JPH06202006A - Stereoscopic hard endoscope - Google Patents

Stereoscopic hard endoscope

Info

Publication number
JPH06202006A
JPH06202006A JP4348065A JP34806592A JPH06202006A JP H06202006 A JPH06202006 A JP H06202006A JP 4348065 A JP4348065 A JP 4348065A JP 34806592 A JP34806592 A JP 34806592A JP H06202006 A JPH06202006 A JP H06202006A
Authority
JP
Japan
Prior art keywords
pupil
stereoscopic
distance
image
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4348065A
Other languages
Japanese (ja)
Other versions
JP3283084B2 (en
Inventor
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP34806592A priority Critical patent/JP3283084B2/en
Priority to US08/139,804 priority patent/US5557454A/en
Publication of JPH06202006A publication Critical patent/JPH06202006A/en
Application granted granted Critical
Publication of JP3283084B2 publication Critical patent/JP3283084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Endoscopes (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PURPOSE:To enable stereoscopy to be carried out with a desired stereoscopic feeling without reference to the distance to a subject by adjusting the stereoscopic feeling of an obtained image at need. CONSTITUTION:The stereoscopic hard endoscope is equipped with an objective system 11, a relay lens system 12, an image forming lens 13, a focusing lens 14, and a pupil splitting prism 15, and an image which is formed by the objective system 11 and transmitted by the relay lens system 12 is split into two right and left images by the pupil splitting prism 15. A variable stop 16 which varies the interval between the centers of gravity of a right and a left pupil is arranged nearby the pupil splitting prism 15, and the interval between the centers of gravity of the right and left pupils is varied at need by displacing the variable stop 16. Consequently, the stereoscopic feeling can be adjusted by varying the angle of convergence with a body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、観察部位を立体的に観
察できるようにした立体視硬性内視鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereoscopic rigid endoscope capable of stereoscopically observing an observation site.

【0002】[0002]

【従来の技術】細長の挿入部を体腔内等に挿入して、直
接目視できない被検部位を観察することのできる内視鏡
装置が広く用いられている。通常の内視鏡装置では、被
検部位を遠近感のない平面としてしか見ることができな
いため、例えば体腔壁表面の微細な凹凸等を観察するこ
とが困難であり、内視鏡観察による診断や各種処置が容
易にできない不具合があった。
2. Description of the Related Art Endoscope devices are widely used which are capable of observing an inspected site that cannot be visually observed by inserting an elongated insertion part into a body cavity or the like. In a normal endoscope apparatus, since the site to be examined can be seen only as a plane without perspective, it is difficult to observe, for example, minute irregularities on the surface of the body cavity wall, and diagnosis or endoscopic observation is performed. There was a problem that various treatments could not be performed easily.

【0003】そこで、複数の観察光学系を並列に設け、
これらの光学系の光軸がなす輻輳角を設定して視差を持
つように観察光学系を配置し、観察部位を立体視するこ
とができるようにした立体視内視鏡装置が従来より提案
されている。
Therefore, a plurality of observation optical systems are provided in parallel,
Conventionally, a stereoscopic endoscope device has been proposed in which the observation optical system is arranged so as to have parallax by setting the convergence angle formed by the optical axes of these optical systems, and the observation site can be stereoscopically viewed. ing.

【0004】このような立体視内視鏡装置として、例え
ば特開昭57−69839号公報等には、内視鏡の挿入
部に一対の像伝送光学系を内設し、この像伝送光学系の
先端側に一対の対物光学系を設けると共に、手元操作部
側に一対の接眼光学系を設け、前記一対の対物光学系の
なす輻輳角を調整して観察部位を立体的に見えるように
した装置が提案されている。
As such a stereoscopic endoscope apparatus, for example, in Japanese Patent Laid-Open No. 57-69839, a pair of image transmission optical systems is internally provided in the insertion portion of the endoscope, and this image transmission optical system is provided. A pair of objective optical system is provided on the tip side, and a pair of eyepiece optical system is provided on the side of the hand operation part, so that the observation site is seen three-dimensionally by adjusting the vergence angle formed by the pair of objective optical systems. A device has been proposed.

【0005】ここで、従来の立体視内視鏡の概略構成を
図10に示す。立体視内視鏡51は、細長の挿入部先端
部に2つの対物レンズ系52a,52b、および対物レ
ンズ系52a,52bにより形成された像を伝達するリ
レーレンズ系53a,53bを備えており、それぞれの
像をCCD等の固体撮像素子54a,54bで撮像する
ようになっている。
FIG. 10 shows a schematic structure of a conventional stereoscopic endoscope. The stereoscopic endoscope 51 includes two objective lens systems 52a and 52b at the distal end portion of the elongated insertion portion, and relay lens systems 53a and 53b that transmit an image formed by the objective lens systems 52a and 52b. The respective images are picked up by solid-state image pickup devices 54a and 54b such as CCD.

【0006】このような立体視内視鏡では、被写体の距
離が変わると輻輳角が変化するため、被写体が近くなる
と図10の破線のように輻輳角が大きくなって立体感が
強くなり、被写体が遠くへ行くと逆に立体感が弱くな
る。すなわち、被写体までの距離によって得られる像の
立体感が変化していた。
In such a stereoscopic endoscope, the convergence angle changes as the distance to the subject changes. Therefore, when the subject is closer, the convergence angle increases as shown by the broken line in FIG. On the other hand, if you go far, the stereoscopic effect becomes weaker. That is, the stereoscopic effect of the obtained image changes depending on the distance to the subject.

【0007】例えば、外科手術において立体視内視鏡を
用いる場合に、被検部位を近くで観察するときも遠くで
観察するときもほぼ同じ立体感で観察することによっ
て、術者が同じ感触で手技を行いたいという要求があ
る。しかし、前記のような立体視内視鏡では、近点では
立体感が大きく遠点では立体感が少なくなるため、この
ような要求を満たすことができなかった。
[0007] For example, when a stereoscopic endoscope is used in a surgical operation, the operator feels the same feeling by observing the site to be inspected near and far, with almost the same stereoscopic effect. There is a demand to perform a procedure. However, the above-described stereoscopic endoscope cannot satisfy such a requirement because the stereoscopic effect at the near point is large and the stereoscopic effect at the far point is small.

【0008】[0008]

【発明が解決しようとする課題】前述のように、従来の
立体視内視鏡では、被写体までの距離によって輻輳角が
変わり、得られる像の立体感が変化するため、常に同じ
立体感で観察することができないという問題点があっ
た。
As described above, in the conventional stereoscopic endoscope, the convergence angle changes depending on the distance to the subject, and the stereoscopic effect of the obtained image changes, so that the stereoscopic effect is always observed. There was a problem that I could not do it.

【0009】また、逆に、遠点および近点でそれぞれの
被写体に応じて見易い立体感の状態で観察したいという
要求もあるが、ある物体距離で所望の立体感を得られる
ように調整することも困難であった。
On the contrary, there is also a demand for observing at a far point and a near point in a stereoscopic state that is easy to see according to the respective subjects, but it is necessary to adjust so that a desired stereoscopic effect can be obtained at a certain object distance. Was also difficult.

【0010】本発明は、これらの事情に鑑みてなされた
もので、必要に応じて得られる像の立体感を調整するこ
とができ、被写体までの距離によらず所望の立体感で立
体視を行うことが可能な立体視硬性内視鏡を提供するこ
とを目的としている。
The present invention has been made in view of these circumstances, and the stereoscopic effect of an image obtained can be adjusted as necessary, and stereoscopic viewing can be performed with a desired stereoscopic effect regardless of the distance to the subject. An object is to provide a stereoscopic rigid endoscope that can be performed.

【0011】[0011]

【課題を解決するための手段】本発明による立体視硬性
内視鏡は、単一の光軸を持つ対物レンズ系と、該対物レ
ンズ系と同軸に配置され、前記対物レンズ系により形成
された物体像を伝達するための少なくとも一つのリレー
レンズ系と、前記リレーレンズ系の瞳位置またはその近
傍、またはそれらの共役位置に配置され、前記瞳を複数
に分割する瞳分割手段と、前記瞳分割手段の近傍または
その共役位置に配置され、前記複数の瞳の重心間隔を変
化させる瞳間隔変換手段と、前記リレーレンズ系を射出
した光束を受けて、前記瞳分割手段と共働して複数の物
体像を形成する結像光学系と、前記各物体像を受ける撮
像手段とを備えたものである。
A stereoscopic rigid endoscope according to the present invention is formed by an objective lens system having a single optical axis and arranged coaxially with the objective lens system. At least one relay lens system for transmitting an object image, a pupil position of the relay lens system or in the vicinity thereof, or a pupil division means for dividing the pupil into a plurality of positions, and the pupil division A plurality of pupils, which are arranged in the vicinity of the means or at a conjugate position thereof and change the center-of-gravity distances of the plurality of pupils; An image forming optical system for forming an object image and an image pickup means for receiving each of the object images are provided.

【0012】[0012]

【作用】瞳間隔変換手段によって、瞳分割手段で分割さ
れる複数の瞳の重心間隔を変化させ、輻輳角を変化させ
る。
The pupil distance converting means changes the distance between the centers of gravity of the plurality of pupils divided by the pupil dividing means to change the vergence angle.

【0013】[0013]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1ないし図4は本発明の第1実施例に係り、図
1は立体視硬性内視鏡の主要部の構成を示す説明図、図
2は立体視硬性内視鏡の外観構成を示す説明図、図3は
可変絞りの第1の構成例を示す説明図、図4は可変絞り
の第2の構成例を示す説明図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 relate to a first embodiment of the present invention, FIG. 1 is an explanatory diagram showing a configuration of a main part of a stereoscopic rigid endoscope, and FIG. 2 is an explanatory diagram showing an external configuration of a stereoscopic rigid endoscope. FIG. 3 is an explanatory diagram showing a first configuration example of the variable aperture, and FIG. 4 is an explanatory diagram showing a second configuration example of the variable aperture.

【0014】図2に示すように、立体視硬性内視鏡1
(以下、単に内視鏡とも記す)は、細長で硬性の挿入部
2を有し、挿入部2の基端部に把持部3が連設されてい
る。把持部3からは、ケーブル4が延出しており、立体
視硬性内視鏡1はケーブル4を介して信号処理装置5に
接続されるようになっている。信号処理装置5にはCR
Tモニタ等の表示装置6が接続されており、内視鏡1で
得られた左右2つの観察画像が信号処理装置5で処理さ
れ、表示装置6に立体視内視鏡画像として表示されるよ
うになっている。例えば、表示装置6に左右2つの画像
を交互に表示し、偏光メガネで観察することによって、
立体感のある被写体像を観察することができる。
As shown in FIG. 2, a stereoscopic rigid endoscope 1
(Hereinafter, also simply referred to as an endoscope) has an elongated and hard insertion portion 2, and a grip portion 3 is connected to a proximal end portion of the insertion portion 2. A cable 4 extends from the grip portion 3, and the stereoscopic rigid endoscope 1 is connected to the signal processing device 5 via the cable 4. The signal processing device 5 has a CR
A display device 6 such as a T monitor is connected so that the left and right two observation images obtained by the endoscope 1 are processed by the signal processing device 5 and displayed on the display device 6 as a stereoscopic endoscopic image. It has become. For example, by displaying the left and right two images on the display device 6 alternately and observing them with polarizing glasses,
It is possible to observe a subject image having a stereoscopic effect.

【0015】立体視硬性内視鏡1の光学系等を含む主要
部は図1のように構成されている。内視鏡1の先端部に
は一つの対物レンズ系11が設けられており、対物レン
ズ系11の後方には対物レンズ系11で形成された被写
体像を伝達するリレーレンズ系12が同軸的に配設され
ている。リレーレンズ系12の後方には、結像レンズ1
3およびフォーカシングレンズ14が設けられ、フォー
カシングレンズ14の後方の前記対物レンズ系11およ
びリレーレンズ系12の瞳と共役な位置に瞳分割プリズ
ム15が配設されている。すなわち、単一の光軸を持つ
対物レンズ系11で形成された像をリレーレンズ系12
で伝達し、瞳分割プリズム15で左右2つの像となるよ
うに瞳分割するようになっている。
The main part including the optical system of the stereoscopic rigid endoscope 1 is configured as shown in FIG. One objective lens system 11 is provided at the tip of the endoscope 1, and a relay lens system 12 for transmitting a subject image formed by the objective lens system 11 is coaxially provided behind the objective lens system 11. It is arranged. Behind the relay lens system 12, the imaging lens 1
3 and a focusing lens 14 are provided, and a pupil division prism 15 is provided behind the focusing lens 14 at a position conjugate with the pupils of the objective lens system 11 and the relay lens system 12. That is, an image formed by the objective lens system 11 having a single optical axis is transferred to the relay lens system 12
And the pupil splitting prism 15 splits the pupil into two left and right images.

【0016】瞳分割プリズム15の近傍の光路中には、
瞳の重心間隔を変更する瞳間隔変換手段としての可変絞
り16が配設されている。そして、瞳分割プリズム15
によって分割された光束をそれぞれ反射するミラー1
7,18が設けられ、ミラー17,18後方の結像レン
ズ13の結像位置には、それぞれCCD等の固体撮像素
子19,20が配設されている。固体撮像素子19,2
0は、撮像面にそれぞれ結像した被写体像を光電変換す
ることによって撮像し、撮像信号として出力するように
なっている。この出力の撮像信号が信号処理装置5に送
られて、表示装置6に表示可能なように各種画像信号処
理が行われ、表示装置6に被写体の内視鏡画像が表示さ
れるようになっている。
In the optical path near the pupil division prism 15,
A variable diaphragm 16 is provided as a pupil distance conversion means for changing the distance between the centers of gravity of the pupils. Then, the pupil division prism 15
Mirrors 1 that respectively reflect the light beams split by
7 and 18 are provided, and solid-state image pickup devices 19 and 20 such as CCDs are provided at the imaging positions of the imaging lens 13 behind the mirrors 17 and 18, respectively. Solid-state image sensor 19, 2
0 captures an image by subjecting the subject images formed on the image capturing surface to photoelectric conversion, and outputs the captured image as an image capturing signal. The image pickup signal of this output is sent to the signal processing device 5, various image signal processing is performed so that it can be displayed on the display device 6, and the endoscopic image of the subject is displayed on the display device 6. There is.

【0017】この立体視硬性内視鏡1の光学系におい
て、リレーレンズ系12は等倍アフォーカルリレーレン
ズなどで構成されており、ここでは簡単のため2つのレ
ンズ系で示している。また、瞳分割プリズム15は、対
物レンズ系11およびリレーレンズ系12の瞳と共役な
位置に、頂点が位置するように配置されている。そし
て、瞳分割プリズム15の近傍に、通過する光束の位置
を移動させて瞳を変位させたり瞳径を変化させることに
よって瞳の重心間隔を変更する可変絞り16が配置され
ている。
In the optical system of the stereoscopic rigid endoscope 1, the relay lens system 12 is composed of an equal-magnification afocal relay lens or the like. Here, two lens systems are shown for simplicity. Further, the pupil division prism 15 is arranged so that its apex is located at a position conjugate with the pupils of the objective lens system 11 and the relay lens system 12. A variable diaphragm 16 is disposed near the pupil division prism 15 to change the position of the passing light beam to displace the pupil or change the pupil diameter to change the distance between the centers of gravity of the pupils.

【0018】なお、瞳分割プリズム15は、対物レンズ
系11およびリレーレンズ系12の瞳と共役な位置に限
らず、瞳位置またはその近傍のいずれかに配置しても良
い。また、結像レンズ13にはズームレンズ系等を含ん
でも良い。また、可変絞り16は、対物レンズ系11お
よびリレーレンズ系12の瞳と共役な位置の近傍だけで
なく、対物レンズ系11の瞳位置やリレーレンズ系12
の瞳位置に配置しても良い。
The pupil division prism 15 is not limited to the position conjugate with the pupils of the objective lens system 11 and the relay lens system 12, and may be arranged at the pupil position or in the vicinity thereof. Further, the imaging lens 13 may include a zoom lens system or the like. The variable diaphragm 16 is arranged not only in the vicinity of a position conjugate with the pupils of the objective lens system 11 and the relay lens system 12 but also in the pupil position of the objective lens system 11 and the relay lens system 12.
It may be arranged at the pupil position.

【0019】前記可変絞り16の構成例として、第1の
例を図3に示す。この第1の例の絞り21は、円形の絞
り孔をそれぞれ有した2枚の絞り板21a,21bから
なっており、絞り板21a,21bが互いにあるいは一
方が光軸と垂直な方向に変位し、絞り孔の間隔を変化さ
せるようになっている。
A first example of the configuration of the variable diaphragm 16 is shown in FIG. The diaphragm 21 of the first example is composed of two diaphragm plates 21a and 21b each having a circular diaphragm hole. The diaphragm plates 21a and 21b are displaced with respect to each other or one of them in a direction perpendicular to the optical axis. , The distance between the apertures is changed.

【0020】前記可変絞り16の第2の例を図4に示
す。この第2の例の絞り22は、複数(ここでは6枚)
の絞り羽根を有しており、絞り羽根を変位させることに
よって絞り径が変化するようになっている。
A second example of the variable diaphragm 16 is shown in FIG. A plurality of diaphragms 22 in this second example (here, six)
The diaphragm blade is configured so that the diaphragm diameter is changed by displacing the diaphragm blade.

【0021】前記第1の例および第2の例のいずれの絞
りによっても、絞り孔の間隔を変化させるあるいは絞り
径を変化させることによって、分割される2つの瞳の重
心間隔を変化させることができる。
In any of the diaphragms of the first and second examples, the distance between the centers of gravity of the two pupils to be divided can be changed by changing the distance between the diaphragm holes or the diameter of the diaphragm. it can.

【0022】ここで、前記分割された左右2つの瞳の重
心間隔について説明する。瞳分割プリズム15によって
瞳を分割し、視差のある左右2つの像として得る場合に
おいて、前記重心間隔は、例えば円形の瞳の場合には、
分割後の一方の半円形の瞳の重心位置と、もう一方の半
円形の瞳の重心位置との間隔で定義される。すなわち、
分割後のそれぞれの瞳の重心位置の間隔で定義される。
Now, the distance between the centers of gravity of the two divided left and right pupils will be described. When the pupil is divided by the pupil division prism 15 to obtain two left and right images with parallax, the center-of-gravity interval is, for example, in the case of a circular pupil,
It is defined as the distance between the center of gravity position of one semicircular pupil and the position of the center of gravity of the other semicircular pupil after division. That is,
It is defined by the distance between the center of gravity positions of each pupil after division.

【0023】立体視内視鏡で得られる立体感を決める要
素としては、左右の光学系の輻輳角があり、この輻輳角
が大きいと立体感が強くなり、輻輳角が小さくなると立
体感が弱まる。1つの対物レンズ系で形成された像を2
つに分割する瞳分割光学系では、輻輳角(左右の光学系
の内向角)を決める光軸に相当するものを分割されたそ
れぞれの瞳の重心位置を通る光線と考えるのが妥当であ
る。この場合、これらの瞳の重心位置を結ぶ距離が左右
の光軸の間隔であると考えられる。従って、分割後のそ
れぞれの瞳の重心間隔によって立体感が変化する。
A factor that determines the stereoscopic effect obtained with a stereoscopic endoscope is the vergence angle of the left and right optical systems. The larger the vergence angle, the stronger the stereoscopic effect, and the smaller the vergence angle, the weaker the stereoscopic effect. . The image formed by one objective lens system
In a pupil-splitting optical system that divides into two, it is appropriate to consider that what corresponds to the optical axis that determines the vergence angle (inward angle of the left and right optical systems) is a ray that passes through the center of gravity of each divided pupil. In this case, the distance connecting the positions of the centers of gravity of these pupils is considered to be the distance between the left and right optical axes. Therefore, the stereoscopic effect changes depending on the distance between the centers of gravity of the respective pupils after the division.

【0024】本実施例では、重心間隔が被写体の距離に
応じて変化するように、近点の場合には重心間隔が小さ
くなる方向に、遠点の場合には重心間隔が大きくなる方
向に可変絞り16を可変し、被写体までの距離によらず
常に一定の立体感が得られるようにする。
In the present embodiment, the distance between the centers of gravity is changed so that the distance between the centers of gravity becomes smaller in the case of a near point and becomes larger in the case of a far point so that the distance between the centers of gravity changes. The diaphragm 16 is varied so that a constant stereoscopic effect can always be obtained regardless of the distance to the subject.

【0025】これを実現するために、図3の第1の例の
絞り21あるいは図4の第2の例の絞り22を用いる。
In order to realize this, the diaphragm 21 of the first example of FIG. 3 or the diaphragm 22 of the second example of FIG. 4 is used.

【0026】第1の例では、2枚の絞り板21a,21
bの一方あるいは双方が光軸と垂直な方向に変位するこ
とで、絞り孔の間隔が変化し、左右の瞳位置が移動す
る。これに伴って、瞳の重心間隔が変化する。例えば、
近点を観察する際には、図3の(a)に示すように瞳の
重心間隔を狭めてd1 とし、遠点を観察する際には、図
3の(b)に示すように瞳の重心間隔を広げてd2 とす
る。また、近点観察後に遠点を観察する場合には、瞳の
重心間隔をd1 からd2 に広がるように変化させる。
In the first example, two diaphragm plates 21a, 21
When one or both of b are displaced in the direction perpendicular to the optical axis, the distance between the aperture holes changes, and the left and right pupil positions move. Along with this, the distance between the centers of gravity of the pupils changes. For example,
When observing a near point, the distance between the centers of gravity of the pupils is narrowed to d1 as shown in FIG. 3 (a), and when observing a far point, as shown in FIG. Widen the center of gravity to d2. When observing the far point after observing the near point, the distance between the centers of gravity of the pupils is changed so as to expand from d1 to d2.

【0027】また、第2の例では、複数の絞り羽根が変
位することで、絞り径が変化する。絞り開口はほぼ円形
であり、左右の瞳は常に中央で分割されるため、絞り径
の変化によって瞳の重心間隔が変化する。例えば、近点
を観察する際には、図4の(a)に示すように絞り径を
絞って瞳の重心間隔を狭めるようにし、遠点を観察する
際には、図4の(b)に示すように絞り径を開いて瞳の
重心間隔を広げるようにする。また、近点観察後に遠点
を観察する場合には、絞りを開いて図4の(a)から
(b)の状態にして瞳の重心間隔が広がるように変化さ
せる。
Further, in the second example, the diaphragm diameter is changed by the displacement of the plurality of diaphragm blades. Since the diaphragm aperture is almost circular and the left and right pupils are always divided at the center, the distance between the centers of gravity of the pupils changes according to the change in the diaphragm diameter. For example, when observing a near point, the aperture diameter is narrowed to narrow the center of gravity of the pupil as shown in FIG. 4A, and when observing a far point, FIG. As shown in, open the diaphragm diameter to widen the distance between the centers of gravity of the pupils. When observing the far point after observing the near point, the diaphragm is opened and the state is changed from (a) to (b) of FIG.

【0028】このような可変絞り16を用いることによ
って、分割される左右の瞳の重心間隔を変化させること
ができ、輻輳角を変化させて立体感を調整することがで
きる。従って、遠点観察時には輻輳角を広げて立体感を
強め、近点観察時には輻輳角を狭めて立体感を弱めて、
被写体までの距離にかかわらず常に一定の立体感で立体
視が行えるようにできる。また、ある任意の観察距離で
所望の立体感が得られるように必要に応じて左右の瞳の
重心間隔を変化させ、立体感を調整することも可能であ
る。
By using such a variable diaphragm 16, it is possible to change the distance between the centers of gravity of the divided left and right pupils, and it is possible to adjust the stereoscopic effect by changing the vergence angle. Therefore, when observing a far point, the angle of convergence is widened to enhance the three-dimensional effect, and when observing a near point, the angle of convergence is narrowed to reduce the three-dimensional effect.
It is possible to perform stereoscopic viewing with a constant stereoscopic effect regardless of the distance to the subject. It is also possible to adjust the stereoscopic effect by changing the distance between the centers of gravity of the left and right pupils as necessary so that a desired stereoscopic effect can be obtained at an arbitrary observation distance.

【0029】図5は本発明の第2実施例に係る立体視硬
性内視鏡の主要部の構成を示す説明図である。
FIG. 5 is an explanatory view showing the constitution of the main part of the stereoscopic rigid endoscope according to the second embodiment of the present invention.

【0030】第2実施例は、第1実施例での立体感の調
整とフォーカシング制御とを連動させるようにした例で
ある。
The second embodiment is an example in which the adjustment of the stereoscopic effect and the focusing control in the first embodiment are linked.

【0031】第2実施例の立体視内視鏡は、光学系にお
いて結像レンズ13の後方で瞳分割プリズム15の近傍
に第1実施例の可変絞り16と同様な可変絞り31が配
置され、瞳分割プリズム15での瞳分割後の光路中に焦
点合わせを行うフォーカシングレンズ32,33が左右
それぞれに配設されている。その他の光学系の構成は第
1実施例と同様であり、説明を省略する。
In the stereoscopic endoscope of the second embodiment, a variable diaphragm 31 similar to the variable diaphragm 16 of the first embodiment is arranged in the optical system behind the imaging lens 13 and near the pupil division prism 15. Focusing lenses 32 and 33 for focusing are provided on the left and right sides in the optical path after the pupil division by the pupil division prism 15. The configuration of the other optical systems is the same as that of the first embodiment, and the description is omitted.

【0032】可変絞り31およびフォーカシングレンズ
32,33には、それぞれ駆動装置34,35,36が
連設されており、これらの駆動装置34,35,36
は、フォーカス位置の可変量および絞り可変量を指示す
る制御手段37からの指示入力を受けて動作するように
なっている。
Driving devices 34, 35 and 36 are connected to the variable diaphragm 31 and the focusing lenses 32 and 33, respectively, and these driving devices 34, 35 and 36 are connected.
Is operated by receiving an instruction input from the control means 37 for instructing the variable amount of the focus position and the variable amount of the diaphragm.

【0033】制御手段37は、被写体の位置に応じてフ
ォーカス位置までの可変量を設定し、合焦状態となるよ
うにフォーカシングレンズ32,33の移動を指示する
レンズ駆動信号を出力する。また、このフォーカシング
制御に伴って、可変絞り31を所定量駆動する絞り駆動
信号を出力し、焦点距離に合わせて分割される左右の瞳
の重心間隔を変化させる。このように、フォーカシング
制御に連動して、焦点を合わせる被写体までの距離に応
じて、可変絞り31を駆動して左右の瞳の重心間隔を変
化させ、常に輻輳角が一定となるようにする。
The control means 37 sets a variable amount up to the focus position according to the position of the subject, and outputs a lens drive signal for instructing the movement of the focusing lenses 32, 33 so that the focusing state is achieved. Further, in accordance with this focusing control, an aperture drive signal for driving the variable aperture 31 by a predetermined amount is output to change the distance between the centers of gravity of the left and right pupils divided according to the focal length. In this way, in conjunction with focusing control, the variable diaphragm 31 is driven according to the distance to the subject to be focused to change the distance between the centers of gravity of the left and right pupils so that the convergence angle is always constant.

【0034】例えば、ある距離の点Aに左右の画像のピ
ントが一致しており、入射瞳の左右の重心に一致するそ
れぞれの光軸が点Aで交わっているとする。この場合、
左右の光軸がある輻輳角をもって視差を有しており、左
右の画像が立体的に観察される。この状態から点Aより
近い点Bの物体を立体視するために、フォーカシングレ
ンズ32,33を移動させることにより焦点距離を変化
させ、近点の物体にピントを一致させることが可能であ
る。
For example, it is assumed that the left and right images are in focus at a point A at a certain distance, and the respective optical axes that match the left and right centroids of the entrance pupil intersect at a point A. in this case,
The left and right optical axes have parallax with a certain convergence angle, and the left and right images are stereoscopically observed. From this state, in order to stereoscopically view the object at the point B closer than the point A, it is possible to change the focal length by moving the focusing lenses 32 and 33 and bring the object at the near point into focus.

【0035】このとき、左右の入射瞳の重心間隔が一定
であると、輻輳角が変化してしまうため、立体感が異な
ってしまう。この場合被写体が近点に移動したため立体
感が強くなってしまう。そこで、本実施例では、左右の
瞳の重心間隔を変化させる可変絞り31と、焦点合わせ
を行うフォーカシングレンズ32,33とを連動させる
ことによって、被写体までの距離にかかわらず輻輳角を
一定とすることができ、遠点から近点までほぼ同じ立体
感を得ることができる。
At this time, if the distance between the centers of gravity of the left and right entrance pupils is constant, the vergence angle changes, resulting in a different stereoscopic effect. In this case, the subject moves to the near point, and the stereoscopic effect becomes strong. In view of this, in the present embodiment, the variable diaphragm 31 that changes the distance between the centers of gravity of the left and right pupils and the focusing lenses 32 and 33 that perform focusing work together to make the convergence angle constant regardless of the distance to the subject. It is possible to obtain almost the same stereoscopic effect from the far point to the near point.

【0036】以上のように、本実施例によれば、得られ
る像の立体感を変えることなく、所望の距離に焦点を合
わせて立体視を行うことが可能となる。また、フォーカ
シングを行ったある所定の距離で好みの立体感が得られ
るように輻輳角を調整することも可能である。
As described above, according to this embodiment, it is possible to perform stereoscopic vision by focusing on a desired distance without changing the stereoscopic effect of the obtained image. It is also possible to adjust the vergence angle so that a desired stereoscopic effect can be obtained at a certain predetermined distance after focusing.

【0037】図6ないし図8は本発明の第3実施例に係
り、図6は立体視硬性内視鏡の主要部の構成を示す説明
図、図7は瞳分割プリズムから可変絞りを通る光を示す
説明図、図8は可変絞りの概略構成を示す斜視図であ
る。
FIGS. 6 to 8 relate to a third embodiment of the present invention, FIG. 6 is an explanatory view showing the structure of the main part of a stereoscopic rigid endoscope, and FIG. 7 is a diagram showing light passing from a pupil division prism through a variable diaphragm. FIG. 8 is a perspective view showing a schematic configuration of a variable diaphragm.

【0038】第3実施例は、瞳分割プリズムで瞳分割し
た後の光路中にそれぞれ可変絞りを配置した例である。
The third embodiment is an example in which variable diaphragms are arranged in the optical paths after pupil division by the pupil division prism.

【0039】第2実施例の立体視内視鏡は、光学系にお
いて瞳分割プリズム15での瞳分割後の光路中の左右そ
れぞれに可変絞り39,40が配設されている。その他
の構成は第2実施例と同様であり、説明を省略する。
In the stereoscopic endoscope according to the second embodiment, variable diaphragms 39 and 40 are provided on the left and right sides of the optical path after pupil division by the pupil division prism 15 in the optical system. The other structure is the same as that of the second embodiment, and the description thereof is omitted.

【0040】可変絞り39,40は、図7および図8に
示すように、それぞれ絞り孔を有した絞り板で構成され
ており、変位することによって絞り孔が移動し、瞳の位
置が変位するようになっている。可変絞り39,40に
よって、例えば図7において斜線で示す部分の光束が通
過し、可変絞り39,40が移動すると瞳の位置が変位
し、左右の瞳の重心間隔が変化するようになっている。
このとき、図8に示すように、可変絞り39,40は互
いに連結されるかあるいは駆動部が連動するようになっ
ており、2つの絞り板が連動して移動するように構成さ
れている。
As shown in FIGS. 7 and 8, the variable diaphragms 39 and 40 are composed of diaphragm plates each having a diaphragm hole. When the diaphragms are displaced, the diaphragm holes are moved and the position of the pupil is displaced. It is like this. The variable diaphragms 39 and 40 allow, for example, a light beam in a shaded portion in FIG. 7 to pass therethrough, and when the variable diaphragms 39 and 40 move, the positions of the pupils are displaced and the distance between the centers of gravity of the left and right pupils is changed. .
At this time, as shown in FIG. 8, the variable diaphragms 39 and 40 are connected to each other or the driving portions are interlocked with each other, and the two diaphragm plates are configured to move in conjunction with each other.

【0041】可変絞り39,40を瞳分割前の光学系の
光軸に対して前側に移動させると、左右の瞳の間隔、す
なわち瞳の重心間隔が狭くなり、得られる像の立体感が
弱くなる。一方、可変絞り39,40を瞳分割前の光学
系の光軸に対して後側に移動させると、左右の瞳の間隔
が広くなり、得られる像の立体感が強くなる。なお、こ
のとき第2実施例と同様に、可変絞り39,40とフォ
ーカシングレンズ32,33とを連動させる。
When the variable diaphragms 39 and 40 are moved to the front side with respect to the optical axis of the optical system before the pupil division, the distance between the left and right pupils, that is, the distance between the centers of gravity of the pupils is narrowed, and the stereoscopic effect of the obtained image is weakened. Become. On the other hand, when the variable diaphragms 39 and 40 are moved rearward with respect to the optical axis of the optical system before the pupil division, the distance between the left and right pupils becomes wide, and the stereoscopic effect of the obtained image becomes strong. At this time, as in the second embodiment, the variable diaphragms 39 and 40 and the focusing lenses 32 and 33 are linked.

【0042】このように、可変絞りを瞳分割後の光路中
に配置した場合においても、第1および第2実施例と同
様に左右の瞳の重心間隔を調整でき、被写体までの距離
にかかわらず常に一定の立体感が得られるように立体視
を行うことが可能となる。
As described above, even when the variable diaphragm is arranged in the optical path after pupil division, the distance between the centers of gravity of the left and right pupils can be adjusted as in the first and second embodiments, regardless of the distance to the subject. It is possible to perform stereoscopic vision so that a constant stereoscopic effect is always obtained.

【0043】図9は本発明の第4実施例に係る立体視硬
性内視鏡の主要部の構成を示す説明図である。
FIG. 9 is an explanatory view showing the structure of the main part of a stereoscopic rigid endoscope according to the fourth embodiment of the present invention.

【0044】第4実施例は、被写体までの距離を検出す
る距離検出手段を備え、検出した距離に応じて可変絞り
およびフォーカシングレンズを制御するようにした例で
ある。
The fourth embodiment is an example in which a distance detecting means for detecting the distance to the object is provided and the variable diaphragm and the focusing lens are controlled according to the detected distance.

【0045】第4実施例の立体視内視鏡は、光学系にお
いて結像レンズ13の後方にフォーカシングレンズ41
が配設され、瞳分割プリズム15の近傍に可変絞り42
が配置されている。その他の光学系の構成は第1実施例
と同様であり、説明を省略する。可変絞り42は、例え
ば第1実施例における第2の例の絞り径を可変する絞り
22が用いられる。
In the stereoscopic endoscope of the fourth embodiment, the focusing lens 41 is provided behind the imaging lens 13 in the optical system.
Is disposed, and the variable diaphragm 42 is provided near the pupil division prism 15.
Are arranged. The configuration of the other optical systems is the same as that of the first embodiment, and the description is omitted. As the variable diaphragm 42, for example, the diaphragm 22 for varying the diaphragm diameter of the second example in the first embodiment is used.

【0046】フォーカシングレンズ41および可変絞り
42には、それぞれ駆動装置43,44が連設されてお
り、これらの駆動装置43,44は、信号処理装置5に
設けられたフォーカス位置の可変量および絞り可変量を
指示する制御手段45からの指示入力を受けて動作する
ようになっている。また、信号処理装置5には明るさ検
出手段46が設けられており、固体撮像素子19,20
からの出力に基づいて画像の明るさを検出するようにな
っている。さらに、前記制御手段45および明るさ検出
手段46は、光源装置47の光量を調整する自動調光手
段を構成している。
Driving devices 43 and 44 are connected to the focusing lens 41 and the variable diaphragm 42, respectively, and these driving devices 43 and 44 are provided for the signal processing device 5 so that the focus position is variable and the diaphragm is variable. It operates so as to receive an instruction input from the control means 45 for instructing a variable amount. Further, the signal processing device 5 is provided with a brightness detecting means 46, and the solid-state image pickup devices 19 and 20.
The brightness of the image is detected based on the output from the. Further, the control means 45 and the brightness detection means 46 constitute an automatic light control means for adjusting the light quantity of the light source device 47.

【0047】内視鏡による観察時においては、観察部位
に照明光を照射して観察を行うようになっており、この
照明のために被写体までの距離によって画像の明るさが
変化する。このため、自動調光手段によって、画像の明
るさを検出して一定の明るさが得られるように光源装置
の光量を制御するようにしているが、逆に検出した画像
の明るさによって被写体までの距離を知ることができ
る。すなわち、被写体が近距離にあれば画像が明るくな
り、遠距離では画像が暗くなるため、この画像の明るさ
から被写体までの距離を検出することができる。
At the time of observation with an endoscope, the observation site is irradiated with illumination light for observation, and the brightness of the image changes depending on the distance to the subject due to this illumination. For this reason, the automatic light control unit detects the brightness of the image and controls the light amount of the light source device so that a constant brightness is obtained. You can know the distance. That is, the image becomes bright when the subject is at a short distance and dark at a long distance, so that the distance to the subject can be detected from the brightness of the image.

【0048】本実施例では、明るさ検出手段46によっ
て画像の明るさを検出することにより、制御手段45で
被写体までの距離を検知する。ここでは、物体の反射
率、光源装置47の照明光量に対応する画像の明るさ、
およびこれに対応する被写体までの距離が予め知られて
おり、メモリ等に記憶されているものとする。
In this embodiment, the brightness of the image is detected by the brightness detecting means 46, and the distance to the object is detected by the control means 45. Here, the reflectance of the object, the brightness of the image corresponding to the illumination light amount of the light source device 47,
Also, it is assumed that the distance to the subject corresponding thereto is known in advance and stored in a memory or the like.

【0049】明るさ検出手段46は、固体撮像素子1
9,20からの出力画像信号を積分する積分手段等によ
り、像の明るさを検出して明るさ検出信号を制御手段4
5へ出力する。制御手段45は、前記明るさ検出信号に
基づいて被写体までの距離を検知し、距離に応じてフォ
ーカシングレンズ41の移動量とこれに連動する可変絞
り42の変化量を決定して駆動装置43,44へ駆動信
号を出力する。これにより、第2実施例と同様に被写体
までの距離に応じたフォーカシング制御、およびこれに
連動した左右の瞳の重心間隔の調整が行われ、立体感の
調整がなされる。
The brightness detecting means 46 is the solid-state image pickup device 1.
The brightness of the image is detected by an integrating means or the like that integrates the output image signals from 9, 20, and the brightness detection signal is controlled by the controlling means 4.
Output to 5. The control unit 45 detects the distance to the subject based on the brightness detection signal, determines the amount of movement of the focusing lens 41 and the amount of change of the variable diaphragm 42 that is linked to the movement amount of the focusing lens 41 in accordance with the distance, and drives the driving devices 43, The drive signal is output to 44. As a result, similarly to the second embodiment, focusing control is performed according to the distance to the subject, and the distance between the centers of gravity of the left and right pupils is adjusted in association with this to adjust the stereoscopic effect.

【0050】なお、光学系によって物体距離と輻輳角の
大きさとの関係は予め決まっているため、フォーカシン
グレンズ41の移動量とこれに連動する可変絞り42の
変化量とをメモリ等に記憶させておき、連動するように
制御できる。
Since the relationship between the object distance and the size of the vergence angle is predetermined by the optical system, the moving amount of the focusing lens 41 and the changing amount of the variable diaphragm 42 linked with this are stored in a memory or the like. It can be controlled to interlock every time.

【0051】また、近点を観察する際に、左右の瞳の重
心間隔を狭めるために絞り径を可変できる可変絞り42
を絞ると、絞り径が小さくなることによって画像の明る
さを抑えることができる。すなわち、立体感の調整と画
像の明るさ調整とを連動して行うことが可能となる。こ
の可変絞り42の変位に合わせて、制御手段45は光源
装置47に光量調整信号を出力し、光源の光量調整を行
う。
Further, when observing the near point, the variable diaphragm 42 which can change the diaphragm diameter in order to narrow the distance between the centers of gravity of the left and right pupils.
By narrowing the aperture, the brightness of the image can be suppressed by reducing the aperture diameter. That is, it becomes possible to perform the adjustment of the stereoscopic effect and the adjustment of the brightness of the image in conjunction with each other. In accordance with the displacement of the variable diaphragm 42, the control means 45 outputs a light amount adjustment signal to the light source device 47 to adjust the light amount of the light source.

【0052】このように、本実施例によれば、自動調光
制御、フォーカシング制御、立体感の調整を連動して行
うことができる。さらに、近点観察時に可変絞り42に
よって絞り径を絞ることによって、従来は被写界深度の
浅い画像となっていたものが被写界深度を深く観察する
ことができる。
As described above, according to this embodiment, automatic light control, focusing control, and stereoscopic effect adjustment can be performed in conjunction with each other. Further, by narrowing the diaphragm diameter by the variable diaphragm 42 at the time of near-point observation, it is possible to observe a deep depth of field, which was conventionally an image having a shallow depth of field.

【0053】なお、本実施例のリレー光学系は、単一の
光軸を持つものに限らず、伝達した像を途中で分割し、
さらに分割された像をそれぞれ伝達するように構成して
も良い。また、光学系に、結像レンズ,ズームレンズ等
を任意に設けても良い。
The relay optical system of this embodiment is not limited to the one having a single optical axis, but the transmitted image may be divided on the way,
It may be configured such that each of the divided images is transmitted. Further, an image forming lens, a zoom lens, etc. may be optionally provided in the optical system.

【0054】[0054]

【発明の効果】以上説明したように本発明によれば、必
要に応じて得られる像の立体感を調整することができ、
被写体までの距離によらず所望の立体感で立体視を行う
ことが可能となる効果がある。
As described above, according to the present invention, it is possible to adjust the stereoscopic effect of the obtained image, if necessary.
There is an effect that stereoscopic viewing can be performed with a desired stereoscopic effect regardless of the distance to the subject.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1ないし図4はは本発明の第1実施例に係
り、図1は立体視硬性内視鏡の主要部の構成を示す説明
FIG. 1 to FIG. 4 relate to a first embodiment of the present invention, and FIG. 1 is an explanatory view showing a configuration of a main part of a stereoscopic rigid endoscope.

【図2】立体視硬性内視鏡の外観構成を示す説明図FIG. 2 is an explanatory diagram showing an external configuration of a stereoscopic rigid endoscope.

【図3】可変絞りの第1の構成例を示す説明図FIG. 3 is an explanatory diagram showing a first configuration example of a variable aperture.

【図4】可変絞りの第2の構成例を示す説明図FIG. 4 is an explanatory diagram showing a second configuration example of a variable aperture.

【図5】本発明の第2実施例に係る立体視硬性内視鏡の
主要部の構成を示す説明図
FIG. 5 is an explanatory diagram showing a configuration of a main part of a stereoscopic rigid endoscope according to a second embodiment of the present invention.

【図6】図6ないし図8は本発明の第3実施例に係り、
図6は立体視硬性内視鏡の主要部の構成を示す説明図
6 to 8 relate to a third embodiment of the present invention,
FIG. 6 is an explanatory diagram showing a configuration of a main part of a stereoscopic rigid endoscope.

【図7】瞳分割プリズムから可変絞りを通る光を示す説
明図
FIG. 7 is an explanatory diagram showing light passing through a variable diaphragm from a pupil division prism.

【図8】可変絞りの概略構成を示す斜視図FIG. 8 is a perspective view showing a schematic configuration of a variable diaphragm.

【図9】本発明の第4実施例に係る立体視硬性内視鏡の
主要部の構成を示す説明図
FIG. 9 is an explanatory diagram showing a configuration of a main part of a stereoscopic rigid endoscope according to a fourth embodiment of the present invention.

【図10】従来の立体視内視鏡の構成例を示す説明図FIG. 10 is an explanatory diagram showing a configuration example of a conventional stereoscopic endoscope.

【符号の説明】[Explanation of symbols]

1…立体視硬性内視鏡 11…対物レンズ系 12…リレーレンズ系 13…結像レンズ 14…フォーカシングレンズ 15…瞳分割プリズム 16…可変絞り 19,20…固体撮像素子 DESCRIPTION OF SYMBOLS 1 ... Stereoscopic rigid endoscope 11 ... Objective lens system 12 ... Relay lens system 13 ... Imaging lens 14 ... Focusing lens 15 ... Pupil division prism 16 ... Variable diaphragm 19, 20 ... Solid-state image sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単一の光軸を持つ対物レンズ系と、 該対物レンズ系と同軸に配置され、前記対物レンズ系に
より形成された物体像を伝達するための少なくとも一つ
のリレーレンズ系と、 前記リレーレンズ系の瞳位置またはその近傍、またはそ
れらの共役位置に配置され、前記瞳を複数に分割する瞳
分割手段と、 前記瞳分割手段の近傍またはその共役位置に配置され、
前記複数の瞳の重心間隔を変化させる瞳間隔変換手段
と、 前記リレーレンズ系を射出した光束を受けて、前記瞳分
割手段と共働して複数の物体像を形成する結像光学系
と、 前記各物体像を受ける撮像手段と、を備えたことを特徴
とする立体視硬性内視鏡。
1. An objective lens system having a single optical axis, and at least one relay lens system arranged coaxially with the objective lens system for transmitting an object image formed by the objective lens system. A pupil position of the relay lens system or the vicinity thereof, or a conjugate position thereof is arranged, and a pupil division unit that divides the pupil into a plurality, and a pupil division unit is arranged near the pupil division unit or a conjugate position thereof.
A pupil-spacing conversion unit that changes the center-of-gravity interval of the plurality of pupils; an image-forming optical system that receives a light beam emitted from the relay lens system and cooperates with the pupil-splitting unit to form a plurality of object images; A stereoscopic rigid endoscope, comprising: an image pickup unit that receives each of the object images.
【請求項2】 前記瞳分割手段の前にフォーカシングレ
ンズを配置したことを特徴とする請求項1記載の立体視
硬性内視鏡。
2. The stereoscopic rigid endoscope according to claim 1, further comprising a focusing lens arranged in front of the pupil dividing means.
【請求項3】 前記結像光学系は、光軸に沿って移動可
能なフォーカシングレンズを含み、このフォーカシング
レンズの移動と、前記瞳間隔変換手段による分割形成さ
れた複数の瞳の重心間隔の変化とが連動することを特徴
とする請求項1記載の立体視硬性内視鏡。
3. The image forming optical system includes a focusing lens movable along an optical axis, and movement of the focusing lens and change of a center-of-gravity interval of a plurality of pupils formed by the pupil-spacing conversion means. The stereoscopic rigid endoscope according to claim 1, wherein and are linked.
JP34806592A 1992-12-25 1992-12-28 Stereoscopic rigid endoscope Expired - Fee Related JP3283084B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP34806592A JP3283084B2 (en) 1992-12-28 1992-12-28 Stereoscopic rigid endoscope
US08/139,804 US5557454A (en) 1992-12-25 1993-10-22 Stereoscopic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34806592A JP3283084B2 (en) 1992-12-28 1992-12-28 Stereoscopic rigid endoscope

Publications (2)

Publication Number Publication Date
JPH06202006A true JPH06202006A (en) 1994-07-22
JP3283084B2 JP3283084B2 (en) 2002-05-20

Family

ID=18394514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34806592A Expired - Fee Related JP3283084B2 (en) 1992-12-25 1992-12-28 Stereoscopic rigid endoscope

Country Status (1)

Country Link
JP (1) JP3283084B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037796A1 (en) * 1995-05-24 1996-11-28 Olympus Optical Co., Ltd. Stereoscopic endoscope system and tv image pickup system for the endoscope
US5976071A (en) * 1994-11-29 1999-11-02 Asahi Kogaku Kogyo Kabushiki Kaisha Stereoscopic endoscope
JP2001051205A (en) * 1999-05-31 2001-02-23 Asahi Optical Co Ltd Video type stereo microscope
JP2003005314A (en) * 2001-06-19 2003-01-08 Olympus Optical Co Ltd Adapter lens for stereoscopic image photographing, stereoscopic image photographing system and electronic camera
JP2006158452A (en) * 2004-12-02 2006-06-22 Olympus Corp Medical three-dimensional imaging apparatus
JP2007194925A (en) * 2006-01-19 2007-08-02 Nikon Corp Curved optical system and electronic imaging device
WO2010024270A1 (en) * 2008-08-29 2010-03-04 ソニー株式会社 Imaging device and image recording and playback system
JP2010057619A (en) * 2008-09-02 2010-03-18 Olympus Medical Systems Corp Stereoscopic image capturing and displaying system
JP2010081580A (en) * 2008-08-29 2010-04-08 Sony Corp Imaging apparatus, and image recording and playback system
JP2012113281A (en) * 2010-11-04 2012-06-14 Panasonic Corp Stereoscopic imaging optical system, imaging device and camera
JP2013046395A (en) * 2011-08-26 2013-03-04 Canon Inc Image capturing apparatus, control method therefor, program, and recording medium
WO2013038950A1 (en) * 2011-09-13 2013-03-21 富士フイルム株式会社 3d imaging device
JP2016221299A (en) * 2016-07-15 2016-12-28 ソニー株式会社 Adapter for endoscope
WO2019012697A1 (en) * 2017-07-14 2019-01-17 オリンパス株式会社 Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope
JP2020156560A (en) * 2019-03-25 2020-10-01 株式会社Jvcケンウッド Rigid endoscope system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018189853A1 (en) 2017-04-13 2018-10-18 オリンパス株式会社 Stereoscopic endoscope optical system and endoscope provided therewith
WO2018211595A1 (en) 2017-05-16 2018-11-22 オリンパス株式会社 Optical system for stereoscopic viewing and imaging device equipped with same
WO2019008618A1 (en) 2017-07-03 2019-01-10 オリンパス株式会社 Stereoscopic optical system and imaging device provided therewith
WO2019064515A1 (en) 2017-09-29 2019-04-04 オリンパス株式会社 Stereoscopic optical system and imaging device equipped with same

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976071A (en) * 1994-11-29 1999-11-02 Asahi Kogaku Kogyo Kabushiki Kaisha Stereoscopic endoscope
US6338711B1 (en) 1994-11-29 2002-01-15 Asahi Kogaku Kogyo Kabushiki Kaisha Stereoscopic endoscope
US6517479B1 (en) 1994-11-29 2003-02-11 Asahi Kogaku Kogyo Kabushiki Kaisha Stereoscopic endoscope
WO1996037796A1 (en) * 1995-05-24 1996-11-28 Olympus Optical Co., Ltd. Stereoscopic endoscope system and tv image pickup system for the endoscope
US6606113B2 (en) 1995-05-24 2003-08-12 Olympus Optical Co., Ltd. Stereoscopic endocsope system and TV imaging system for endoscope
JP2001051205A (en) * 1999-05-31 2001-02-23 Asahi Optical Co Ltd Video type stereo microscope
JP2003005314A (en) * 2001-06-19 2003-01-08 Olympus Optical Co Ltd Adapter lens for stereoscopic image photographing, stereoscopic image photographing system and electronic camera
JP4740477B2 (en) * 2001-06-19 2011-08-03 オリンパス株式会社 Stereoscopic imaging adapter lens and stereoscopic imaging system
US7768701B2 (en) 2004-12-02 2010-08-03 Olympus Corporation Three-dimensional medical imaging apparatus
JP2006158452A (en) * 2004-12-02 2006-06-22 Olympus Corp Medical three-dimensional imaging apparatus
JP2007194925A (en) * 2006-01-19 2007-08-02 Nikon Corp Curved optical system and electronic imaging device
JP4661606B2 (en) * 2006-01-19 2011-03-30 株式会社ニコン Bending optical system and electronic imaging device
US8842164B2 (en) 2008-08-29 2014-09-23 Sony Corporation Image pickup apparatus and video recording and reproduction system
JP2010081580A (en) * 2008-08-29 2010-04-08 Sony Corp Imaging apparatus, and image recording and playback system
US20100245546A1 (en) * 2008-08-29 2010-09-30 Yoshihiko Kuroki Image Pickup Apparatus and Video Recording and Reproduction System
WO2010024270A1 (en) * 2008-08-29 2010-03-04 ソニー株式会社 Imaging device and image recording and playback system
JP2010057619A (en) * 2008-09-02 2010-03-18 Olympus Medical Systems Corp Stereoscopic image capturing and displaying system
JP2012113281A (en) * 2010-11-04 2012-06-14 Panasonic Corp Stereoscopic imaging optical system, imaging device and camera
JP2013046395A (en) * 2011-08-26 2013-03-04 Canon Inc Image capturing apparatus, control method therefor, program, and recording medium
US9106898B2 (en) 2011-08-26 2015-08-11 Canon Kabushiki Kaisha Image capturing apparatus, control method thereof and recording medium
WO2013038950A1 (en) * 2011-09-13 2013-03-21 富士フイルム株式会社 3d imaging device
JP5667304B2 (en) * 2011-09-13 2015-02-12 富士フイルム株式会社 Stereo imaging device
JP2016221299A (en) * 2016-07-15 2016-12-28 ソニー株式会社 Adapter for endoscope
WO2019012697A1 (en) * 2017-07-14 2019-01-17 オリンパス株式会社 Stereoscopic optical unit, stereoscopic imaging device, and stereoscopic endoscope
JP2020156560A (en) * 2019-03-25 2020-10-01 株式会社Jvcケンウッド Rigid endoscope system

Also Published As

Publication number Publication date
JP3283084B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
US5557454A (en) Stereoscopic endoscope
JP3283084B2 (en) Stereoscopic rigid endoscope
JP3220538B2 (en) Stereoscopic endoscope and stereoscopic endoscope device
JP5730339B2 (en) Stereoscopic endoscope device
JP4398352B2 (en) Medical stereoscopic imaging device
US8149270B1 (en) High resolution endoscope
EP1763258A2 (en) Medical stereo observation system
US20040263613A1 (en) Stereo-observation system
JPH0882766A (en) Stereoscopic endoscope
JP6553130B2 (en) Stereo video endoscope optical system and method for operating stereo video endoscope and stereo video endoscope optical system
JP2006158452A5 (en)
JP2006208407A (en) Microscopic system for observing stereoscopic picture
JP2017023584A (en) Ophthalmic microscope
JP2014140593A (en) Three-dimensional endoscope apparatus
JP4727356B2 (en) Medical stereoscopic observation device
JPH05341207A (en) Stereoscopic endoscope device
JP3257641B2 (en) Stereoscopic endoscope device
JPH0416812A (en) Stereoscopic endoscope
JP2002085330A (en) Stereoscopic endoscope device
JP3093875B2 (en) Stereoscopic endoscope
JP2017029333A (en) Ophthalmologic microscope
JP2017023583A (en) Ophthalmic microscope
WO2016181738A1 (en) Stereoscopic endoscope device
JP2005261557A (en) Endoscope of variable visual field direction and endoscope system
JP3226361B2 (en) Stereoscopic rigid endoscope

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees