JPH06204113A - Projection aligner and manufacture of semiconductor device using same - Google Patents

Projection aligner and manufacture of semiconductor device using same

Info

Publication number
JPH06204113A
JPH06204113A JP4360793A JP36079392A JPH06204113A JP H06204113 A JPH06204113 A JP H06204113A JP 4360793 A JP4360793 A JP 4360793A JP 36079392 A JP36079392 A JP 36079392A JP H06204113 A JPH06204113 A JP H06204113A
Authority
JP
Japan
Prior art keywords
light
exposure
substrate
flux
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4360793A
Other languages
Japanese (ja)
Other versions
JP2765422B2 (en
Inventor
Takanaga Shiozawa
崇永 塩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18470945&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06204113(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4360793A priority Critical patent/JP2765422B2/en
Publication of JPH06204113A publication Critical patent/JPH06204113A/en
Priority to US09/013,201 priority patent/US6757050B1/en
Application granted granted Critical
Publication of JP2765422B2 publication Critical patent/JP2765422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To obtain a projection aligner, in which the quantity of exposing light onto a wafer surface is controlled appropriately and a semiconductor device with high degree of accumulation is obtained when an operation means determines the exposure light quantity onto a substrate surface by using the variation information of transmittance and the measuring result of integrated light quantity from an integrated light quantity detector. CONSTITUTION:When luminous flux from a light source 1 is applied to a pattern on an applied surface by a lighting system and the pattern is projected onto a substrate 14 surface for exposure by means of a projection optical system 13, the lighting system is equipped, between the light source 1 and lighted surface, with a light-dividing member 8 for dividing incident light flux into two fluxes and for guiding one flux to the applied surface side and the other flux to a detector 9. Also, the lighting system has an operation means 19 storing the variation information of transmittance of the optical system 13 from the light-dividing member 8 to the substrate 14. Further, the operation means 19 determines the quantity of exposing light onto the substrate 14 surface by using the variation information of transmittance and the measuring result from the detector 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は投影露光装置及びそれを
用いた半導体素子の製造方法に関し、特にIC,LSI
等の半導体素子を製造する際にレチクル面上の電子回路
パターンを投影光学系(投影レンズ)によりウエハ面上
に投影するとき、該ウエハ面上に常に適正な露光量を与
え高精度な投影パターン像が得られるようにしたもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus and a method of manufacturing a semiconductor device using the same, and particularly to ICs and LSIs.
When an electronic circuit pattern on a reticle surface is projected onto a wafer surface by a projection optical system (projection lens) when manufacturing a semiconductor element such as a high precision projection pattern, the wafer surface is always provided with an appropriate exposure amount. The image is obtained.

【0002】[0002]

【従来の技術】従来よりIC,LSI等の半導体素子製
造用に高解像力、高スループット化が比較的容易な投影
露光装置(アライナー)が多く用いられている。この投
影露光装置では1回の露光によりウエハ面全体にパター
ン像を形成する一括露光方式に比べ、1回の露光が終了
する毎にウエハを移動しながら他の領域を露光し、この
ような露光を順次複数回繰り返すことにより、ウエハ面
全体にパターン像を形成していくステップアンドリピー
ト露光方式が多く用いられている。
2. Description of the Related Art Conventionally, a projection exposure apparatus (aligner), which is relatively easy to achieve high resolution and high throughput, has been widely used for manufacturing semiconductor elements such as IC and LSI. In this projection exposure apparatus, as compared with the batch exposure method in which a pattern image is formed on the entire surface of the wafer by one exposure, the wafer is moved every time one exposure is completed and other areas are exposed. A step-and-repeat exposure method is often used in which a pattern image is formed on the entire wafer surface by repeating the above step a plurality of times.

【0003】このとき投影光学系はレチクル面上の電子
回路パターンをウエハ面上に所定の投影倍率、例えば1
/5又は1/10で縮小投影している。この場合、ウエ
ハ面上に転写されるパターンの像質は照明装置の性能、
例えば被照射面上の照射光の量(露光量)やその変動等
に大きく影響される。
At this time, the projection optical system causes the electronic circuit pattern on the reticle surface to have a predetermined projection magnification on the wafer surface, for example, 1
Reduction projection is performed at / 5 or 1/10. In this case, the image quality of the pattern transferred onto the wafer surface depends on the performance of the illumination device,
For example, the amount of irradiation light (exposure amount) on the surface to be irradiated and its variation are greatly affected.

【0004】本出願人は被照射面上の照射光量が所定値
となるように制御した、特に半導体製造用の露光装置に
好適な光量制御装置を例えば特開昭62−187815
号公報や特開昭63−193130号公報、そして特開
平4−48714号公報等で提案している。
The applicant of the present invention has proposed a light amount control device which controls the irradiation light amount on a surface to be irradiated to a predetermined value, which is particularly suitable for an exposure device for semiconductor manufacturing, for example, Japanese Patent Laid-Open No. 62-187815.
Japanese Patent Laid-Open Publication No. 63-193130 and Japanese Patent Laid-Open Publication No. 4-48714.

【0005】特に特開平4−48714号公報では光源
と被照射面との間の光路中に入射光束を2つの光束に振
幅分割し、そのうち一方の光束を被照射面(レチクル)
側に、他方の光束を光検出器に導光するハーフミラー
(光分割部材)を配置し、該ハーフミラーを介した光束
を光検出器で検出することにより被照射面上への照射光
量、即ちウエハ面上の露光量を制御するようにした露光
装置を提案している。
Particularly, in Japanese Unexamined Patent Publication No. 4-48714, an incident light beam is amplitude-divided into two light beams in an optical path between a light source and a surface to be irradiated, and one of the light beams is irradiated to a surface (reticle).
On the side, a half mirror (light splitting member) that guides the other light flux to the photodetector is arranged, and the light flux that has passed through the half mirror is detected by the photodetector. That is, an exposure apparatus is proposed in which the exposure amount on the wafer surface is controlled.

【0006】[0006]

【発明が解決しようとする課題】光源と被照射面との間
の光路中に光分割部材を配置し、光分割部材で分割した
2つの光束のうち、一方の光束を被照射面側に、他方の
光束を光検出器に導光し、該光検出器で得られる信号を
利用して被照射面、即ちウエハ面への露光量を制御する
方法は光検出器への入射光量とウエハ面上への露光量と
の比が常に一定であるということを前提としている。
A light splitting member is arranged in the optical path between a light source and a surface to be illuminated, and one of two light beams split by the light splitting member is directed to the surface to be illuminated. The method of guiding the other light flux to the photodetector and controlling the exposure amount to the irradiated surface, that is, the wafer surface using the signal obtained by the photodetector is the amount of light incident on the photodetector and the wafer surface. It is premised that the ratio to the amount of upward exposure is always constant.

【0007】しかしながら光分割部材からウエハに至る
光路中の各光学要素が露光光を吸収して、経時的に透過
率が変化したり環境(湿度・温度等)の変化により透過
率が変化したりすると光検出器で得られる信号を用いて
もウエハ面上に最適な露光量を与えることが難しくなっ
てくる。
However, each optical element in the optical path from the light splitting member to the wafer absorbs the exposure light and the transmittance changes with time, or the transmittance changes due to changes in the environment (humidity, temperature, etc.). Then, it becomes difficult to give the optimum exposure amount on the wafer surface even using the signal obtained by the photodetector.

【0008】本発明は光分割部材からウエハに至る光路
中の各光学要素の露光履歴や環境変化による透過率の変
動情報を予め求めて演算手段に記憶しておき、光検出器
からの信号と演算手段に記憶しておいた透過率の変動情
報とを利用することにより、ウエハ面上への露光光量を
適切に制御し、高集積度の半導体素子が得られるように
した投影露光装置及びそれを用いた半導体素子の製造方
法の提供を目的とする。
According to the present invention, information on the exposure history of each optical element in the optical path from the light splitting member to the wafer and the variation information of the transmittance due to the environmental change are obtained in advance and stored in the arithmetic means, and the signal from the photodetector is obtained. A projection exposure apparatus capable of appropriately controlling the exposure light amount onto the wafer surface by using the variation information of the transmittance stored in the arithmetic means, and obtaining a highly integrated semiconductor device, and the same. It is an object of the present invention to provide a method for manufacturing a semiconductor device using.

【0009】[0009]

【課題を解決するための手段】本発明の投影露光装置
は、 (1−1)光源からの光束を照明装置により被照射面上
のパターンを照明し、該パターンを投影光学系により基
板面上に投影し露光する際、該照明装置は該光源と該被
照射面との間の光路中に入射光束を少なくとも2つの光
束に分割し、そのうち一方の光束を該被照射面側に、他
方の光束を積算光量検出器に導光する光分割部材、そし
て該光分割部材から該基板に至る光学系の透過率の変動
情報を記憶した演算手段とを有しており、該演算手段は
該透過率の変動情報と該積算光量検出器からの積算光量
測定結果とを用いて該基板面上への露光量を決定してい
ることを特徴としている。
In a projection exposure apparatus of the present invention, (1-1) a light beam from a light source is illuminated by an illumination device onto a pattern on a surface to be illuminated, and the pattern is projected onto a substrate surface by a projection optical system. At the time of projection and exposure on the light source, the illuminating device splits an incident light flux into at least two light fluxes in an optical path between the light source and the illuminated surface, and one of the light fluxes is divided into the illuminated surface side and the other light flux. It has a light splitting member for guiding the light flux to the integrated light amount detector, and a computing means for storing variation information of the transmittance of the optical system from the light splitting member to the substrate. It is characterized in that the exposure amount on the surface of the substrate is determined using the fluctuation information of the rate and the integrated light amount measurement result from the integrated light amount detector.

【0010】(1−2)光源からの光束を照明装置によ
り被照射面上のパターンを照明し、該パターンを投影光
学系により基板面上に投影し露光する際、該照明装置は
該光源と該被照射面との間の光路中に入射光束を少なく
とも2つの光束に分割し、そのうち一方の光束を該被照
射面側に、他方の光束を積算光量検出器に導光する光分
割部材、該基板相当面上に設けた該基板に入射する露光
量を検出する露光量検出器、そしてパターン転写前に該
積算光量検出器で求めた測定結果と該露光量検出器で求
めた測定結果とを用いて該基板への露光量を決定する演
算手段とを有していることを特徴としている。
(1-2) When a light beam from a light source is illuminated by an illumination device on a pattern on a surface to be illuminated and the pattern is projected onto a substrate surface by a projection optical system for exposure, the illumination device operates as the light source. A light splitting member that splits an incident light flux into at least two light fluxes in an optical path between the illuminated surface and one of the light fluxes, and guides the other light flux to the illuminated surface side and the other light flux to an integrated light amount detector, An exposure amount detector for detecting an exposure amount incident on the substrate provided on the surface corresponding to the substrate, and a measurement result obtained by the integrated light amount detector before pattern transfer and a measurement result obtained by the exposure amount detector. And a calculation means for determining the amount of exposure to the substrate by using.

【0011】又本発明の半導体素子の製造方法として
は、 (1−3)光源からの光束を照明装置によりレチクル面
上のパターンを照明し、該パターンを投影光学系により
ウエハ面上に投影し露光した後に、該ウエハを現像処理
工程を介して半導体素子を製造する際、該照明装置は該
光源と該被照射面との間の光路中に入射光束を少なくと
も2つの光束に分割し、そのうち一方の光束を該被照射
面側に、他方の光束を積算光量検出器に導光する光分割
部材、そして該光分割部材から該基板に至る光学系の透
過率の変動情報を記憶した演算手段とを有しており、該
演算手段は該透過率の変動情報と該積算光量検出器から
の積算光量測定結果とを用いて該基板面上への露光量を
決定していることを特徴としている。
Further, as a method of manufacturing a semiconductor device of the present invention, (1-3) a light beam from a light source is used to illuminate a pattern on a reticle surface with an illumination device, and the pattern is projected onto a wafer surface with a projection optical system. After the exposure, when the semiconductor device is manufactured through a developing process on the wafer, the illumination device splits an incident light beam into at least two light beams in an optical path between the light source and the illuminated surface. A light splitting member that guides one light flux to the illuminated surface side and the other light flux to the integrated light amount detector, and an arithmetic unit that stores variation information of the transmittance of the optical system from the light splitting member to the substrate. And the calculation means determines the exposure amount on the substrate surface using the variation information of the transmittance and the integrated light amount measurement result from the integrated light amount detector. There is.

【0012】[0012]

【実施例】図1は本発明の実施例1の要部概略図であ
る。
Embodiment 1 FIG. 1 is a schematic view of the essential portions of Embodiment 1 of the present invention.

【0013】図中2は楕円鏡である。1は光源としての
発光管であり、紫外線及び遠紫外線等を放射する高輝度
の発光部1aを有している。発光部1aは楕円鏡2の第
1焦点近傍に配置している。3はコールドミラーであ
り、多層膜より成り、大部分の赤外光を透過すると共に
大部分の紫外光を反射させている。楕円鏡2はコールド
ミラー3を介して第2焦点近傍に発光部1aの発光部像
(光源像)1bを形成している。4はシャッターであ
り、楕円鏡2の第2焦点近傍に配置している。
In the figure, 2 is an elliptical mirror. Reference numeral 1 denotes a light emitting tube as a light source, which has a light emitting portion 1a of high brightness that emits ultraviolet rays, far ultraviolet rays, and the like. The light emitting unit 1a is arranged near the first focus of the elliptical mirror 2. Reference numeral 3 denotes a cold mirror, which is composed of a multilayer film and transmits most of infrared light and reflects most of ultraviolet light. The elliptic mirror 2 forms a light emitting portion image (light source image) 1b of the light emitting portion 1a near the second focal point via the cold mirror 3. A shutter 4 is arranged near the second focal point of the elliptic mirror 2.

【0014】5は光学系であり、第2焦点近傍に形成し
た発光部像1bをオプティカルインテグレータ6の入射
面6aに結像させている。オプティカルインテグレータ
6は複数の微小レンズ6−i(i=1〜N)を2次元的
に所定のピッチで配列して構成しており、その射出面6
b近傍に2次光源を形成している。
Reference numeral 5 denotes an optical system, which forms an image of the light emitting portion 1b formed in the vicinity of the second focal point on the incident surface 6a of the optical integrator 6. The optical integrator 6 is configured by arranging a plurality of minute lenses 6-i (i = 1 to N) two-dimensionally at a predetermined pitch, and its exit surface 6
A secondary light source is formed near b.

【0015】7は集光レンズである。オプティカルイン
テグレータ6の射出面6b近傍の2次光源から射出した
複数の光束は集光レンズ7で集光され、光分割部材とし
てのハーフミラー8で一部の光束を反射させてマスキン
グブレード10に指向し、該マスキングブレード10面
を均一に照明している。マスキングブレード10は複数
の可動の遮光板より成り、任意の開口形状が形成される
ようにしている。
Reference numeral 7 is a condenser lens. A plurality of light beams emitted from the secondary light source in the vicinity of the emission surface 6b of the optical integrator 6 are condensed by the condenser lens 7, and a part of the light beams are reflected by the half mirror 8 as a light splitting member to be directed to the masking blade 10. Then, the surface of the masking blade 10 is uniformly illuminated. The masking blade 10 is composed of a plurality of movable light shielding plates so that an arbitrary opening shape is formed.

【0016】9は演算光量検出器であり、ハーフミラー
8を通過した光束を検出し、後述するウエハ14面上へ
の露光量を間接的に検出している。11は結像レンズで
あり、マスキングブレード10の開口形状を被照射面と
してのレチクル12面に転写し、レチクル12面上の必
要な領域を均一に照明している。
Reference numeral 9 denotes a calculation light amount detector, which detects the light flux passing through the half mirror 8 and indirectly detects the exposure amount on the surface of the wafer 14 which will be described later. An image forming lens 11 transfers the opening shape of the masking blade 10 onto the surface of the reticle 12 as a surface to be illuminated, and uniformly illuminates a necessary area on the surface of the reticle 12.

【0017】13は投影光学系であり、レチクル12面
上の回路パターンをウエハチャック15に載置したウエ
ハ(基板)14面上に縮小投影している。16はウエハ
ステージである。
A projection optical system 13 projects the circuit pattern on the surface of the reticle 12 onto the surface of the wafer (substrate) 14 mounted on the wafer chuck 15 in a reduced scale. 16 is a wafer stage.

【0018】17は露光量検出器であり、その受光面が
ウエハ14と略同一平面上になるように設けてある。露
光量検出器17は、例えばマスキングブレード10をウ
エハ14面換算で10mm角に設定し、その全光束を検
出し、ウエハ14面上における実照度、即ち露光量を検
出するようにしている。
Reference numeral 17 denotes an exposure amount detector, which is provided so that its light receiving surface is substantially flush with the wafer 14. The exposure amount detector 17 sets the masking blade 10 to 10 mm square in terms of the wafer 14 surface, detects the total luminous flux of the mask 14 and detects the actual illuminance on the surface of the wafer 14, that is, the exposure amount.

【0019】19は演算手段であり、その記憶部には予
め求めた光分割部材8からウエハ14に至る光路中に配
置した光学要素の露光履歴による透過率の変動情報や環
境変化による透過率の変動情報が記憶されている。演算
手段19は積算光量検出器9からの信号と記憶部に記憶
している透過率の変動情報とを用いてウエハ14面上へ
の露光量を決定している。そして演算手段19はシャッ
ター4を開閉制御してウエハ14面上への露光量を制御
している。
Reference numeral 19 denotes an arithmetic means, which has a storage section for storing information of transmittance variation due to exposure history of optical elements arranged in the optical path from the light splitting member 8 to the wafer 14 and transmittance due to environmental changes. The fluctuation information is stored. The calculating means 19 determines the exposure amount on the surface of the wafer 14 using the signal from the integrated light amount detector 9 and the variation information of the transmittance stored in the storage section. The calculation means 19 controls the opening / closing of the shutter 4 to control the exposure amount on the surface of the wafer 14.

【0020】この他演算手段19はパターン転写前に積
算光量検出器で求めた照射光量の測定結果と露光量検出
器17で求めた測定結果とを用いてウエハ14面上への
露光量を決定している。
In addition to this, the calculating means 19 determines the exposure amount on the surface of the wafer 14 using the measurement result of the irradiation light amount obtained by the integrated light amount detector and the measurement result obtained by the exposure amount detector 17 before the pattern transfer. is doing.

【0021】本実施例では以上のようにして、ウエハ1
4面上への露光量を適切に設定することによりレチクル
12面上のパターンをウエハ面に転写している。そして
所定の現像処理過程を経て半導体素子を製造している。
In this embodiment, the wafer 1 is processed as described above.
The patterns on the reticle 12 surface are transferred to the wafer surface by appropriately setting the exposure amounts on the four surfaces. Then, a semiconductor device is manufactured through a predetermined developing process.

【0022】次に本実施例の演算手段19によりウエハ
14面上への露光量を制御する方法について説明する。
Next, a method of controlling the exposure amount on the surface of the wafer 14 by the calculating means 19 of this embodiment will be described.

【0023】光分割部材8からウエハ14面に至る各光
学要素の透過率が露光履歴による変動するパラメータは
予め実験により求めている。
The parameters by which the transmittance of each optical element from the light splitting member 8 to the surface of the wafer 14 fluctuates due to the exposure history are previously obtained by experiments.

【0024】図2〜図4は露光時及び非露光時における
積算光量検出器9上での照度(計測値)I1 とウエハ1
4面上での照度(実照度)I2 との比率(露光補正値)
φ(=I1 /I2 )の変化を横軸に時間tをとって示し
た説明図である。
2 to 4 show the illuminance (measured value) I 1 on the integrated light amount detector 9 and the wafer 1 during exposure and non-exposure.
Ratio of illuminance (actual illuminance) I 2 on 4 surfaces (exposure correction value)
The change in φ (= I 1 / I 2 ) is an explanatory view showing the horizontal axis represents time t.

【0025】図2において、初めて露光を行なうとき
(t=t0 )、そのときの比率(以下「露光補正値」と
いう)φをφ=1としている。
In FIG. 2, when exposure is performed for the first time (t = t 0 ), the ratio (hereinafter referred to as “exposure correction value”) φ at that time is φ = 1.

【0026】図中、区間A,C,Eは露光時の露光補正
値φの変化、区間B,Dは非露光時の露光補正値φの変
化を示している。
In the figure, sections A, C, and E show changes in the exposure correction value φ during exposure, and sections B and D show changes in the exposure correction value φ during non-exposure.

【0027】今、t=t0 より露光を開始する(区間
A)。この区間A内のある時間(t=tK )における露
光補正値φK の値は、 φK =f(tK −t0 ,eA ,eB ,φ0 ) ・・・
・・(1) となる。
Now, exposure is started from t = t 0 (section A). The value of the exposure correction value φ K at a certain time (t = t K ) in this section A is φ K = f 1 (t K −t 0 , e A , e B , φ 0 ) ...
・ ・ It becomes (1).

【0028】ここでeA は結像レンズ11に入射する光
量の単位時間当りの光量、eB は投影光学系Bに入射す
る光量の単位時間当りの光量、φ0 は露光開始直前の露
光補正値であり、この場合φ0 =1である。光量eA
B は光分割部材8からの反射光、マスキングブレード
10の開口面積Sm 、レチクル12の平均透過率Rr
依存するため、(1)式は、 φK =f2 (tK −t0 ,I1 ,Sm ,Rr ,φ0 ) ・・・(2) と書き換えられる。
Here, e A is the amount of light incident on the imaging lens 11 per unit time, e B is the amount of light incident on the projection optical system B per unit time, and φ 0 is the exposure correction immediately before the start of exposure. Value, in this case φ 0 = 1. Light intensity e A ,
Since e B depends on the reflected light from the light splitting member 8, the opening area S m of the masking blade 10 and the average transmittance R r of the reticle 12, equation (1) is expressed as φ K = f 2 (t K −t 0 , I 1 , S m , R r , φ 0 ) (2)

【0029】そして演算手段19に露光時にマスキング
ブレード10の開口面積Sm 、レチクル12の平均透過
率Rr を入力しておく(又は自動的に読み取る)ことに
より、刻々と変わる露光補正値φを算出し、露光補正値
φをもとに正確な露光量の制御を行なっている。
By inputting (or automatically reading) the opening area S m of the masking blade 10 and the average transmittance R r of the reticle 12 to the calculating means 19 during exposure, the exposure correction value φ that changes from moment to moment is obtained. The exposure amount is calculated and accurately controlled based on the exposure correction value φ.

【0030】次にt=t1 で露光をやめ、t=t2 で再
び露光を開始したとする。t=t1における露光補正値
φ1 はφ1 =f2 (t1 −t0 ,I1 ,Sm ,Rr ,φ
0 )により算出され、t=t2 における露光補正値φ2
はφ2 =f3 (t2 −t1 ,φ1 )により算出される。
露光開始後、t=tJ における露光補正値φJ はφJ
2 (tJ −t2 ,I1 ,Sm ,Rr ,φ2 )により算
出される。このように露光履歴により直前の露光補正値
と経過時間を記憶しておくことにより、現在の露光補正
値を常に算出することができる。尚、関数f2 ,f3
実験により予め求めている。
Next, it is assumed that the exposure is stopped at t = t 1 and the exposure is restarted at t = t 2 . The exposure correction value φ 1 at t = t 1 is φ 1 = f 2 (t 1 −t 0 , I 1 , S m , R r , φ
0) is calculated by, t = exposure in t 2 correction value phi 2
Is calculated by φ 2 = f 3 (t 2 −t 1 , φ 1 ).
After starting exposure, the exposure correction value at t = t J φ J is phi J =
It is calculated by f 2 (t J −t 2 , I 1 , S m , R r , φ 2 ). In this way, by storing the immediately previous exposure correction value and the elapsed time from the exposure history, the current exposure correction value can always be calculated. The functions f 2 and f 3 are obtained in advance by experiments.

【0031】本実施例では露光中における露光補正値φ
の変化を刻々と算出してゆき、各ショット毎に露光量制
御を行なっているが、1ショットにおける露光時間は非
常に短く、露光補正値の変化はほとんどないため、各シ
ョット毎もしくは複数ショットから成る各ウエハ毎に1
つの露光補正値φを算出し露光を行なっても良い。
In this embodiment, the exposure correction value φ during exposure
The exposure amount is controlled for each shot, but the exposure time for one shot is very short, and there is almost no change in the exposure correction value. 1 for each wafer
Exposure may be performed by calculating one exposure correction value φ.

【0032】図3は各ショット毎に1つの露光補正値φ
を算出し露光を行なったときの説明図である。時間t0
〜t1 の間に第1ショット、t2 〜t3 の間に第2ショ
ット、t4 〜t5 の間に第3ショットの露光を行なって
いる各時間の露光補正値の変化が点線で示されている。
FIG. 3 shows one exposure correction value φ for each shot.
It is explanatory drawing when calculating and exposing. Time t 0
The first shot during ~t 1, t 2 second shot during ~t 3, the change in the exposure correction value of each time doing the exposure of the third shot between t 4 ~t 5 is a dotted line It is shown.

【0033】本実施例において、第1ショットでは露光
補正値φ0 を、第2ショットでは露光補正値φ2 を、第
3ショットでは露光補正値φ4 を各ショット毎固定の露
光補正値として用いている。各露光補正値(φ1 ,φ
2 ,φ3 …)の算出の仕方は実施例1と同じである。
In this embodiment, the exposure correction value φ 0 is used as the first shot, the exposure correction value φ 2 is used as the second shot, and the exposure correction value φ 4 is used as the fixed exposure correction value for each shot in the third shot. ing. Each exposure correction value (φ 1 , φ
2 , φ 3 ...) Is calculated in the same way as in the first embodiment.

【0034】図4は各ウエハ毎に1つの露光補正値を算
出し露光を行なった説明図である。時間t0 〜t1 の間
に第1ウエハ、時刻t2 から第2ウエハの露光を行なっ
ており、各ウエハの露光には多数のショットの露光が含
まれている。
FIG. 4 is an explanatory diagram in which one exposure correction value is calculated for each wafer and exposure is performed. The exposure of the first wafer and the exposure of the second wafer from time t 2 are performed during the time t 0 to t 1 , and the exposure of each wafer includes exposure of a large number of shots.

【0035】本実施例においては、各ウエハ露光時に固
定の露光補正値を用いている。この場合、1ウエハの露
光の間に何回もの露光、非露光が繰り返されるが、刻々
と露光補正値を算出してゆき、露光補正値φ1 を算出し
ても良いし、各ショット間の非露光時間は短いので1ウ
エハの露光全体を1つの露光と考え平均入射光量より露
光補正値φ1 を算出しても良い。
In this embodiment, a fixed exposure correction value is used during each wafer exposure. In this case, exposure and non-exposure are repeated many times during the exposure of one wafer, but the exposure correction value φ 1 may be calculated every moment and the exposure correction value φ 1 may be calculated. Since the non-exposure time is short, the entire exposure of one wafer may be regarded as one exposure, and the exposure correction value φ 1 may be calculated from the average incident light amount.

【0036】又、環境変化により透過率の変動が起こる
場合、不図示のセンサーで環境の変化をモニターし、そ
の結果と演算による補正を加えた方がよい。
When the transmittance changes due to a change in the environment, it is better to monitor the change in the environment with a sensor (not shown) and correct the result and the calculation.

【0037】図5は本発明の実施例2の要部概略図であ
る。
FIG. 5 is a schematic view of the essential portions of Embodiment 2 of the present invention.

【0038】本実施例は図1の実施例1に比べて光源と
してKrFエキシマレーザ等のパルス発光する光源20
を用いている点が異なり、その他の構成は同じである。
This embodiment is different from the embodiment 1 of FIG. 1 in that the light source 20 emits pulses such as a KrF excimer laser as a light source.
Is different, and the other configurations are the same.

【0039】本実施例では1ショット露光の間にも露
光、非露光が繰り返されるので前述した平均入射光量と
いう概念が適用される。
In this embodiment, since exposure and non-exposure are repeated even during one-shot exposure, the concept of average incident light amount described above is applied.

【0040】尚、以上の各実施例では露光履歴により露
光補正値を算出してゆく例を示したが、各ショット、各
ウエハ又は各ウエハロット毎に露光量検出器17を用い
てキャリブレーションし直接露光補正値を算出しても良
い。
In each of the above embodiments, the exposure correction value is calculated based on the exposure history, but the exposure amount detector 17 is used for calibration for each shot, each wafer or each wafer lot. The exposure correction value may be calculated.

【0041】又、実行時に露光補正値の計算値と実際の
値のズレを補正するため、ある期間毎にキャリブレーシ
ョンを行なっても良い。
Further, in order to correct the deviation between the calculated value of the exposure correction value and the actual value at the time of execution, calibration may be performed every certain period.

【0042】[0042]

【発明の効果】本発明によれば以上のように、光分割部
材からウエハに至る光路中の各光学要素の露光履歴によ
る透過率の変動情報を予め求めて演算手段に記憶してお
き、光検出器からの信号と制御手段に記憶しておいた透
過率の変動情報とを利用することにより、ウエハ面上へ
の露光光量を適切に制御し、高集積度の半導体素子が得
られるようにした投影露光装置及びそれを用いた半導体
素子の製造方法を達成することができる。
As described above, according to the present invention, the variation information of the transmittance due to the exposure history of each optical element in the optical path from the light splitting member to the wafer is obtained in advance and stored in the calculating means. By using the signal from the detector and the variation information of the transmittance stored in the control means, the exposure light amount on the wafer surface is appropriately controlled so that a highly integrated semiconductor device can be obtained. The projection exposure apparatus and the method for manufacturing a semiconductor device using the projection exposure apparatus can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 本発明の実施例1に係る露光補正値の説明図FIG. 2 is an explanatory diagram of an exposure correction value according to the first embodiment of the present invention.

【図3】 本発明の実施例1に係る露光補正値の説明図FIG. 3 is an explanatory diagram of an exposure correction value according to the first embodiment of the present invention.

【図4】 本発明の実施例1に係る露光補正値の説明図FIG. 4 is an explanatory diagram of an exposure correction value according to the first embodiment of the present invention.

【図5】 本発明の実施例2の要部概略図FIG. 5 is a schematic view of the essential portions of Embodiment 2 of the present invention.

【符号の説明】[Explanation of symbols]

1,20 光源 2 楕円鏡 3 コールドミラー 4 シャッター 5 光学系 6 オプティカルインテグレータ 7 集光レンズ 8 光分割部材 9 積算光量検出器 10 マスキングブレード 11 結像レンズ 12 レチクル 13 投影光学系 14 ウエハ 17 露光量検出器 19 演算手段 1, 20 Light source 2 Elliptical mirror 3 Cold mirror 4 Shutter 5 Optical system 6 Optical integrator 7 Condensing lens 8 Light splitting member 9 Integrated light amount detector 10 Masking blade 11 Imaging lens 12 Reticle 13 Projection optical system 14 Wafer 17 Exposure amount detection Vessel 19 computing means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束を照明装置により被照射
面上のパターンを照明し、該パターンを投影光学系によ
り基板面上に投影し露光する際、該照明装置は該光源と
該被照射面との間の光路中に入射光束を少なくとも2つ
の光束に分割し、そのうち一方の光束を該被照射面側
に、他方の光束を積算光量検出器に導光する光分割部
材、そして該光分割部材から該基板に至る光学系の透過
率の変動情報を記憶した演算手段とを有しており、該演
算手段は該透過率の変動情報と該積算光量検出器からの
積算光量測定結果とを用いて該基板面上への露光量を決
定していることを特徴とする投影露光装置。
1. When illuminating a pattern on a surface to be illuminated with a light flux from a light source by a lighting device and projecting the pattern onto a substrate surface by a projection optical system to expose the pattern, the lighting device uses the light source and the irradiation target. A light splitting member that splits an incident light flux into at least two light fluxes in an optical path between the light flux and the surface, and guides one of the light fluxes to the illuminated surface side and the other light flux to the integrated light amount detector, and the light flux. And a calculation unit that stores variation information of the transmittance of the optical system from the dividing member to the substrate, the calculation unit having the variation information of the transmittance and the integrated light amount measurement result from the integrated light amount detector. The projection exposure apparatus is characterized in that the exposure amount on the substrate surface is determined by using.
【請求項2】 光源からの光束を照明装置により被照射
面上のパターンを照明し、該パターンを投影光学系によ
り基板面上に投影し露光する際、該照明装置は該光源と
該被照射面との間の光路中に入射光束を少なくとも2つ
の光束に分割し、そのうち一方の光束を該被照射面側
に、他方の光束を積算光量検出器に導光する光分割部
材、該基板相当面上に設けた該基板に入射する露光量を
検出する露光量検出器、そしてパターン転写前に該積算
光量検出器で求めた測定結果と該露光量検出器で求めた
測定結果とを用いて該基板への露光量を決定する演算手
段とを有していることを特徴とする投影露光装置。
2. When illuminating a pattern on a surface to be illuminated with a light beam from a light source by a lighting device and projecting the pattern onto a surface of a substrate by a projection optical system for exposure, the lighting device uses the light source and the light to be illuminated. A light splitting member that splits an incident light flux into at least two light fluxes in an optical path between the light flux and the surface, and guides one of the light fluxes to the illuminated surface side and the other light flux to the integrated light amount detector, which corresponds to the substrate. An exposure amount detector for detecting the amount of exposure incident on the substrate provided on the surface, and using the measurement result obtained by the integrated light amount detector and the measurement result obtained by the exposure amount detector before pattern transfer A projection exposure apparatus comprising: a calculation unit that determines an exposure amount on the substrate.
【請求項3】 光源からの光束を照明装置によりレチク
ル面上のパターンを照明し、該パターンを投影光学系に
よりウエハ面上に投影し露光した後に、該ウエハを現像
処理工程を介して半導体素子を製造する際、該照明装置
は該光源と該被照射面との間の光路中に入射光束を少な
くとも2つの光束に分割し、そのうち一方の光束を該被
照射面側に、他方の光束を積算光量検出器に導光する光
分割部材、そして該光分割部材から該基板に至る光学系
の透過率の変動情報を記憶した演算手段とを有してお
り、該演算手段は該透過率の変動情報と該積算光量検出
器からの積算光量測定結果とを用いて該基板面上への露
光量を決定していることを特徴とする半導体素子の製造
方法。
3. A semiconductor device is provided with a light beam from a light source, which illuminates a pattern on a reticle surface by an illuminating device, projects the pattern onto a wafer surface by a projection optical system to expose the wafer, and then develops the wafer through a developing process. When manufacturing the, the illuminating device splits the incident light flux into at least two light fluxes in the optical path between the light source and the illuminated surface, and one of the light fluxes is directed to the illuminated surface side and the other light flux is directed to the other light flux. The light dividing member that guides light to the integrated light amount detector, and a calculating unit that stores variation information of the transmittance of the optical system from the light dividing member to the substrate, the calculating unit having the transmittance of the optical system. A method of manufacturing a semiconductor device, wherein the exposure amount on the surface of the substrate is determined by using the variation information and the integrated light amount measurement result from the integrated light amount detector.
JP4360793A 1992-12-28 1992-12-28 Exposure apparatus and method for manufacturing semiconductor device using the same Expired - Fee Related JP2765422B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4360793A JP2765422B2 (en) 1992-12-28 1992-12-28 Exposure apparatus and method for manufacturing semiconductor device using the same
US09/013,201 US6757050B1 (en) 1992-12-28 1998-01-26 Exposure method and apparatus for detecting an exposure amount and for calculating a correction value based on the detected exposure amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4360793A JP2765422B2 (en) 1992-12-28 1992-12-28 Exposure apparatus and method for manufacturing semiconductor device using the same

Publications (2)

Publication Number Publication Date
JPH06204113A true JPH06204113A (en) 1994-07-22
JP2765422B2 JP2765422B2 (en) 1998-06-18

Family

ID=18470945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4360793A Expired - Fee Related JP2765422B2 (en) 1992-12-28 1992-12-28 Exposure apparatus and method for manufacturing semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP2765422B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980051522A (en) * 1996-12-23 1998-09-15 김영환 Transmittance Measurement Method of Halftone Phase Inversion Mask
WO1999005710A1 (en) * 1997-07-25 1999-02-04 Nikon Corporation Projection aligner, projection exposure method, optical cleaning method and method of fabricating semiconductor device
US6163365A (en) * 1996-10-11 2000-12-19 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using the same
US6414743B1 (en) 1997-04-18 2002-07-02 Nikon Corporation Exposure apparatus, exposure method using the same and method of manufacture of circuit device
US6563565B2 (en) 1997-08-27 2003-05-13 Nikon Corporation Apparatus and method for projection exposure
US6813004B1 (en) 1998-04-07 2004-11-02 Nikon Corporation Exposure method, exposure apparatus and making method of the apparatus, and device and manufacturing method of the device
SG107559A1 (en) * 2000-01-14 2004-12-29 Nikon Corp Exposure method, exposure apparatus and device producing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343288A (en) * 1992-06-11 1993-12-24 Nikon Corp Exposure apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343288A (en) * 1992-06-11 1993-12-24 Nikon Corp Exposure apparatus

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6163365A (en) * 1996-10-11 2000-12-19 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using the same
US6621558B1 (en) 1996-10-11 2003-09-16 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using the same
KR19980051522A (en) * 1996-12-23 1998-09-15 김영환 Transmittance Measurement Method of Halftone Phase Inversion Mask
US6414743B1 (en) 1997-04-18 2002-07-02 Nikon Corporation Exposure apparatus, exposure method using the same and method of manufacture of circuit device
WO1999005710A1 (en) * 1997-07-25 1999-02-04 Nikon Corporation Projection aligner, projection exposure method, optical cleaning method and method of fabricating semiconductor device
US6492649B1 (en) 1997-07-25 2002-12-10 Nikon Corporation Projection exposure apparatus, projection exposure method, optical cleaning method and method of fabricating semiconductor device
KR100564437B1 (en) * 1997-07-25 2006-03-29 가부시키가이샤 니콘 Projection aligner, projection exposure method, optical cleaning method and method of fabricating semiconductor device
US6563565B2 (en) 1997-08-27 2003-05-13 Nikon Corporation Apparatus and method for projection exposure
US6813004B1 (en) 1998-04-07 2004-11-02 Nikon Corporation Exposure method, exposure apparatus and making method of the apparatus, and device and manufacturing method of the device
SG107559A1 (en) * 2000-01-14 2004-12-29 Nikon Corp Exposure method, exposure apparatus and device producing method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JP2765422B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
JP3412981B2 (en) Projection exposure apparatus and projection exposure method
KR101267144B1 (en) Sensor calibration method, exposure method, exposure device, device fabrication method, and reflection type mask
US6268906B1 (en) Exposure apparatus and exposure method
JPS62183522A (en) Projection and exposure apparatus
JPH03211813A (en) Exposure aligner
JPH10135123A (en) Projection aligenr and manufacturing semiconductor device, using the same
JPH06204113A (en) Projection aligner and manufacture of semiconductor device using same
TW200919107A (en) Imaging characteristics fluctuation predicting method, exposure apparatus, and device manufacturing method
KR100277112B1 (en) Exposure apparatus and device manufacturing method using same
US20160124318A1 (en) Exposure method, exposure apparatus, and article manufacturing method
KR100564437B1 (en) Projection aligner, projection exposure method, optical cleaning method and method of fabricating semiconductor device
US6657725B1 (en) Scanning type projection exposure apparatus and device production method using the same
US8462316B2 (en) Exposure apparatus, method of controlling the same, and device manufacturing method
JPH08162397A (en) Projection light exposure device and manufacture of semiconductor device by use thereof
JP2705609B2 (en) Exposure apparatus and exposure method
JP2005302825A (en) Exposure system
JP2000235945A (en) Scanning type aligner and its method
JP2000260698A (en) Projection aligner and fabrication of semiconductor device employing the same
US6744492B2 (en) Exposure apparatus
JP3900601B2 (en) Exposure condition selection method and inspection apparatus used in the method
US20040184015A1 (en) Aligner and device fabrication method
JP3245026B2 (en) Exposure method, exposure apparatus, and device manufacturing method using the same
JP2002025880A (en) Projection aligner, projection aligning method, optics cleaning method and method for manufacturing semiconductor device
JPS6076728A (en) Projecting and exposing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110403

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees