafer reactor
Akasaka et al. In Situ Ellipsometric Observations of the Growth of Silicon Thin Films from Fluorinated Precursors, SiFnHm (n+ m≤ 3)
Huffman et al. Thermochemical and Spectroscopic Studies of Chemically Vapor‐Deposited Amorphous Silica
Alexandrova et al. Second harmonic generation in hydrogenated amorphous silicon
Heya et al. Control of polycrystalline silicon structure by the two-step deposition method
Bloem et al. In situ observations on amorphous versus crystalline growth of silicon by chemical vapour deposition
Alexandrova et al. Second harmonic generation in thin Ge 35 Sb 5 S 60 films
JP5347122B2 (en) Method and apparatus for measuring crystallization rate
JP6467359B2 (en) Shape discrimination method of Ge crystal growth
Ebert et al. Investigation and Control of MOVPE Growth by Combined Spectroscopic Ellipsometry and Reflectance‐Difference Spectroscopy
Yoshioka et al. Monitoring of Si molecular-beam epitaxial growth by an ellipsometric method
Zwinge et al. InP on Si substrates characterized by spectroscopic ellipsometry
Santato et al. In situ micro Raman investigation of the laser crystallization in Si thin films plasma enhanced chemical vapor deposition-grown from He-diluted SiH 4