JPH06203740A - Electron emitting element and manufacture thereof and electron beam generator and image forming device using this electron emitting element - Google Patents

Electron emitting element and manufacture thereof and electron beam generator and image forming device using this electron emitting element

Info

Publication number
JPH06203740A
JPH06203740A JP35979592A JP35979592A JPH06203740A JP H06203740 A JPH06203740 A JP H06203740A JP 35979592 A JP35979592 A JP 35979592A JP 35979592 A JP35979592 A JP 35979592A JP H06203740 A JPH06203740 A JP H06203740A
Authority
JP
Japan
Prior art keywords
electron
fine particle
film thickness
film
particle film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35979592A
Other languages
Japanese (ja)
Other versions
JP2961477B2 (en
Inventor
Hisami Iwai
久美 岩井
Ryoji Fujiwara
良治 藤原
Yoshikazu Sakano
嘉和 坂野
Shinichi Kawate
信一 河手
Kazuhiro Mitsumichi
和宏 三道
Ichiro Nomura
一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP35979592A priority Critical patent/JP2961477B2/en
Publication of JPH06203740A publication Critical patent/JPH06203740A/en
Application granted granted Critical
Publication of JP2961477B2 publication Critical patent/JP2961477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To provide an electron emitting element used for an electron beam generator, image forming device, etc. CONSTITUTION:A fine grain film 5 for electrically connecting a pair of electrodes 2, 3, formed on a substrate 1, is provided. In this fine grain film, a relation between its minimum film thickness t1 and maximum film thickness t2 is set so as to obtain the relation where t2<=2t1. A forming process of an electron emitting part 4 can be stably performed in uniformity and at low voltage, thus to obtain a uniform luminescent spot of no uneven brightness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子放出源として用いら
れる電子放出素子、詳しくは冷陰極型素子の一つである
表面伝導形放出素子及びその製造方法、更には該素子を
用いた電子線発生装置並びに画像形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron-emitting device used as an electron-emitting source, more specifically, a surface conduction electron-emitting device which is one of cold cathode type devices, a method for manufacturing the same, and an electron beam using the device. The present invention relates to a generator and an image forming apparatus.

【0002】[0002]

【従来の技術】従来、簡単な構造で電子の放出が得られ
る素子として、例えばエム・アイ・エリンソン(M.
I.Elinson)等によって発表された冷陰極素子
が知られている[ラジオ エンジニアリング エレクト
ロン フィジックス(RadioEng.Electr
on.Phys.)第10巻,1290〜1296頁,
1965年]。
2. Description of the Related Art Conventionally, as a device which can emit electrons with a simple structure, for example, MI Elinson (M.
I. A cold cathode device announced by Elinson et al. Is known [Radio Engineering Electron Physics (Radio Eng.
on. Phys. ) Volume 10, pp. 1290-1296,
1965].

【0003】かかる素子は、基板上に形成された小面積
の薄膜に、膜内に平行に電流を流すことにより、電子放
出が生ずる現象を利用するもので、一般には表面伝導形
放出素子と呼ばれている。
Such an element utilizes a phenomenon in which a small area thin film formed on a substrate causes electron emission by causing an electric current to flow in parallel in the film, and is generally called a surface conduction type emission element. Has been.

【0004】この表面伝導形放出素子としては、前記エ
リンソン等により開発されたSnO2 (Sb)薄膜を用
いたもの、Au薄膜によるもの[ジー・ディトマー“ス
インソリッド フィルムス”(G.Dittmer:
“Thin Solid Films”),9巻,31
7頁(1972年)]、ITO薄膜によるもの[エムハ
ートウェル アンド ジーシーフォンスタッド“アイイ
ーイーイートランス”イーディーコンファレンス(M.
Hartwell and C.G.Fonstad:
“IEEE Trans.ED Conf.”)519
頁,(1975年)]、カーボン薄膜によるもの[荒木
久,他:“真空”第26巻,第1号,22頁,(198
3年)]などが報告されている。
The surface conduction electron-emitting device uses the SnO 2 (Sb) thin film developed by Elinson et al., And the Au thin film [G. Ditmer "Sin Solid Films" (G. Dittmer:
"Thin Solid Films"), 9, 31
7 (1972)], by ITO thin film [M Hartwell & Giffon Stud "IEE TRANS" Edie Conference (M.
Hartwell and C.I. G. Fonstad:
"IEEE Trans.ED Conf.") 519
P., (1975)], by carbon thin film [Haraki Araki, et al., "Vacuum", Vol. 26, No. 1, page 22, (198).
3 years)] etc. have been reported.

【0005】これらの表面伝導形放出素子の典型的な素
子構成を図11に示す。同図において、2および3は電
気的接続を得るための電極、13は電子放出材料で形成
される薄膜、1は基板、4は電子放出部を示す。
FIG. 11 shows a typical element structure of these surface conduction electron-emitting devices. In the figure, 2 and 3 are electrodes for obtaining electrical connection, 13 is a thin film made of an electron emitting material, 1 is a substrate, and 4 is an electron emitting portion.

【0006】従来、これらの表面伝導形放出素子におい
ては、電子放出を行う前にあらかじめフォーミングと呼
ばれる通電加熱処理によって電子放出部4を形成する。
即ち、電極2と電極3の間に電圧を印加する事により、
薄膜13に通電し、これにより発生するジュール熱で薄
膜13を局所的に破壊、変形もしくは変質せしめ、電気
的に高抵抗な状態にした電子放出部4を形成することに
より電子放出機能を得ている。
Conventionally, in these surface conduction electron-emitting devices, the electron-emitting portion 4 is formed in advance by conducting heat treatment called forming before the electron emission.
That is, by applying a voltage between the electrodes 2 and 3,
By energizing the thin film 13, the Joule heat generated thereby locally destroys, deforms or modifies the thin film 13 to form an electron emitting portion 4 in an electrically high resistance state, thereby obtaining an electron emitting function. There is.

【0007】なお、電気的に高抵抗な状態とは、薄膜1
3の一部に0.5〜5μmの亀裂を有し、且つ亀裂内が
所謂島構造を有する不連続状態膜をいう。島構造とは一
般に数十Åから数μm径の微粒子が基板1にあり、各微
粒子は空間的に不連続で電気的に連続な膜をいう。
The electrically high resistance state means the thin film 1
A discontinuous state film having a crack of 0.5 to 5 μm in a part of 3 and having a so-called island structure inside the crack. The island structure generally refers to a film in which fine particles having a diameter of several tens of μm to several μm are present on the substrate 1, and each fine particle is spatially discontinuous and electrically continuous.

【0008】従来、表面伝導形放出素子は上述の高抵抗
連続膜に電極2,3により電圧を印加し、素子表面に電
流を流すことにより、上述の微粒子より電子を放出せし
めるものである。
Conventionally, in the surface conduction electron-emitting device, a voltage is applied to the high resistance continuous film by the electrodes 2 and 3 and a current is caused to flow on the surface of the device so that electrons are emitted from the fine particles.

【0009】しかしながら、上記の様な従来の通電加熱
によるフォーミング処理によって製造された電子放出素
子には、次のような問題点がある。即ち、電子放出部
となる島構造の設計が不可能なため、素子の改良が難し
く、素子間のばらつきも生じやすい、島構造の寿命が
短く且つ安定性が悪く、また外界の電磁波ノイズにより
素子破壊も生じやすい、電気的に高抵抗な状態にする
ために必要とする最小電圧であるフォーミング電圧が大
きく、フォーミング工程の際に生じるジュール熱が大き
いため、基板が破壊しやすくマルチ化が難しい、島構
造の材料が金,銀,SnO2 ,ITO等に限定され仕事
関数の小さい材料が使えないため、大電流を得る事がで
きない、等の問題である。このため、表面伝導形電子放
出素子は、素子構造が簡単であるという利点があるにも
かかわらず、産業上積極的に応用されるには至っていな
い。
However, the above-described conventional electron-emitting device manufactured by the forming process by electric heating has the following problems. That is, since it is impossible to design an island structure that serves as an electron-emitting portion, it is difficult to improve the elements, variations between elements are likely to occur, the life of the island structure is short and the stability is poor, and the elements are affected by external electromagnetic noise. Since the forming voltage, which is the minimum voltage required to make an electrically high resistance state, is large, and the Joule heat generated during the forming process is large, it is easy to break the substrate and it is difficult to make multiple substrates. The material of the island structure is limited to gold, silver, SnO 2 , ITO and the like, and materials having a small work function cannot be used, so that a large current cannot be obtained. For this reason, the surface conduction electron-emitting device has not been positively applied industrially, although it has the advantage that the device structure is simple.

【0010】そこで本発明者等は、特開平2−5682
2号において、電極間に微粒子膜を配置し、これに通電
処理を施すことにより電子放出部を設ける新規な表面伝
導形放出素子を提案している。
Therefore, the inventors of the present invention have disclosed in Japanese Patent Laid-Open No. 2-5682.
No. 2 proposes a novel surface conduction electron-emitting device in which a fine particle film is arranged between electrodes and an electron-emitting process is performed on the fine particle film to provide an electron-emitting portion.

【0011】この電子放出素子の特徴としては次のよう
なことが挙げられる。即ち、フォーミング時の熱量を
少なくすることができるため膜割れや基板割れを防止す
ることができ、そして島材の選択が可能で、且つ電子
放出材に微粒子膜を用いることによりフォーミング工程
に要する電圧(フォーミング電圧)が小さくて済む。
The characteristics of this electron-emitting device are as follows. That is, since it is possible to reduce the amount of heat at the time of forming, it is possible to prevent film cracking and substrate cracking, and it is possible to select an island material, and by using a fine particle film as an electron-emitting material, the voltage required for the forming step is increased. (Forming voltage) can be small.

【0012】上記微粒子膜の製造方法としては、ガスデ
ィポジション法や分散塗布法等が用いられ、それらの中
でも所望材料の微粒子の分散液を回転塗布、あるいはデ
ィッピング等の手法により基板に塗布し、その後加熱処
理で溶剤,バインダー等を除去する分散塗布法が最も簡
便である。
As a method for producing the above-mentioned fine particle film, a gas deposition method, a dispersion coating method, or the like is used. Among them, a dispersion liquid of fine particles of a desired material is applied to a substrate by a method such as spin coating or dipping, The dispersion coating method, in which the solvent and binder are removed by heat treatment after that, is the simplest.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記微
粒子膜は製造方法により程度の差こそあるものの、その
膜厚に分布を生じている。本発明者等がこの点について
更に検討を重ねた結果、特に、微粒子膜形成の簡便な方
法として多用されている上記分散塗布法によって作成さ
れた微粒子膜において、その中央部(周辺部に対しての
概念)と周辺部の膜厚との間に大きな差があるものが比
較的多く見られる事がわかった。
However, the above-mentioned fine particle film has a distribution in its film thickness, although the film thickness varies depending on the manufacturing method. As a result of further studies made by the present inventors on this point, in particular, in a fine particle film prepared by the above dispersion coating method which is often used as a simple method for forming a fine particle film, its central portion (relative to the peripheral portion) It was found that there are comparatively many things that have a large difference between the (concept of) and the film thickness of the peripheral portion.

【0014】図8は上記のような微粒子膜の中央部と周
辺部とで膜厚の大きく異なる電子放出素子の斜視図であ
り、図9はそのC−C断面図、図10はそのD−D断面
図である。これらの図において、1は基板、5は基板1
上に形成された微粒子膜、2および3は微粒子膜5と電
気的な導通を取るための電極、4は微粒子膜5内に形成
された電子放出部である。本素子においては、図9,図
10に示されるように、微粒子膜5の周辺部が盛り上が
っており、中央部と周辺部でその膜厚が大きく異なって
いる。分散塗布法を用いて所望の場所に微粒子膜を形成
する際には、通常のフォトリソグラフィで用いられるレ
ジストや金属等のマスクを形成した基板に、微粒子の分
散液を回転塗布あるいは基板を分散液中に浸漬して分散
液を塗布した後、焼成して成膜し、更にマスクを除去す
る事により局所的に形成している。
FIG. 8 is a perspective view of an electron-emitting device in which the film thickness differs greatly between the central part and the peripheral part of the fine particle film as described above. FIG. 9 is a sectional view taken along line CC of FIG. It is a D sectional view. In these figures, 1 is a substrate, 5 is a substrate 1
The fine particle films 2 and 3 formed thereon are electrodes for establishing electrical connection with the fine particle film 5, and 4 is an electron emission portion formed in the fine particle film 5. In this element, as shown in FIGS. 9 and 10, the peripheral portion of the fine particle film 5 is swelled, and the film thickness is greatly different between the central portion and the peripheral portion. When a fine particle film is formed at a desired location using the dispersion coating method, a fine particle dispersion is spin-coated or a substrate is dispersed on a substrate on which a mask such as a resist or a metal used in ordinary photolithography is formed. After being dipped in the inside to apply the dispersion liquid, it is baked to form a film, and the mask is removed to form the film locally.

【0015】この時、所望のパターンで形成されている
マスク間に塗布された分散液はマスク材との界面におけ
る張力により、界面近傍の分散液面が界面近傍以外のそ
れよりも上昇し、また、回転塗布による場合には、さら
に遠心力によりその方向に分散液が移動する。
At this time, the dispersion liquid applied between the masks formed in a desired pattern has a dispersion liquid surface near the interface raised above that other than near the interface due to the tension at the interface with the mask material. In the case of spin coating, the dispersion moves in that direction by centrifugal force.

【0016】その結果、本素子のように、最終的に得ら
れる微粒子膜の周辺部が中央部よりも膜厚が厚くなる。
As a result, as in the present device, the peripheral portion of the finally obtained fine particle film is thicker than the central portion.

【0017】このような素子を10-5〜10-7Torr
の真空中に入れてフォーミングを行うと、微粒子膜の中
央部と周辺部でフォーミング電圧が異なり、フォーミン
グが不安定になるとともに、フォーミング電圧を上昇さ
せるという問題があった。また、真空中でこのような素
子の上部に引き出し電極を設けて電子放出させた際に
は、1素子内で輝度ムラを生じていた。
Such an element is used in the order of 10 −5 to 10 −7 Torr.
When forming is carried out in a vacuum of No. 2, there is a problem that the forming voltage becomes unstable at the central part and the peripheral part of the fine particle film, the forming becomes unstable, and the forming voltage is increased. Further, when an extraction electrode is provided above such an element in a vacuum to emit electrons, uneven brightness occurs in one element.

【0018】また図9に見られる様に、微粒子膜5の周
辺部がもりあがっているため、電子放出させる際に素子
が放電破壊を生じやすく、引き出し電極に印加するアノ
ード電圧をあげられず、放出電流量が低く制限されると
いう問題があった。
Further, as shown in FIG. 9, since the peripheral portion of the fine particle film 5 is raised, the device is apt to cause discharge breakdown when emitting electrons, and the anode voltage applied to the extraction electrode cannot be raised, and the emission is prevented. There is a problem that the amount of current is limited to a low level.

【0019】本発明は、このような問題点に鑑みなされ
たものであり、より低電圧での安定したフォーミングを
可能にし、均一且つより多くの放出電流量を得ることが
できる電子放出素子、更には、これを用いた電子線発生
装置,画像形成装置を提供することを目的とする。
The present invention has been made in view of the above problems, and it is possible to perform stable forming at a lower voltage and to obtain a uniform and larger amount of emission current, and further an electron-emitting device. Aims to provide an electron beam generator and an image forming apparatus using the same.

【0020】[0020]

【課題を解決するための手段及び作用】本発明者等は、
特に、微粒子膜の膜厚分布とフォーミング電圧との関係
に着目し鋭意検討した結果、一様なフォーミング電圧に
より電子放出部を形成するための膜厚分布を規定し、更
には、微粒子膜の最も簡便な形成方法である分散塗布法
を用いて、上記規定を満足する微粒子膜を形成するため
の条件を鋭意検討し、以下の本発明に至ったのである。
Means and Actions for Solving the Problems The present inventors have
In particular, as a result of an intensive study focusing on the relationship between the film thickness distribution of the fine particle film and the forming voltage, the film thickness distribution for forming the electron-emitting portion is defined by a uniform forming voltage. Using the dispersion coating method, which is a simple forming method, the inventors have earnestly studied the conditions for forming a fine particle film satisfying the above requirements, and have reached the present invention described below.

【0021】即ち本発明は、一対の電極と該一対の電極
を電気的に接続する微粒子膜とを有する電子放出素子に
おいて、上記微粒子膜の最小膜厚(t1 )と最大膜厚
(t2)との関係がt2 ≦2t1 であることを特徴とす
る電子放出素子であり、更には、一対の電極と該一対の
電極を電気的に接続する微粒子膜とを有する電子放出素
子の製造方法において、分散塗布法を用いて所望の位置
に上記微粒子膜を形成する際に、最終的に得られる微粒
子膜の最小膜厚をt1 としたとき、9t1 以下の膜厚を
有するマスクを用いることを特徴とする電子放出素子の
製造方法であり、更にはまた、少なくとも上記本発明の
電子放出素子を複数配置した電子源と、該電子源から放
出される電子線を変調する変調手段とを具備することを
特徴とする電子線発生装置であり、更にはまた、少なく
とも上記本発明の電子放出素子を複数配置した電子源
と、該電子源から放出される電子線を変調する変調手段
と、電子線の照射により画像を形成する画像形成部材と
を具備することを特徴とする画像形成装置である。
That is, according to the present invention, in an electron-emitting device having a pair of electrodes and a fine particle film electrically connecting the pair of electrodes, a minimum film thickness (t 1 ) and a maximum film thickness (t 2 ) of the fine particle film are provided. And a relationship of t 2 ≦ 2t 1 with respect to t 2 ≦ 2t 1 , and further manufacturing of an electron-emitting device having a pair of electrodes and a fine particle film electrically connecting the pair of electrodes. In the method, when the fine particle film is formed at a desired position by using the dispersion coating method, a mask having a film thickness of 9t 1 or less is set, where t 1 is the minimum film thickness of the finally obtained fine particle film. A method of manufacturing an electron-emitting device characterized by using, further, an electron source in which at least a plurality of the electron-emitting devices of the present invention are arranged, and a modulation means for modulating an electron beam emitted from the electron source. Electron beam generation characterized by comprising Furthermore, an electron source in which at least a plurality of the electron-emitting devices of the present invention are arranged, a modulation unit that modulates an electron beam emitted from the electron source, and an image that forms an image by irradiation of the electron beam. An image forming apparatus comprising: a forming member.

【0022】以下、図面を用いて本発明を詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

【0023】図1は本発明の電子放出素子の一例を示す
斜視図であり、図2は図1のA−A断面図である。。こ
れらの図中、1は絶縁性基板、2および3は電極、4は
電子放出部、5は微粒子膜であり、t1 は微粒子膜5の
最小膜厚、t2 は微粒子膜5の最大膜厚である。
FIG. 1 is a perspective view showing an example of the electron-emitting device of the present invention, and FIG. 2 is a sectional view taken along line AA of FIG. . In these figures, 1 is an insulating substrate, 2 and 3 are electrodes, 4 is an electron emission portion, 5 is a fine particle film, t 1 is the minimum thickness of the fine particle film 5, and t 2 is the maximum thickness of the fine particle film 5. It is thick.

【0024】本発明において、上記t1 とt2 はt2
2t1 の関係を満足するものである。
In the present invention, the above t 1 and t 2 are t 2
This satisfies the relationship of 2t 1 .

【0025】これにより、微粒子膜内に電子放出部を形
成するフォーミング工程の際に、両電極間に印加される
フォーミング電圧がフォーミング開始から終了までほぼ
一定となり、このようにして形成された電子放出部は、
ほぼ均一な電子放出特性を有する。
As a result, during the forming step of forming the electron emitting portion in the fine particle film, the forming voltage applied between both electrodes becomes substantially constant from the start to the end of the forming, and the electron emission formed in this manner is performed. Department is
It has almost uniform electron emission characteristics.

【0026】一方、t1 とt2 が上記関係を満足しない
場合には、異なるフォーミング電圧により電子放出部が
形成され、均一な電子放出特性が得られないばかりか、
フォーミング電圧が上昇して好ましくない。
On the other hand, when t 1 and t 2 do not satisfy the above relationship, the electron emitting portions are formed by different forming voltages, and uniform electron emitting characteristics cannot be obtained.
The forming voltage increases, which is not preferable.

【0027】微粒子膜の材料としては、LaB6 ,C8
6 ,YB4 ,GdB4 などの硼化物、TiC,Zr
C,HfC,TaC,SiC,WCなどの炭化物、Ti
N,ZrN,HfNなどの窒化物、Nb,Mo,Rh,
Hf,Ta,W,Re,Ir,Pt,Ti,Au,A
g,Cu,Cr,Al,Co,Ni,Fe,Pb,P
d,Ca,Baなどの金属、In2 3 ,SnO2 ,S
2 3 などの金属酸化物、Si,Geなどの半導体、
カーボン、AgMgなどを用いることができるがこれに
限定されない。
Materials for the fine particle film include LaB 6 , C 8
Borides such as B 6 , YB 4 , and GdB 4 , TiC, Zr
Carbides such as C, HfC, TaC, SiC, WC, Ti
Nitride such as N, ZrN, HfN, Nb, Mo, Rh,
Hf, Ta, W, Re, Ir, Pt, Ti, Au, A
g, Cu, Cr, Al, Co, Ni, Fe, Pb, P
d, Ca, Ba and other metals, In 2 O 3 , SnO 2 , S
metal oxides such as b 2 O 3 , semiconductors such as Si and Ge,
Carbon, AgMg, or the like can be used, but is not limited thereto.

【0028】電極材料としては、一般的な導電材料、A
u,Ag,Pt等の金属の他、SnO2 ,ITO等の酸
化物導伝性材料のものも使用できる。電極の幅は数μm
〜数mmが適当である。電極間の最小間隔である電極ギ
ャップ(図1,2中のL)は数μm〜数100μmが適
当であり、少なくとも微粒子膜と電気的導通を得られる
ように配置して形成される。
As the electrode material, a general conductive material, A
In addition to metals such as u, Ag, and Pt, oxide conductive materials such as SnO 2 and ITO can be used. The width of the electrode is several μm
〜Several mm is suitable. The electrode gap (L in FIGS. 1 and 2), which is the minimum distance between the electrodes, is suitably several μm to several hundred μm, and is formed so as to be electrically connected to at least the fine particle film.

【0029】微粒子膜の形成方法としては、ガスディポ
ジション法等も用いることができるが、本発明の電子放
出素子の製造方法においては、特に、最も簡便な形成方
法である分散塗布法を用いている。
As a method for forming the fine particle film, a gas deposition method or the like can be used, but in the method for producing the electron-emitting device of the present invention, the dispersion coating method, which is the simplest forming method, is used. There is.

【0030】この分散塗布法は、前述したような材料の
微粒子の分散液を回転塗布、ディッピング等の手法で基
板等に塗布し、加熱処理で溶剤,バインダー等を除去す
るものである。
In this dispersion coating method, a dispersion liquid of fine particles of the above-described material is applied to a substrate or the like by a method such as spin coating or dipping, and a solvent, a binder and the like are removed by heat treatment.

【0031】分散液としては、酢酸ブチルやアルコール
等から成る有機溶媒に微粒子及び微粒子の分散を促進す
る添加剤を加えたものを用いることができ、撹拌等によ
り微粒子の分散液を調整する。
As the dispersion liquid, it is possible to use fine particles and an additive for promoting dispersion of the fine particles added to an organic solvent such as butyl acetate or alcohol, and the dispersion liquid of fine particles is prepared by stirring or the like.

【0032】また、微粒子を分散して形成させるのに化
学的な方法として有機金属化合物の溶媒を基板上に塗布
した後、熱分解によって半導体の金属酸化物や金属の微
粒子を形成する手法も用いることができる。一例として
は、カプリル酸スズ(C7 15COO)2 Sn,ジイソ
アシロキシエトキシアンチモンC2 5 O(C5
11O)2 Sbの熱分解によって、それぞれSnO2 ,S
2 3 の微粒子を形成したり、有機パラジウム化合物
からPd微粒子を形成する例などを挙げることができ
る。
Further, as a chemical method for dispersing and forming fine particles, there is also used a method in which a solvent of an organometallic compound is applied on a substrate, and then metal oxide of a semiconductor or fine particles of metal is formed by thermal decomposition. be able to. As an example, tin caprylate (C 7 H 15 COO) 2 Sn, diisoacyloxyethoxyantimony C 2 H 5 O (C 5 H
By thermal decomposition of 11 O) 2 Sb, SnO 2 and S
Examples include forming fine particles of b 2 O 3 and forming Pd fine particles from an organopalladium compound.

【0033】尚、このようにして微粒子膜を形成する
際、微粒子膜のシート抵抗は5×103 〜1×107 Ω
/□となるようにするのが好ましい。
When the fine particle film is formed in this manner, the sheet resistance of the fine particle film is 5 × 10 3 to 1 × 10 7 Ω.
It is preferable that it be / □.

【0034】また、この微粒子膜5を所望の位置に局所
的に形成するパターニング方法としては、微粒子膜5を
形成したくない場所に、テープ,通常のフォトリソグラ
フィで用いられるレジスト,金属等のマスクを形成した
後、上記の分散塗布法を用いて微粒子膜を形成し、更
に、上記マスクを除去する事によって形成することがで
きる。
As a patterning method for locally forming the fine particle film 5 at a desired position, a tape, a resist used in ordinary photolithography, a mask of metal or the like is provided at a place where the fine particle film 5 is not desired to be formed. Can be formed by forming a fine particle film by using the dispersion coating method described above, and then removing the mask.

【0035】本発明の電子放出素子の製造方法において
は、最終的に得られる微粒子膜の最小膜厚t1 に対し
て、9t1 以下の膜厚を有するマスクが用いられる。こ
れにより、前述した回転塗布あるいはディッピング等の
手法で塗布した微粒子分散液から形成される微粒子膜
は、前記本発明の電子放出素子の微粒子膜の膜厚条件を
満足するものとなる。
In the method of manufacturing an electron-emitting device of the present invention, a mask having a film thickness of 9t 1 or less with respect to the minimum film thickness t 1 of the finally obtained fine particle film is used. As a result, the fine particle film formed from the fine particle dispersion liquid applied by a method such as the spin coating or dipping described above satisfies the film thickness conditions of the fine particle film of the electron-emitting device of the present invention.

【0036】回転塗布あるいはディッピング等の手法を
用いて微粒子膜を形成した場合、通常、図1,図2に示
したように、微粒子膜の中央部の膜厚が最小に、周辺部
の膜厚が最大になるが、例えば、回転塗布による場合
に、微粒子膜の形成位置が回転中心よりずれていると、
遠心力の方向に膜厚分布が生じることがある。
When a fine particle film is formed by a method such as spin coating or dipping, usually, as shown in FIGS. 1 and 2, the central portion of the fine particle film has a minimum thickness and the peripheral portion has a minimum thickness. However, if the formation position of the fine particle film deviates from the center of rotation, for example, in the case of spin coating,
A film thickness distribution may occur in the direction of centrifugal force.

【0037】このような場合においても、上記条件を満
足する膜厚を有するマスクを用いることにより、所望の
膜厚分布(t2 ≦2t1 )内に収めることができる。
Even in such a case, by using a mask having a film thickness satisfying the above conditions, the film thickness can be kept within a desired film thickness distribution (t 2 ≦ 2t 1 ).

【0038】このようにして形成した電子放出素子を約
1×10-5〜1×10-6Torrの真空度の下におき、
電極2,3間に電圧を印加して微粒子膜5内に電子放出
部4を形成するが、このフォーミング工程に要する電圧
(フォーミング電圧)を、t2 >2t1 の時より小さく
することができる。
The electron-emitting device thus formed is placed under a vacuum degree of about 1 × 10 -5 to 1 × 10 -6 Torr,
A voltage is applied between the electrodes 2 and 3 to form the electron emitting portion 4 in the fine particle film 5, but the voltage required for this forming step (forming voltage) can be made smaller than when t 2 > 2t 1. .

【0039】即ち、たとえば同じPtを微粒子膜材とし
て用いた場合でも、t2 =10t1の時はフォーミング
電圧が7Vであるのに対し、t2 ≦2t1 のものはおお
むね5Vで一定であった。
That is, even when the same Pt is used as the fine particle film material, the forming voltage is 7V when t 2 = 10t 1 , whereas the forming voltage when t 2 ≦ 2t 1 is approximately 5V and is constant. It was

【0040】また、これらの素子を真空中においたまま
で、素子上部にフェースプレートを設けて引き出し電圧
a =1kVを印加したところ、それらの輝点形状は、
2=10t1 の素子は図3(a)のように輝度ムラを
生じたが、本発明によるt2≦2t1 の素子では図3
(b)のように輝度ムラのない一様な輝点が得られた。
Also, while keeping these elements in vacuum
With a face plate on the top of the device,
V aWhen = 1 kV is applied, their bright spot shapes are
t2= 10t1The element has uneven brightness as shown in FIG.
Occurred, but according to the invention t2≤2t1Figure 3 for the device
As shown in (b), uniform bright spots without brightness unevenness were obtained.

【0041】また、更にV a を増加したところ、t2
10t1 の素子ではV a =5kV迄増加したところで、
素子と引き出し電極との間で放電破壊がおこり、素子が
壊れてしまったが、t2 ≦2t1 の素子ではV a =7k
V迄増加しても壊れることはなかった。
Further, V aIs increased, t2=
10t1In the element of V a= Where it increased to 5kV,
Discharge breakdown occurs between the element and the extraction electrode, and the element
It's broken, but t2≤2t1In the element of V a= 7k
It did not break even if it increased to V.

【0042】このように、本発明の電子放出素子では、
微粒子膜からなる電子放出材の最小膜厚t1 と最大膜厚
2 をt2 ≦2t1 とすることにより、低電圧で且つ安
定にフォーミングでき、1素子内での輝度ムラをなくす
ことができる。
As described above, in the electron-emitting device of the present invention,
By setting the minimum film thickness t 1 and the maximum film thickness t 2 of the electron-emitting material made of a fine particle film to t 2 ≦ 2t 1 , it is possible to perform stable forming at a low voltage and eliminate uneven brightness in one element. it can.

【0043】更に、引き出し電圧を高くすることができ
るため、より多くの放出電流量を得ることができる。
Furthermore, since the extraction voltage can be increased, a larger amount of emission current can be obtained.

【0044】また、本発明の電子放出素子を複数配置し
た電子源を用いて形成した電子線発生装置並びに画像形
成装置は、上記の理由により一様な輝度が得られ、より
明るい高精細な画像が得られる。
Further, the electron beam generator and the image forming apparatus formed by using the electron source in which a plurality of electron-emitting devices of the present invention are arranged can obtain uniform brightness for the above-mentioned reason, and can obtain a brighter high-definition image. Is obtained.

【0045】[0045]

【実施例】以下、本発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0046】実施例1 本実施例では図1,図2に示したような電子放出素子を
作製した。
Example 1 In this example, an electron-emitting device as shown in FIGS. 1 and 2 was produced.

【0047】本実施例の素子の製造方法は以下の通りで
ある。
The method of manufacturing the device of this example is as follows.

【0048】まず、絶縁性基板1を十分洗浄し、微粒子
膜5を形成しようとする領域以外の領域にマスクとして
Crを2000Åの厚さで成膜した。この上にSnO2
微粒子1.0g,有機溶媒(メチルエチルケトン:シク
ロヘキサン=3:1,800cc)の各材料をガラスビ
ーズと共にペイントシェーカーで24時間撹拌して得ら
れた分散液をスピンコートし、250℃で10分焼成し
た。その後、先に成膜したCrをエッチアウトした。こ
れにより微粒子膜5が形成され、その膜厚を触針式膜厚
計(東京エレクトロン社製、α−step)で測定した
ところ、中央部で最小膜厚を示し、その膜厚t1 は90
0Åであり、周辺部で最大膜厚を示し、その膜厚t2
1200Åであり、本発明の電子放出素子に係る微粒子
膜の膜厚条件であるところのt2 ≦2t1 を満足してい
た。
First, the insulating substrate 1 was thoroughly washed, and Cr was deposited to a thickness of 2000 Å as a mask in a region other than the region where the fine particle film 5 is to be formed. SnO 2 on top of this
1.0 g of fine particles and organic solvent (methyl ethyl ketone: cyclohexane = 3: 1,800 cc) were stirred with a glass bead for 24 hours on a paint shaker, and the obtained dispersion was spin-coated and baked at 250 ° C. for 10 minutes. . After that, the previously deposited Cr was etched out. This fine particle film 5 is formed by, by measurement of its thickness stylus thickness meter (manufactured by Tokyo Electron Limited, alpha-step), the the minimum film thickness at the central portion, the thickness t 1 is 90
0 Å, the maximum film thickness is shown in the peripheral portion, and the film thickness t 2 is 1200 Å, which satisfies t 2 ≤2t 1 which is the film thickness condition of the fine particle film according to the electron-emitting device of the present invention. It was

【0049】次に、通常良く用いられるフォトリソ・エ
ッチング技術及び蒸着技術により、電極2及び3を形成
した。電極の材料としては厚さ2000ÅのAlを用い
た。
Next, the electrodes 2 and 3 were formed by the photolithography / etching technique and the vapor deposition technique which are usually used. As the material of the electrode, Al having a thickness of 2000 Å was used.

【0050】以上の工程により作製した電子放出素子を
真空中におき、一対の電極2,3間に電圧を印加してフ
ォーミングを行ったところ、ほぼ8Vの一定電圧で安定
にフォーミングすることができた。
When the electron-emitting device manufactured through the above steps was placed in a vacuum and a voltage was applied between the pair of electrodes 2 and 3 to perform forming, stable forming was possible at a constant voltage of approximately 8V. It was

【0051】更に、真空中で素子上にフェースプレート
を設けて電子放出させたところ、この時の輝点形状は図
3(b)に示すごとく、きれいな楕円形状を示し、一様
な輝度が得られた。
Further, when a face plate was provided on the device in a vacuum to emit electrons, the bright spot shape at this time showed a clean elliptical shape as shown in FIG. 3B, and uniform brightness was obtained. Was given.

【0052】また、フェースプレートに印加する電圧V
a はV a =5kV迄印加しても素子は壊れず、放出電流
Ie=2.5μAを得た。
The voltage V applied to the face plate
aIs V a= 5kV applied, the device does not break down, emission current
Ie = 2.5 μA was obtained.

【0053】比較のため、微粒子膜5を塗布する前にマ
スクとして成膜するCrを7000Åとした以外は、上
記と同様にして微粒子膜を形成し、その膜厚を触針式膜
厚計で測定したところ、最小膜厚t1 =900Å、最大
膜厚t2 =1900Åであり、本発明の電子放出素子に
係る微粒子膜の膜厚条件を満足していなかった。
For comparison, a fine particle film was formed in the same manner as described above except that Cr, which was formed as a mask before applying the fine particle film 5, was 7,000 Å, and the thickness thereof was measured by a stylus type film thickness meter. As a result of measurement, the minimum film thickness t 1 = 900Å and the maximum film thickness t 2 = 1900Å, which did not satisfy the film thickness conditions of the fine particle film according to the electron-emitting device of the present invention.

【0054】この後は、上記と全く同様にして電極を形
成し、フォーミングを行ったところ、フォーミング電圧
は安定せず最終的なフォーミング電圧は10Vであっ
た。即ち、電子放出材である微粒子膜5の膜厚を均一化
した本発明の素子は、フォーミング電圧を低くすること
ができ、安定に歩留り良く作製することができることが
わかる。
After that, when an electrode was formed and forming was performed in the same manner as above, the forming voltage was not stable and the final forming voltage was 10V. That is, it can be seen that the element of the present invention in which the fine particle film 5 as the electron emitting material has a uniform thickness can have a low forming voltage and can be stably manufactured with a good yield.

【0055】また、比較のために作製した素子を前記本
発明の素子と同様にして電子放出させたところ、輝点形
状は図3(a)に示すような形となり、輝度ムラが見ら
れた。
When a device manufactured for comparison was subjected to electron emission in the same manner as the device of the present invention, the bright spot shape was as shown in FIG. 3 (a), and uneven brightness was observed. .

【0056】更に、フェースプレートに印加できる電圧
a はV a =4kVでそれ以上印加すると素子が放電破
壊により壊れてしまっていた。
Furthermore, the voltage that can be applied to the face plate
V aIs V a= 4kV, the device is discharged if applied more
It had been destroyed by the destruction.

【0057】このように微粒子膜5の膜厚を均一化した
本発明の素子では、輝度ムラがなく、より多量の放出電
流量を得られることがわかる。
It can be seen that in the device of the present invention in which the film thickness of the fine particle film 5 is uniform as described above, there is no unevenness in brightness and a larger amount of emission current can be obtained.

【0058】また、本実施例において、マスクとして成
膜したCrの厚さをさまざまに変化させて素子を作製し
たところ、最終的に得られた微粒子膜の最小膜厚t1
9倍以下の膜厚のマスクを用いた場合において、本発明
の電子放出素子の微粒子膜の膜厚条件を満足する素子が
安定して作製された。
Further, in the present example, when the element was produced by changing the thickness of Cr deposited as a mask in various ways, it was 9 times or less of the minimum thickness t 1 of the finally obtained fine particle film. When the mask having the film thickness was used, a device satisfying the film thickness condition of the fine particle film of the electron-emitting device of the present invention was stably manufactured.

【0059】実施例2 図4は本発明の一実施例に係る電子放出素子の構成を示
す斜視図であり、図5は図4のB−B断面図である。
Embodiment 2 FIG. 4 is a perspective view showing the structure of an electron-emitting device according to an embodiment of the present invention, and FIG. 5 is a sectional view taken along line BB in FIG.

【0060】これらの図において、図1,図2に示した
素子と同一符号のものは同一部材を示すものであり、再
度の説明は省略する。
In these figures, the same reference numerals as those of the elements shown in FIGS. 1 and 2 indicate the same members, and the repetitive description will be omitted.

【0061】本実施例の素子は実施例1の素子に対して
微粒子膜と電極の成膜順序を逆にしたもので、以下のよ
うにして作製される。
The element of this example is the same as that of the example 1 except that the order of film formation of the fine particle film and the electrode is reversed, and is manufactured as follows.

【0062】まず、絶縁性基板1を十分洗浄し、実施例
1と同様にして電極2,3を形成した。電極材は下びき
としてのTi50ÅとNi950Åを用いた。
First, the insulating substrate 1 was thoroughly washed, and electrodes 2 and 3 were formed in the same manner as in Example 1. As the electrode material, Ti50Å and Ni950Å were used as the undercoat.

【0063】次に、実施例1と同様に2000Åの厚さ
で成膜したマスク上に、Au:SnO2 =2:1のモル
比で混合した微粒子分散液を塗布し、同様にして微粒子
膜5を形成した。
Then, a fine particle dispersion liquid mixed in a molar ratio of Au: SnO 2 = 2: 1 was applied onto a mask having a thickness of 2000 Å as in Example 1, and the fine particle film was formed in the same manner. 5 was formed.

【0064】この時、微粒子膜の膜厚を測定したとこ
ろ、中央部で最小膜厚を示し、その膜厚t1 は930Å
であり、周辺部で最大膜厚を示し、そのt2 は1200
Åであり、本発明の電子放出素子に係る微粒子膜の膜厚
条件であるところのt2 ≦2t1 を満足していた。
At this time, when the film thickness of the fine particle film was measured, it showed the minimum film thickness in the central portion, and the film thickness t 1 was 930Å
And the maximum film thickness is shown at the periphery, and t 2 is 1200
Å, which satisfies the condition of t 2 ≦ 2t 1 which is the film thickness condition of the fine particle film according to the electron-emitting device of the present invention.

【0065】以上の工程により作製した電子放出素子を
実施例1と同様にしてフォーミングしたところ、ほぼ6
Vの一定電圧で安定にフォーミングすることができた。
When the electron-emitting device manufactured through the above steps was formed in the same manner as in Example 1, it was found to be about 6
Stable forming was possible with a constant voltage of V.

【0066】また、比較例として、微粒子膜5を塗布す
る前に成膜したマスクの厚さを7000Åとした以外
は、上記と同様にして微粒子膜を形成し、その膜厚を測
定したところ、最小膜厚t1 が930Å,最大膜厚t2
が1900Åであり、本発明の電子放出素子に係る微粒
子膜の膜厚条件を満足していなかった。かかる素子をフ
ォーミングしたところ、フォーミング電圧は安定せず、
最終的なフォーミング電圧は8Vであった。
Further, as a comparative example, a fine particle film was formed in the same manner as above except that the thickness of the mask formed before applying the fine particle film 5 was 7,000 Å, and the film thickness was measured. The minimum film thickness t 1 is 930Å and the maximum film thickness t 2
Was 1900Å, which did not satisfy the film thickness condition of the fine particle film according to the electron-emitting device of the present invention. When forming such an element, the forming voltage is not stable,
The final forming voltage was 8V.

【0067】これらの素子の上部にそれぞれフェースプ
レートを設けて輝点形状を観察したところ、本発明の素
子は均一な輝度が得られたが、比較例素子では輝度ムラ
が見られた。
A face plate was provided on each of these elements and the shape of the bright spots was observed. As a result, the element of the present invention showed uniform luminance, but the comparative element showed uneven luminance.

【0068】また、フェースプレートに印加できる電圧
は、比較例素子では4.5kV迄だったが、本発明の素
子では5kV迄かけても壊れなかった。
The voltage which can be applied to the face plate was up to 4.5 kV in the comparative example element, but it was not broken even up to 5 kV in the element of the present invention.

【0069】従って、実施例1の場合と併せて考える
と、微粒子膜と電極との構成に関わらず、微粒子膜5の
膜厚を均一化した本発明の素子では、より低電圧での安
定したフォーミングが可能となり、均一且つより多くの
放出電流量が得られることがわかる。
Therefore, considering together with the case of Example 1, in the element of the present invention in which the film thickness of the fine particle film 5 is made uniform, irrespective of the constitution of the fine particle film and the electrode, it was stable at a lower voltage. It can be seen that forming becomes possible and a uniform and larger amount of emission current can be obtained.

【0070】実施例3 実施例1のSnO2 微粒子の代わりに有機Pd錯体溶
液、Al電極2000Åの代わりにNi電極1000Å
を用いて同様な素子を形成し、フォーミングを行った。
Example 3 An organic Pd complex solution was used instead of the SnO 2 fine particles of Example 1, and a Ni electrode 1000Å instead of the Al electrode 2000Å.
A similar element was formed by using and forming was performed.

【0071】この時、微粒子膜のパターンを形成するた
めにマスクとして用いたCrの厚さは80Åとし、ディ
ッピングにより塗布を行い、300℃,12分の焼成に
よりPdO微粒子膜を成膜した後、Crをエッチアウト
した。
At this time, the thickness of Cr used as a mask for forming the pattern of the fine particle film was 80 Å, coating was performed by dipping, and the PdO fine particle film was formed by baking at 300 ° C. for 12 minutes. The Cr was etched out.

【0072】この微粒子膜の膜厚を測定すると、中央部
で最小膜厚を示し、その膜厚t1 は70Åであり、周辺
部で最大膜厚を示し、その膜厚t2 は72Åであり、本
発明の電子放出素子に係る微粒子膜の膜厚条件であると
ころのt2 ≦2t1 を満足していた。
When the film thickness of this fine particle film was measured, the minimum film thickness was shown at the central part, the film thickness t 1 was 70Å, and the maximum film thickness was shown at the peripheral part, and the film thickness t 2 was 72Å. , T 2 ≦ 2t 1 which is the condition of the film thickness of the fine particle film according to the electron-emitting device of the present invention was satisfied.

【0073】また、比較例素子として、微粒子膜のパタ
ーンを形成するためにマスクとして用いたCrの厚さを
1500Åとした以外は、上記と同様にして微粒子膜を
形成し、本実施例における本発明の素子と同様に素子を
作製した。
Further, as a comparative example element, a fine particle film was formed in the same manner as described above except that the thickness of Cr used as a mask for forming the pattern of the fine particle film was 1500 Å. A device was prepared in the same manner as the device of the invention.

【0074】このようにして作製した比較例素子では、
その微粒子膜の最小膜厚t1 が70Å,最大膜厚t2
250Åであった。これら2種類の素子を用いて実施例
1と同様の実験を行ったところ下表のようになった。
In the comparative element thus manufactured,
The fine particle film had a minimum film thickness t 1 of 70 Å and a maximum film thickness t 2 of 250 Å. When the same experiment as in Example 1 was conducted using these two types of elements, the results are shown in the table below.

【0075】[0075]

【表1】 即ち、本実施例の本発明の電子放出素子においても、実
施例1と同様の効果が得られた。
[Table 1] That is, also in the electron-emitting device of the present invention of this example, the same effect as in Example 1 was obtained.

【0076】また、本実施例においても、実施例1と同
様にマスクとして成膜したCrの厚さをさまざまに変化
させて素子を作製したところ、最終的に得られた微粒子
膜の最小膜厚t1 の9倍以下の膜厚のマスクを用いた場
合において、本発明の電子放出素子の微粒子膜の膜厚条
件を満足する素子が安定して作製された。
Also in this example, similarly to the example 1, when the element was manufactured by changing the thickness of Cr deposited as a mask variously, the minimum film thickness of the finally obtained fine particle film was obtained. When a mask having a film thickness 9 times or less than t 1 was used, a device satisfying the film thickness condition of the fine particle film of the electron-emitting device of the present invention was stably manufactured.

【0077】実施例4 図6は本発明の電子放出素子を直線状に複数配列した線
電子放出素子を複数併設した、本実施例における電子線
発生装置の概略構成を示すものである。同図中、1は基
板、2及び3は素子電極、5は微粒子膜、6は配線電極
であり、7はこれからなる電子源である。また、8は変
調電極、9は電子通過孔である。尚、変調電極は、電子
放出素子の裏面に絶縁体を介して配置されたものであっ
ても、又、電子放出素子の周辺基板面上に配置されたも
のであっても、電子放出素子から放出される電子線を情
報信号に応じて変調し得るように設けられたものであれ
ば、図6の配置形態以外のものであっても良い。
Embodiment 4 FIG. 6 shows a schematic structure of an electron beam generator according to this embodiment, in which a plurality of line electron emitting devices in which a plurality of electron emitting devices of the present invention are linearly arranged are provided. In the figure, 1 is a substrate, 2 and 3 are element electrodes, 5 is a fine particle film, 6 is a wiring electrode, and 7 is an electron source made of this. Further, 8 is a modulation electrode, and 9 is an electron passage hole. Whether the modulation electrode is arranged on the back surface of the electron-emitting device via an insulator or on the peripheral substrate surface of the electron-emitting device, A configuration other than the arrangement shown in FIG. 6 may be used as long as it is provided so that the emitted electron beam can be modulated according to the information signal.

【0078】本実施例の電子線発生装置は次のようにし
て製造される。
The electron beam generator of this embodiment is manufactured as follows.

【0079】まず、実施例3と同様の方法で膜厚の均一
な微粒子膜5及び素子電極2,3を線状に並べたものを
複数形成した。次に、この上に前記素子電極2,3を形
成する場合と同様にして配線電極6を形成して電子源7
とした。更に、通常のフォトリソ・プロセスを用いて、
絶縁体(不図示)を介してグリッド電極からなる変調電
極8を形成した。
First, in the same manner as in Example 3, a plurality of fine particle films 5 having uniform film thickness and element electrodes 2 and 3 arranged linearly were formed. Next, the wiring electrode 6 is formed in the same manner as in the case of forming the device electrodes 2 and 3 thereon, and the electron source 7 is formed.
And Furthermore, using the normal photolithography process,
The modulation electrode 8 composed of a grid electrode was formed via an insulator (not shown).

【0080】上記の様に作製した電子線発生装置を真空
度10-6Torrの環境下に配置し、素子電極2,3間
に電圧を印加してフォーミングしたところ、4Vで安定
にフォーミングできた。
When the electron beam generator manufactured as described above was placed in an environment of a vacuum degree of 10 -6 Torr and a voltage was applied between the device electrodes 2 and 3 to perform forming, stable forming was possible at 4V. .

【0081】更に、素子電極2,3間に駆動電圧14V
を印加し、次に変調電極8に情報信号に応じた電圧を印
加した。すなわち、0V以下で電子線をオフ制御でき、
+30V以上でオン制御できた。また、30〜0Vの間
で電子線の電子量を連続的に変化し得た。その結果、複
数の素子からなる線電子放出素子から1ライン分の情報
信号に応じた電子線の放出が得られた。以上の動作を隣
接する線電子放出素子に対し順次行うことにより、全情
報信号に応じた電子線の放出が得られた。
Further, a driving voltage of 14 V is applied between the device electrodes 2 and 3.
Then, a voltage corresponding to the information signal was applied to the modulation electrode 8. That is, the electron beam can be controlled off at 0 V or less,
ON control was possible at + 30V or higher. Further, the electron amount of the electron beam could be continuously changed between 30 and 0V. As a result, an electron beam was emitted from a line electron emission element composed of a plurality of elements according to an information signal for one line. By sequentially performing the above operation on the adjacent electron beam emitting devices, electron beam emission corresponding to all information signals was obtained.

【0082】本実施例の電子線発生装置は、各素子のフ
ォーミング時に均一且つ低電圧で安定にフォーミングで
き、更に、各素子から放出された電子線のバラツキが極
めて小さく、均一な電子線が得られるという効果が有っ
た。
The electron beam generator of the present embodiment is capable of uniform and stable forming at low voltage during forming of each element, and further, the variation of the electron beam emitted from each element is extremely small and uniform electron beam can be obtained. There was an effect of being able to be.

【0083】実施例5 図7は本発明の電子放出素子を多数個並べた電子源を有
する本実施例における画像形成装置の概略構成を示すも
のである。同図中、10は画像形成板、11は画像形成
部材であるところの蛍光体であり、電子が衝突すること
により発光する。12は蛍光体の輝点である。
Embodiment 5 FIG. 7 shows a schematic structure of an image forming apparatus in this embodiment having an electron source in which a large number of electron-emitting devices of the present invention are arranged. In the figure, 10 is an image forming plate, and 11 is a phosphor which is an image forming member, and emits light when electrons collide. 12 is the bright spot of the phosphor.

【0084】尚、本図において、図6に示した電子線発
生装置と同一符号のものは同一部材を示すものであり、
再度の説明は省略する。
In this figure, the same reference numerals as in the electron beam generator shown in FIG. 6 indicate the same members,
The description will not be repeated.

【0085】本画像形成装置は電極配線6の間に素子を
複数並べた電子源7とグリッド電極からなる変調電極8
でXYマトリクス駆動を行い、画像形成板10上の蛍光
体11に電子を衝突させることにより、画像形成を行う
装置である。
In this image forming apparatus, an electron source 7 having a plurality of elements arranged between electrode wirings 6 and a modulation electrode 8 composed of a grid electrode.
Is a device for forming an image by driving the XY matrix in XY matrix and causing electrons to collide with the phosphors 11 on the image forming plate 10.

【0086】本実施例の画像形成装置では、まず、実施
例4と同様にして電子線発生装置を作製し、真空容器に
入れ、素子電極2,3間に電圧を印加してフォーミング
を行った。この時、4Vで安定にフォーミングできた。
In the image forming apparatus of this embodiment, first, an electron beam generator was manufactured in the same manner as in Embodiment 4, placed in a vacuum container, and a voltage was applied between the element electrodes 2 and 3 to perform forming. . At this time, stable forming was possible at 4V.

【0087】次に、この電子線発生装置の鉛直上に蛍光
体11を有する画像形成板10を設置し、1kVの電圧
を印加したところ、画像形成体10上の輝点12は一電
子放出素子内で均一な輝度の楕円形を示したのみなら
ず、並列に並べた複数の素子間でもばらつきのない輝度
が得られた。
Next, the image forming plate 10 having the phosphor 11 was installed vertically above the electron beam generator, and a voltage of 1 kV was applied. As a result, the bright spots 12 on the image forming body 10 were one electron-emitting device. In addition to showing an elliptical shape with uniform brightness, the brightness without variation was obtained even among a plurality of elements arranged in parallel.

【0088】更に、画像形成体10に印加する電圧(ア
ノード電圧)Va を5kV迄上げても安定に電子放出
し、放出電流量Ie=100μAを得た。
Further, even when the voltage (anode voltage) V a applied to the image forming body 10 was increased to 5 kV, the electrons were stably emitted, and the emission current amount Ie = 100 μA was obtained.

【0089】比較例として、電子放出素子の微粒子膜5
の最小膜厚t1 と最大膜厚t2 との関係がt2 =10t
1 である素子を多数個用いた以外は、上記の画像表示装
置と同様にして作製した装置では、フォーミング電圧が
安定せず7Vと高かったのみならず、上記アノード電圧
a も4kV迄しかかけられず、放出電流量Ieも80
μAしか得られなかった。また、画像形成板上の輝点
も、1電子放出素子内で輝度ムラがあるため均一となら
なかった。
As a comparative example, the fine particle film 5 of the electron-emitting device is used.
The relationship between the minimum film thickness t 1 and the maximum film thickness t 2 is t 2 = 10t
In the device manufactured in the same manner as the above-mentioned image display device except that a large number of elements of 1 were used, the forming voltage was not stable and was as high as 7 V, and the anode voltage V a was only up to 4 kV. The emission current amount Ie is also 80
Only μA was obtained. In addition, the bright spots on the image forming plate were not uniform because there was uneven brightness in one electron-emitting device.

【0090】以上のように、本発明の電子放出素子を複
数個配置した電子源を用いた画像形成装置は、アノード
電圧を高くすることができ、放出電流量Ieが増加する
だけでなく、更には、ビーム径が絞れるという利点もあ
り、より明るい高精細な画像を得ることができた。
As described above, in the image forming apparatus using the electron source in which the plurality of electron-emitting devices of the present invention are arranged, the anode voltage can be increased, and not only the emission current amount Ie increases, but also Has the advantage that the beam diameter can be narrowed, and a brighter high-definition image could be obtained.

【0091】[0091]

【発明の効果】以上説明したように、本発明によれば以
下の効果を奏する。 電子放出材である微粒子膜の最小膜厚t1 と最大膜厚
2 との関係がt2 ≦2t1 となるように均一化するこ
とにより、均一且つ低電圧でフォーミングを行うことが
でき、歩留り良く素子を作製できる。 同一素子内で輝度ムラが無く、更には複数の素子間で
バラツキの無い均一な輝点を得ることができる。 アノード電圧があげられるため、より多くの放出電流
量が得られ、本発明の電子放出素子を用いた画像形成装
置は、より明るい高精細な画像が得られる。
As described above, the present invention has the following effects. By making the relationship between the minimum film thickness t 1 and the maximum film thickness t 2 of the fine particle film, which is the electron-emitting material, t 2 ≦ 2t 1 uniform, forming can be performed at a low voltage, The device can be manufactured with high yield. It is possible to obtain uniform bright spots without unevenness in brightness within the same element and without variation among a plurality of elements. Since the anode voltage is increased, a larger amount of emission current can be obtained, and the image forming apparatus using the electron-emitting device of the present invention can obtain a brighter and higher-definition image.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電子放出素子の一例を示す斜視図であ
る。
FIG. 1 is a perspective view showing an example of an electron-emitting device of the present invention.

【図2】図1の素子のA−A断面図である。2 is a cross-sectional view taken along the line AA of the device of FIG.

【図3】従来素子及び本発明素子の輝点形状を平面的に
示した図である。
FIG. 3 is a plan view showing the shapes of bright spots of the conventional device and the device of the present invention.

【図4】本発明の電子放出素子の他の例を示す斜視図で
ある。
FIG. 4 is a perspective view showing another example of the electron-emitting device of the present invention.

【図5】図4の素子のB−B断面図である。5 is a sectional view taken along line BB of the device of FIG.

【図6】本発明の電子放出素子を複数用いた電子線発生
装置の一例を示す概略構成図である。
FIG. 6 is a schematic configuration diagram showing an example of an electron beam generator using a plurality of electron-emitting devices of the present invention.

【図7】本発明の電子放出素子を複数用いた画像形成装
置の一例を示す概略構成図である。
FIG. 7 is a schematic configuration diagram showing an example of an image forming apparatus using a plurality of electron-emitting devices of the present invention.

【図8】従来例素子の斜視図である。FIG. 8 is a perspective view of a conventional example element.

【図9】図8の素子のC−C断面図である。9 is a sectional view taken along line CC of the device of FIG.

【図10】図8の素子のD−D断面図である。10 is a cross-sectional view taken along line DD of the device of FIG.

【図11】従来例素子の平面図である。FIG. 11 is a plan view of a conventional element.

【符号の説明】[Explanation of symbols]

1 基板 2,3 電極 4 電子放出部 5 微粒子膜 6 配線電極 7 電子源 8 変調電極 9 電子通過孔 10 画像形成板 11 蛍光体 12 蛍光体の輝点 13 電子放出材 DESCRIPTION OF SYMBOLS 1 Substrate 2, 3 Electrode 4 Electron emission part 5 Fine particle film 6 Wiring electrode 7 Electron source 8 Modulation electrode 9 Electron passing hole 10 Image forming plate 11 Phosphor 12 Bright spot of phosphor 13 Electron emitting material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河手 信一 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 三道 和宏 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 (72)発明者 野村 一郎 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinichi Kawate 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Kazuhiro Michi 3-30-2 Shimomaruko, Ota-ku, Tokyo No. Canon Inc. (72) Inventor Ichiro Nomura 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極と該一対の電極を電気的に接
続する微粒子膜とを有する電子放出素子において、上記
微粒子膜の最小膜厚(t1 )と最大膜厚(t2 )との関
係がt2 ≦2t1 であることを特徴とする電子放出素
子。
1. An electron-emitting device having a pair of electrodes and a fine particle film for electrically connecting the pair of electrodes, wherein a minimum film thickness (t 1 ) and a maximum film thickness (t 2 ) of the fine particle film are set. An electron-emitting device characterized in that the relationship is t 2 ≦ 2t 1 .
【請求項2】 前記微粒子膜は、分散塗布法を用いて形
成されたものであることを特徴とする請求項1記載の電
子放出素子。
2. The electron-emitting device according to claim 1, wherein the fine particle film is formed by a dispersion coating method.
【請求項3】 一対の電極と該一対の電極を電気的に接
続する微粒子膜とを有する電子放出素子の製造方法にお
いて、分散塗布法を用いて所望の位置に上記微粒子膜を
形成する際に、最終的に得られる微粒子膜の最小膜厚を
1 としたとき、9t1 以下の膜厚を有するマスクを用
いることを特徴とする電子放出素子の製造方法。
3. A method for manufacturing an electron-emitting device having a pair of electrodes and a fine particle film for electrically connecting the pair of electrodes, wherein the fine particle film is formed at a desired position by a dispersion coating method. A method of manufacturing an electron-emitting device, characterized in that a mask having a film thickness of 9 t 1 or less is used, where t 1 is a minimum film thickness of the finally obtained fine particle film.
【請求項4】 請求項3記載の製造方法を用いて作製さ
れる電子放出素子であって、前記微粒子膜の最小膜厚
(t1 )と最大膜厚(t2 )との関係がt2 ≦2t1
あることを特徴とする電子放出素子。
4. An electron-emitting device manufactured by the manufacturing method according to claim 3, wherein the relationship between the minimum film thickness (t 1 ) and the maximum film thickness (t 2 ) of the fine particle film is t 2. An electron-emitting device characterized in that ≦ 2t 1 .
【請求項5】 少なくとも請求項1、2又は4記載の電
子放出素子を複数配置した電子源と、該電子源から放出
される電子線を変調する変調手段とを具備することを特
徴とする電子線発生装置。
5. An electron comprising at least an electron source in which a plurality of electron-emitting devices according to claim 1, 2 or 4 are arranged, and a modulation means for modulating an electron beam emitted from the electron source. Line generator.
【請求項6】 少なくとも請求項1、2又は4記載の電
子放出素子を複数配置した電子源と、該電子源から放出
される電子線を変調する変調手段と、電子線の照射によ
り画像を形成する画像形成部材とを具備することを特徴
とする画像形成装置。
6. An electron source in which a plurality of electron-emitting devices according to claim 1, 2 or 4 are arranged, a modulating means for modulating an electron beam emitted from the electron source, and an image is formed by irradiation of the electron beam. An image forming apparatus comprising:
JP35979592A 1992-12-29 1992-12-29 Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus Expired - Fee Related JP2961477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35979592A JP2961477B2 (en) 1992-12-29 1992-12-29 Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35979592A JP2961477B2 (en) 1992-12-29 1992-12-29 Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus

Publications (2)

Publication Number Publication Date
JPH06203740A true JPH06203740A (en) 1994-07-22
JP2961477B2 JP2961477B2 (en) 1999-10-12

Family

ID=18466333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35979592A Expired - Fee Related JP2961477B2 (en) 1992-12-29 1992-12-29 Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus

Country Status (1)

Country Link
JP (1) JP2961477B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37896E1 (en) 1994-08-11 2002-10-29 Canon Kabushiki Kaisha Solution for fabrication of electron-emitting devices, manufacture method of electron-emitting devices, and manufacture method of image-forming apparatus
JP2006127794A (en) * 2004-10-26 2006-05-18 Canon Inc Image display device
KR100726275B1 (en) * 2005-01-05 2007-06-08 세이코 엡슨 가부시키가이샤 Electron emitter, method of manufacturing electron emitter, electro-optical device, and electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37896E1 (en) 1994-08-11 2002-10-29 Canon Kabushiki Kaisha Solution for fabrication of electron-emitting devices, manufacture method of electron-emitting devices, and manufacture method of image-forming apparatus
JP2006127794A (en) * 2004-10-26 2006-05-18 Canon Inc Image display device
KR100726275B1 (en) * 2005-01-05 2007-06-08 세이코 엡슨 가부시키가이샤 Electron emitter, method of manufacturing electron emitter, electro-optical device, and electronic apparatus

Also Published As

Publication number Publication date
JP2961477B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP2967334B2 (en) Method of manufacturing electron-emitting device, and method of manufacturing electron source and image forming apparatus using the same
JPH05101769A (en) Electron emitting element, and electron beam generator and image forming device using electron emitting element
JP2961477B2 (en) Electron emitting element, electron beam generator, and method of manufacturing image forming apparatus
JP2946153B2 (en) Method for manufacturing electron-emitting film and electron-emitting device
JPH0950757A (en) Electron source base plate, image forming device, and manufacture thereof
JP3200270B2 (en) Surface conduction electron-emitting device, electron source, and method of manufacturing image forming apparatus
JP2631007B2 (en) Electron emitting element, method of manufacturing the same, and image forming apparatus using the element
JP3332673B2 (en) Electron source substrate, image forming apparatus, and manufacturing method thereof
JPH0945226A (en) Electron emitting element, electron source using it, and image forming device and those manufacture
JPH1140042A (en) Electron emission element, electron source, image forming device, and manufacture thereof
JP3131752B2 (en) Electron-emitting device, electron beam generator, image forming apparatus, and manufacturing method thereof
JPH0945223A (en) Electron emitting element, and electron beam generator, and image forming device
JP2884496B2 (en) Electron-emitting device, electron source, image forming apparatus, and manufacturing method thereof
JPH06203741A (en) Electron emitting element, electron beam generator and image forming device
JPH07130280A (en) Manufacture of electron source material and electron source, and electron source and image forming device
JPH05190077A (en) Electron emitting element
JPH09298030A (en) Electron emission element, electron source and image forming device
JPH103847A (en) Electron emission element, electron source, image forming device, and manufacture thereof
JPH09330676A (en) Electron emitting element, electron source, and image forming device
JP2000021291A (en) Electron emission element, electron source and image forming device using it
JPH0855560A (en) Fabrication of material for forming electron emitting portion, of electron emission element, and of image forming device
JPH11260242A (en) Electron-emitting element, electron source using the same, image forming device and their manufacture
JPH09219142A (en) Electron emitting element, electron source substrate, electron source, display panel and image forming device
JPH11306959A (en) Electron emitting element, electron source, image forming device, and their manufacture
JPH11345563A (en) Electron emitting element, electron source, image forming device and manufacture of them

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990629

LAPS Cancellation because of no payment of annual fees