JPH06196388A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH06196388A
JPH06196388A JP4342316A JP34231692A JPH06196388A JP H06196388 A JPH06196388 A JP H06196388A JP 4342316 A JP4342316 A JP 4342316A JP 34231692 A JP34231692 A JP 34231692A JP H06196388 A JPH06196388 A JP H06196388A
Authority
JP
Japan
Prior art keywords
light
light source
pattern
illumination
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4342316A
Other languages
Japanese (ja)
Other versions
JP3201027B2 (en
Inventor
Naomasa Shiraishi
直正 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18352787&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06196388(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP34231692A priority Critical patent/JP3201027B2/en
Publication of JPH06196388A publication Critical patent/JPH06196388A/en
Application granted granted Critical
Publication of JP3201027B2 publication Critical patent/JP3201027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/701Off-axis setting using an aperture
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70108Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To prevent the image-formation performance with reference to an inclined pattern, especially the improvement degree of the depth of focus, of an aligner from being deteriorated by a method wherein, although many optimized parts are included in longitudinal and transverse patterns on a reticle as the light-source shape of a deformed light source, some optimum parts are also included in the inclined pattern. CONSTITUTION:The shape of a light-shielding plate 8 includes a surface light- source part which is effective in forming the image of slightly inclined patterns Ta, Tb, and the greater part of a central crossed light-shielding part shields a surface light-source part which is not suitable for not only a longitudinal pattern Pv and a groove pattern Pb but also the inclined patterns Ta, Tb. As a result, when the image of the inclined patterns Ta, Tb is formed, a resolution and a depth of focus which are remarkably higher than those by an ordinary illumination (a simply circular or polygonal surface light source using an optical axis AX as the center) in conventional cases can be obtained. Consequently, it is possible to prevent the image-formation performance with reference to the inclined patterns, especially the improvement degree of the depth of focus, of the aligner from being deteriorated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体集積回路、液晶
表示素子等の微細パターンの露光転写に使用される投影
露光装置に関し、特に転写すべきパターンの形成された
マスク(レチクル)の照明方法に工夫を施した露光装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus used for exposing and transferring a fine pattern such as a semiconductor integrated circuit and a liquid crystal display element, and more particularly to a method for illuminating a mask (reticle) on which a pattern to be transferred is formed. The present invention relates to an exposure apparatus that has been devised.

【0002】[0002]

【従来の技術】年々微細化が進むリソグラフィ工程にお
いては、現在、64MD−RAM製造用の実用的な投影
露光装置の導入が必須となっている。このような微細な
パターンの投影露光転写を十分な精度で達成するため
に、従来より様々の工夫が提案されている。そのうち、
特に転写すべきパターンがライン・アンド・スペース
(以下L&Sとする)のように、ある方向に周期性をも
つときに、従来よりも格段に解像力と焦点深度とを拡大
させる手法として、特開平4−108612号公報、特
開平4−225514号公報等のような超解像技術が提
案された。
2. Description of the Related Art In a lithography process in which miniaturization progresses year by year, it is essential to introduce a practical projection exposure apparatus for manufacturing 64MD-RAM. In order to achieve the projection exposure transfer of such a fine pattern with sufficient accuracy, various measures have been conventionally proposed. Of which
Particularly, when the pattern to be transferred has a periodicity in a certain direction such as a line and space (hereinafter referred to as L & S), as a method for remarkably increasing the resolution and the depth of focus as compared with the conventional technique, Japanese Patent Laid-Open No. Hei 4 (1999) -1999. Super-resolution techniques such as Japanese Patent Laid-Open No. 108612 and Japanese Patent Laid-Open No. 4-225514 have been proposed.

【0003】この超解像技術は、投影露光すべきL&S
パターンが形成されたマスク基板(レチクル)への照明
光の配向特性だけを特殊なものにすることで、従来の照
明方法では解像しなかった微細なパターンを十分な焦点
深度をもって解像させるものである。その照明光の配向
特性は照明光学系内のレチクルに対するフーリエ変換面
内での照明光束の分布、すなわち2次光源像の分布を、
レチクルのL&Sのパターンの微細度(ピッチ等)に対
応して制御することによって作られる。
This super-resolution technique is used for L & S for projection exposure.
Resolving a fine pattern that could not be resolved by conventional illumination methods with a sufficient depth of focus by making only the alignment characteristics of the illumination light on the mask substrate (reticle) on which the pattern is formed Is. The orientation characteristic of the illumination light is the distribution of the illumination light flux in the Fourier transform plane with respect to the reticle in the illumination optical system, that is, the distribution of the secondary light source image,
It is created by controlling according to the fineness (pitch etc.) of the L & S pattern of the reticle.

【0004】図1は、上記公報に開示された技術を適用
した照明光学系の模式的な構成を示す斜視図である。こ
こでは照明光源として水銀ランプ1を用い、この水銀ラ
ンプ1の発光点を楕円鏡2の第1焦点に配置する。楕円
鏡2で反射した照明光ILaは第2焦点3で一度収れん
した後、不図示のミラーで反射されてコリメータレンズ
系4に入射する。一般に図1のように楕円鏡2と水銀ラ
ンプ1とを組み合わせると、照明光ILaの断面は輪帯
状(ドーナツ状)の強度分布をもつ。この輪帯状の断面
の照明光ILaはコリメータレンズ系4でほぼ平行光束
に変換されて、照明系内のフーリエ変換面に配置された
遮光板8に達する。遮光板8上には光軸AXから等距離
の位置に4つの開口が設けられ、この開口の夫々にはフ
ライアイレンズ7A、7B、7C、7Dが設けられる。
これらフライアイレンズ7A〜7Dの夫々の入射面は、
いずれも輪帯状断面の照明光束ILa内に位置する。ま
た、フライアイレンズ7A〜7Dの夫々の射出側には、
そのフライアイレンズ内のエレメントレンズの数分だ
け、水銀ランプ1の点光源像が形成される。従って、フ
ライアイレンズ7A〜7Dの各射出面には2次光源像
(面光源)が形成される。
FIG. 1 is a perspective view showing a schematic configuration of an illumination optical system to which the technique disclosed in the above publication is applied. Here, the mercury lamp 1 is used as an illumination light source, and the light emitting point of the mercury lamp 1 is arranged at the first focal point of the elliptical mirror 2. The illumination light ILa reflected by the ellipsoidal mirror 2 is once converged at the second focal point 3 and then reflected by a mirror (not shown) to enter the collimator lens system 4. Generally, when the ellipsoidal mirror 2 and the mercury lamp 1 are combined as shown in FIG. 1, the illumination light ILa has a ring-shaped (donut-shaped) intensity distribution in its cross section. The illumination light ILa having the ring-shaped cross section is converted into a substantially parallel light flux by the collimator lens system 4 and reaches the light shielding plate 8 arranged on the Fourier transform surface in the illumination system. Four openings are provided on the light shielding plate 8 at positions equidistant from the optical axis AX, and fly-eye lenses 7A, 7B, 7C, and 7D are provided in each of the openings.
The incident surfaces of the fly-eye lenses 7A to 7D are
Both are located in the illumination light flux ILa having the annular cross section. In addition, on the exit side of each of the fly-eye lenses 7A to 7D,
The point light source image of the mercury lamp 1 is formed by the number of element lenses in the fly-eye lens. Therefore, secondary light source images (surface light sources) are formed on the exit surfaces of the fly-eye lenses 7A to 7D.

【0005】各フライアイレンズ7A〜7Dの夫々から
の照明光は、コンデンサーレンズ等を含む逆フーリエ変
換光学系11(以後便宜的にコンデンサーレンズと呼
ぶ)によって、レチクルRのパターン形成領域PA上に
一様に重畳して照射される。レチクルRのパターン領域
PAの中心に光軸AXが通るように、レチクルRを配置
し、その中心を座標系XYの原点としたとき、L&S状
のレチクルパターンは、多くの場合、X方向にピッチを
もつL&Sパターン(縦パターン)PvとY方向にピッ
チをもつL&Sパターン(横パターン)Phとに分けら
れる。すなわち、パターン領域PA内にはX方向とY方
向との2方向について周期性をもつパターン群が集合し
て形成される。
Illumination light from each of the fly-eye lenses 7A to 7D is formed on the pattern forming area PA of the reticle R by an inverse Fourier transform optical system 11 (hereinafter referred to as a condenser lens for convenience) including a condenser lens and the like. Irradiation is performed by superimposing them uniformly. When the reticle R is arranged so that the optical axis AX passes through the center of the pattern area PA of the reticle R and the center is the origin of the coordinate system XY, the L & S-shaped reticle pattern is often pitched in the X direction. And an L & S pattern (horizontal pattern) Ph having a pitch in the Y direction. That is, a pattern group having periodicity in two directions of the X direction and the Y direction is collectively formed in the pattern area PA.

【0006】L&SパターンPv、PhのX、Y方向の
ピッチのうち、最小のものに対して照明条件を最適化す
るものとすると、フライアイレンズ7A〜7Dの夫々の
光軸AXからの偏心量yα、xβは、そのL&Sパター
ンの最小ピッチと一義的な関係で決められる。例えばL
&SパターンPhのY方向の最小ピッチをGy(μ
m)、照明光ILaの波長をλ(μm)、コンデンサー
レンズ11からレチクルRまでの距離、すなわち焦点距
離をf(mm)とし、L&SパターンPhから発生する
1次回折光の回折角(0次光からの角度)を2θy(r
ad)としたとき、着目する1つのフライアイレンズの
Y方向の偏心量yαは、sin2θy=λ/Gy、yα=f
・sin θyがほぼ同時に満たされるように決められる。
If the illumination condition is optimized for the minimum pitch of the L & S patterns Pv and Ph in the X and Y directions, the decentering amount of each of the fly-eye lenses 7A to 7D from the optical axis AX. yα and xβ are determined in a unique relationship with the minimum pitch of the L & S pattern. For example L
The minimum pitch of the & S pattern Ph in the Y direction is Gy (μ
m), the wavelength of the illumination light ILa is λ (μm), the distance from the condenser lens 11 to the reticle R, that is, the focal length is f (mm), and the diffraction angle of the 1st-order diffracted light generated from the L & S pattern Ph (0th-order light Angle from 2θy (r
ad), the eccentricity amount yα in the Y direction of one fly-eye lens of interest is sin2θy = λ / Gy, yα = f
・ It is decided that sin θy is satisfied almost at the same time.

【0007】さらに、L&SパターンPvのX方向の最
小ピッチをGx(μm)とし、L&SパターンPvから
発生する1次回折光の回折角を2θx(rad)とした
とき、着目する1つのフライアイレンズのX方向の偏心
量xβは、sin2θx=λ/Gx、xβ=fsin θxがほ
ぼ同時に満足するように決められる。以上のように、従
来の特殊照明法(変形光源)では、レチクルR上のL&
Sパターンのうち、X方向にピッチを有するパターンP
vの超解像投影には、フーリエ変換面上でX方向に対称
的に偏心した2次光源像のペア(フライアイレンズ7A
と7D、またはフライアイレンズ7Bと7C)からの傾
斜照明光が寄与し、Y方向にピッチを有するパターンP
hの超解像投影には、フーリエ変換面上でY方向に対称
的に偏心した2次光源像のペア(フライアイレンズ7A
と7B、またはフライアイレンズ7Cと7D)からの傾
斜照明光が寄与する。
Further, when the minimum pitch of the L & S pattern Pv in the X direction is Gx (μm) and the diffraction angle of the first-order diffracted light generated from the L & S pattern Pv is 2θx (rad), one fly-eye lens of interest is selected. The eccentricity amount xβ in the X direction is determined so that sin2θx = λ / Gx and xβ = fsinθx are satisfied substantially at the same time. As described above, according to the conventional special illumination method (deformed light source), L & L on the reticle R is
Of the S patterns, a pattern P having a pitch in the X direction
For super-resolution projection of v, a pair of secondary light source images symmetrically decentered in the X direction on the Fourier transform plane (fly-eye lens 7A
And 7D, or the tilted illumination light from the fly-eye lenses 7B and 7C) contributes and has a pattern P having a pitch in the Y direction.
For super-resolution projection of h, a pair of secondary light source images symmetrically decentered in the Y direction on the Fourier transform plane (fly eye lens 7A
And 7B, or the tilted illumination light from the fly-eye lenses 7C and 7D) contributes.

【0008】尚、図1において第2焦点3には露光の開
始と中断とを制御するロータリーシャッター等が配置さ
れ、第2焦点3はフライアイレンズ7A〜7Dの夫々の
射出面側に形成される2次光源像と共役であり、フライ
アイレンズ7A〜7Dの夫々の入射面はレチクルRのパ
ターン面と共役になっている。
In FIG. 1, the second focus 3 is provided with a rotary shutter or the like for controlling the start and interruption of the exposure, and the second focus 3 is formed on the exit surface side of each of the fly-eye lenses 7A to 7D. Of the fly-eye lenses 7A to 7D, and the respective incident surfaces of the fly-eye lenses 7A to 7D are conjugated to the pattern surface of the reticle R.

【0009】[0009]

【発明が解決しようとする課題】上記の如き従来技術に
おいては、転写すべき回路原版(レチクル)の特定の方
向、例えば直交する2方向の周期パターンについてのみ
解像度や焦点深度を改善する効果がある。ところが、他
の方向、特に上記の直交する2方向の夫々に対して45
°回転した方向に周期性をもつパターンについては、通
常の照明法を適用した露光装置よりも解像度や焦点深度
が低下するという問題があった。
In the above-mentioned conventional techniques, there is an effect of improving the resolution and the depth of focus only for a periodic pattern in a specific direction of a circuit original plate (reticle) to be transferred, for example, two orthogonal directions. . However, in other directions, especially in the above two orthogonal directions, respectively, 45
Regarding the pattern with periodicity in the rotated direction, there was a problem that the resolution and the depth of focus were lower than those of an exposure apparatus to which a normal illumination method was applied.

【0010】本発明は、このような問題に鑑みて成され
たものであり、レチクル上の、特にレチクル外形と平行
な縦横方向の夫々に周期性を有する2方向パターンの解
像度と焦点深度を大幅に向上させつつ、これらとは方向
の異なる斜め(例えば45°回転)パターンについて
も、通常の装置より高解像かつ大焦点深度が得られる投
影露光装置の提供を目的としている。
The present invention has been made in view of such a problem, and the resolution and depth of focus of a bidirectional pattern having a periodicity in each of the vertical and horizontal directions on the reticle, particularly in the vertical and horizontal directions parallel to the reticle outline, are significantly increased. It is an object of the present invention to provide a projection exposure apparatus capable of obtaining a higher resolution and a larger depth of focus than an ordinary apparatus even with respect to an oblique pattern (for example, rotated by 45 °) different in direction from the above while improving the above.

【0011】[0011]

【課題を解決するための手段】本発明においては、投影
露光装置のマスク照明用の照明光学系内のフーリエ変換
面に形成される光源像(面光源)の2次元的な形状を、
従来の形状に加えて若干変形するようにした。具体的に
は、図2に示すように、ほぼ円形の領域C1内に包含さ
れる面光源(ここではフライアイレンズ7の射出面)の
うち、原点から所定半径の円C2よりも外側の輪帯部分
は全く遮光しないようにする。そして、円C2の内側に
原点からX、Y方向の夫々に延びた十字状遮光部8Aを
設け、X、Y座標軸で規定された4つの象限の夫々に、
互いに分離した透過部(光源面)を形成するようにし
た。その4つの象限の透過部は従来と同様にX、Y方向
の夫々にピッチを有する周期性パターンの超解像に寄与
する。
According to the present invention, a two-dimensional shape of a light source image (surface light source) formed on a Fourier transform surface in an illumination optical system for mask illumination of a projection exposure apparatus,
In addition to the conventional shape, it is slightly deformed. Specifically, as shown in FIG. 2, of the surface light sources (here, the exit surface of the fly-eye lens 7) included in the substantially circular region C1, a ring outside the circle C2 having a predetermined radius from the origin. Do not shade the band at all. Then, inside the circle C2, cross-shaped light-shielding portions 8A extending in the X and Y directions from the origin are provided, and in each of the four quadrants defined by the X and Y coordinate axes,
The transmission part (light source surface) separated from each other was formed. The transmissive portions in the four quadrants contribute to super-resolution of a periodic pattern having pitches in the X and Y directions, as in the conventional case.

【0012】従来においては十字状遮光部8Aの4つの
先端部が全て面光源の半径(ほぼ円C1の半径)以上に
延設されていたが、本発明では十字状遮光部8の4つの
先端部を面光源の半径よりも小さくし、それら4つの先
端部の外側にも、面積的に小さな面光源が存在するよう
にした。尚、この図2中の直交座標系XYの設定は、図
1のものと全く同じであり、座標系XYの原点は照明光
学系、あるいは投影光学系の光軸AXと一致している。
また、図2においてEPは、2次元光源像(面光源)と
してのフライアイレンズ7の射出面内で見た投影光学系
の瞳面を表す。
In the prior art, all the four tips of the cross-shaped light-shielding portion 8A were extended beyond the radius of the surface light source (the radius of the circle C1), but in the present invention, the four tips of the cross-shaped light-shielding portion 8 are provided. The area was made smaller than the radius of the surface light source, and the area light source was small outside the four tip portions. The setting of the orthogonal coordinate system XY in FIG. 2 is exactly the same as that of FIG. 1, and the origin of the coordinate system XY coincides with the optical axis AX of the illumination optical system or the projection optical system.
Further, in FIG. 2, EP represents the pupil plane of the projection optical system as seen in the exit plane of the fly-eye lens 7 as a two-dimensional light source image (surface light source).

【0013】一般にこの種の投影露光装置では、投影光
学系の瞳面(フーリエ変換面)内に面光源像(フライア
イレンズ7の射出面の像)が形成されるようになってい
る。そして照明光学系内のフーリエ変換面上で見た投影
光学系の瞳EPの半径r0 と、面光源の半径rとの比r
/r0 のことはσ値と呼ばれる。そこで、図2において
円C1の半径をσ値で0.7〜0.8程度、円C2の半
径r’を0.64r0=0.64r/σ程度にしておく
と、X、Y方向の夫々に対して45°だけ回転した方向
にピッチを有する0.4〜0.45μmの線幅の周期パ
ターンに対しても超解像の効果が十分に得られるように
なる。尚、図2に示した円C1、C2の設定条件や十字
状遮光部8Aの寸法条件については、以後の実施例にお
いて詳細に例示する。
Generally, in this type of projection exposure apparatus, a surface light source image (image of the exit surface of the fly-eye lens 7) is formed in the pupil plane (Fourier transform plane) of the projection optical system. Then, the ratio r of the radius r 0 of the pupil EP of the projection optical system viewed on the Fourier transform surface in the illumination optical system and the radius r of the surface light source.
The value of / r 0 is called the σ value. Therefore, in FIG. 2, if the radius of the circle C1 is about 0.7 to 0.8 in the σ value and the radius r ′ of the circle C2 is about 0.64r 0 = 0.64r / σ, the values in the X and Y directions are The super-resolution effect can be sufficiently obtained even for a periodic pattern having a line width of 0.4 to 0.45 μm having a pitch in the direction rotated by 45 ° with respect to each of them. The setting conditions of the circles C1 and C2 and the dimensional conditions of the cross-shaped light shielding portion 8A shown in FIG. 2 will be described in detail in the following embodiments.

【0014】[0014]

【作用】本発明においては、いわゆる変形光源の光源形
状として、レチクル上の縦横パターンに最適化された部
分を多く含みながら、かつ、斜めパターンについても最
適な部分(図2の十字状遮光部8Aの先端の外側)も、
わずかに含ませるようにした。このため、従来の変形光
源ではむしろ通常照明より悪化してしまっていた斜めパ
ターンの解像度及び焦点深度も、通常照明に比べて改善
することができる。また、縦横パターンに最適化された
光源部の面積(光量)と、斜めパターンに最適化された
光源部の面積(光量)のバランスも最適化されているた
めに、縦横パターンの投影時の解像度や焦点深度の改善
も従来の変形光源形状の場合とほぼ同程度に実現でき
る。尚、図2のように十字状遮光部8Aの外側に輪帯状
の面光源部(半径r’〜r)を設けた場合、斜めパター
ンの周期性の方向はX、Y方向の夫々に対して必ずしも
45°(又は135°)でなくても、本発明の効果が得
られる。
In the present invention, the light source shape of the so-called modified light source includes many portions optimized for the vertical and horizontal patterns on the reticle, and is also the optimal portion for the oblique pattern (the cross-shaped light-shielding portion 8A in FIG. 2). Outside the tip)
I tried to include it slightly. For this reason, the resolution and depth of focus of the oblique pattern, which is worse than the conventional illumination in the conventional modified light source, can be improved as compared with the normal illumination. In addition, since the balance between the area (light intensity) of the light source optimized for vertical and horizontal patterns and the area (light intensity) of the light source optimized for diagonal patterns is optimized, the resolution when projecting vertical and horizontal patterns The improvement of the depth of focus and the depth of focus can be realized to the same extent as in the case of the conventional modified light source shape. When a ring-shaped surface light source unit (radius r ′ to r) is provided outside the cross-shaped light-shielding unit 8A as shown in FIG. 2, the periodicity directions of the oblique patterns are in the X and Y directions, respectively. Even if it is not necessarily 45 ° (or 135 °), the effect of the present invention can be obtained.

【0015】[0015]

【実施例】図3は本発明の実施例による投影露光装置の
全体的な概略構成を示す図である。そして、図3中の部
材で、図1中のものと同じ機能のものには同一の符号を
付してある。水銀ランプ1からの照明光ILaは楕円鏡
2で第2焦点3に収れんされたのち、コリメータレンズ
系4、ミラー5、インプット側フィールドレンズ6を介
してフライアイレンズ7に入射する。第2焦点3の位置
には一方向に回転するロータリーシャッター19Aが配
置され、シャッター19Aは駆動ユニット(モータ、駆
動回路等)19Bによって制御される。また、照明光I
Laはフライアイレンズ7に入射する際、図1の場合と
同様に輪帯状の強度分布をもつが、それはフライアイレ
ンズ7の射出側に設ける遮光板(絞り)8の形状が、図
2のような変形光源を作るものの場合に適している。し
かしながら、遮光板8を従来と同様の円形開口絞りをも
つ遮光板9に切り換えて通常照明を行う場合、照明光I
Laの輪帯状の強度分布はあまり好ましくない。特にレ
チクルRが位相シフト法を適用したものの場合、レチク
ルRへの照明光の開口数は比較的小さな値(σ値で0.
2〜0.4程度)に絞られる。その場合、フライアイレ
ンズ7の中央部分のエレメントレンズからの照明光、す
なわち照明光ILaの輪帯状の強度分布の中央部の光の
みがレチクル照明に利用されることになり、照度低下を
招くことになる。
FIG. 3 is a diagram showing the overall schematic construction of a projection exposure apparatus according to an embodiment of the present invention. The members in FIG. 3 having the same functions as those in FIG. 1 are designated by the same reference numerals. The illumination light ILa from the mercury lamp 1 is focused on the second focal point 3 by the elliptic mirror 2, and then enters the fly-eye lens 7 via the collimator lens system 4, the mirror 5 and the input side field lens 6. A rotary shutter 19A that rotates in one direction is arranged at the position of the second focus 3, and the shutter 19A is controlled by a drive unit (motor, drive circuit, etc.) 19B. Also, the illumination light I
When La enters the fly-eye lens 7, it has a ring-shaped intensity distribution as in the case of FIG. 1, but the shape of the light-shielding plate (diaphragm) 8 provided on the exit side of the fly-eye lens 7 is as shown in FIG. It is suitable for the case of making such a modified light source. However, when the light-shielding plate 8 is switched to the light-shielding plate 9 having a circular aperture stop similar to the conventional one to perform normal illumination, the illumination light I
The La zone intensity distribution of La is not very preferable. In particular, when the reticle R is the one to which the phase shift method is applied, the numerical aperture of the illumination light to the reticle R is a relatively small value (.sigma. Value is 0.
2 to 0.4)). In that case, only the illumination light from the element lens in the central portion of the fly-eye lens 7, that is, the light in the central portion of the annular light intensity distribution of the illumination light ILa is used for reticle illumination, which causes a decrease in illuminance. become.

【0016】そこで通常照明に切り替えるときは、例え
ば USP. 4,637,691 等に開示されているようなプリズム
30を、コリメータレンズ4とフィールドレンズ6との
間に交換可能に配置し、照明光ILaの輪帯状の強度分
布を円形状の分布に整形するとよい。さて、フライアイ
レンズ7の射出側には、図2のような変形光源用の遮光
板8や通常光源用の遮光板9を交換可能に保持するタ−
レット10が設けられる。タ−レット10は駆動ユニッ
ト10Aによって、所定角度毎に回転させられる。図3
では遮光板8がフライアイレンズ7の射出側に位置決め
されている。こうして遮光板8の透過部を通った照明光
ILbはアウトプット側フィールドレンズ13、ミラー
12を介してコンデンサーレンズ11に入射する。フラ
イアイレンズ7中の選ばれた複数のエレメントレンズの
夫々の点光源からの光は、コンデンサーレンズ11によ
って全てレチクルRのパターン領域上で重畳して一様に
照射される。図3中に示した照明光ILaは、選ばれた
1つのエレメントレンズの点光源からの光を代表して表
したものである。
Therefore, when switching to the normal illumination, a prism 30 as disclosed in USP 4,637,691 or the like is arranged in a replaceable manner between the collimator lens 4 and the field lens 6 so that the illumination light ILa has an annular shape. The intensity distribution of is preferably shaped into a circular distribution. On the exit side of the fly-eye lens 7, a light-shielding plate 8 for a modified light source and a light-shielding plate 9 for a normal light source as shown in FIG.
A let 10 is provided. The turret 10 is rotated at a predetermined angle by the drive unit 10A. Figure 3
Then, the light shielding plate 8 is positioned on the exit side of the fly-eye lens 7. In this way, the illumination light ILb that has passed through the transmission part of the light shielding plate 8 enters the condenser lens 11 via the output side field lens 13 and the mirror 12. The light from each of the point light sources of the selected plurality of element lenses in the fly-eye lens 7 is uniformly radiated by the condenser lens 11 so as to be superimposed on the pattern area of the reticle R. Illumination light ILa shown in FIG. 3 is representative of light from the point light source of one selected element lens.

【0017】ここで、遮光板8の遮光部形状とフライア
イレンズ7のエレメントレンズ配置との関係は、図2に
示したものと同じであり、現実的には図2中の円C1の
外側も遮光部とし、十字状遮光部8Aも含めて石英板等
の透過板の上に金属層等を蒸着して作る。また、フライ
アイレンズ7の射出面(もしくは遮光板8の面)は、レ
チクルRのパターン面に対して光学的なフーリエ変換の
関係になっている。従ってフライアイレンズ7の1つの
エレメントレンズで作られた点光源からの光は、コンデ
ンサーレンズ11によって入射角θの平行光束となって
レチクルRを傾斜照明する。このとき、1つの点光源の
フーリエ変換面上での偏心量(光軸AXからの距離)
は、入射角θの正弦(sin θ)と比例関係にある。この
入射角θは、レチクルR上の周期的なパターンのピッチ
に応じて適量値が存在する。X、Y方向の夫々に周期的
なパターンに対する偏心量yα、xβの決定方法につい
ては、先の特開平4−225514号公報等に開示され
ているので、ここではその説明を省略する。
Here, the relationship between the shape of the light-shielding portion of the light-shielding plate 8 and the arrangement of the element lenses of the fly-eye lens 7 is the same as that shown in FIG. 2, and in reality it is outside the circle C1 in FIG. Is also a light-shielding portion, and is formed by vapor-depositing a metal layer or the like on a transmission plate such as a quartz plate including the cross-shaped light-shielding portion 8A. The exit surface of the fly-eye lens 7 (or the surface of the light shielding plate 8) has an optical Fourier transform relationship with the pattern surface of the reticle R. Therefore, the light from the point light source formed by one element lens of the fly-eye lens 7 becomes a parallel light beam having an incident angle θ by the condenser lens 11 and obliquely illuminates the reticle R. At this time, the amount of eccentricity on the Fourier transform plane of one point light source (distance from the optical axis AX)
Is proportional to the sine of the incident angle θ. This incident angle θ has an appropriate value depending on the pitch of the periodic pattern on the reticle R. The method of determining the eccentricity amounts yα and xβ for the periodic patterns in the X and Y directions, respectively, is disclosed in Japanese Patent Application Laid-Open No. 4-225514, and the description thereof will be omitted here.

【0018】照明光ILbの照射によって、レチクルR
上の特定ピッチの周期パターンから発生した各回折光の
うち、0次回折光D0 と1つの1次回折光D1 とは、両
側テレセントリックな投影光学系PLの瞳EP内で対称
的に分布した後、ウェハWに達する。従ってレチクルR
上の特定ピッチの周期パターンは、1つの1次回折光D
1 と0次回折光D0 との干渉によって作られる明暗像と
してウェハW上に結像される。ウェハWの表面にはレジ
スト層が塗布されているので、シャッター19Aの開時
間を制御して、そのレジストに見合った最適露光光量を
与えると、レチクルRの周期パターンの縮小像がレジス
ト層に形成される。
The reticle R is irradiated with the illumination light ILb.
Of the diffracted lights generated from the periodic pattern of the above specific pitch, the 0th-order diffracted light D 0 and one 1st-order diffracted light D 1 are symmetrically distributed in the pupil EP of the bilateral telecentric projection optical system PL. , Reach the wafer W. Therefore Reticle R
The periodic pattern of the above specific pitch is one 1st-order diffracted light D
An image is formed on the wafer W as a bright and dark image created by the interference between the 1st and 0th order diffracted light D 0 . Since the resist layer is coated on the surface of the wafer W, when the opening time of the shutter 19A is controlled to give an optimum exposure light amount suitable for the resist, a reduced image of the periodic pattern of the reticle R is formed on the resist layer. To be done.

【0019】そのウェハWは、光軸AXと垂直な面内で
2次元移動するステージWST上に載置され、ステージ
WSTはレーザー干渉計18Aによる座標位置の計測結
果に基づいて、モータ等の駆動ユニット18Bにより駆
動される。制御ユニット20は、そのウェハステージW
ST、シャッター用駆動ユニット19B、タ−レット用
駆動ユニット10Aを統括的に制御する。特にタ−レッ
ト用駆動ユニット10Aに対しては、レチクルRの登録
名による自動制御、またはオペレータからの指示による
手動制御が可能となっている。
The wafer W is placed on a stage WST which moves two-dimensionally in a plane perpendicular to the optical axis AX, and the stage WST drives a motor or the like based on the measurement result of the coordinate position by the laser interferometer 18A. It is driven by the unit 18B. The control unit 20 uses the wafer stage W
The ST, the shutter drive unit 19B, and the turret drive unit 10A are collectively controlled. In particular, the turret drive unit 10A can be automatically controlled by the registered name of the reticle R or manually controlled by an operator.

【0020】図4は第1の実施例による遮光板8の具体
的な形状を示す平面図であり、図5は図4中の座標系X
Yと同一の座標系で見たときのレチクルR上の周期パタ
ーン配置を模式的に示したものである。図5に示したよ
うに、レチクルR上にはレチクルの外形各辺の方向X、
Yと平行な周期的な縦パターンPv(ピッチはX方向)
と横パターンPh(ピッチはY方向)とが多く存在し、
それらにくらべて割合としては少ないが、X、Y方向の
夫々に対して45°(又は、135°)回転した周期的
な斜めパターンTa、Tbも存在する。このようなパタ
ーンの構成は、本実施例に限らず、半導体デバイス用の
回路原版としてのレチクルでは普通のことであり、縦パ
ターンPv、横パターンPhの割合は多く、斜めパター
ンTa、Tbの割合は少ないのが一般的である。
FIG. 4 is a plan view showing a concrete shape of the light shielding plate 8 according to the first embodiment, and FIG. 5 is a coordinate system X in FIG.
7 schematically shows the periodic pattern arrangement on the reticle R when viewed in the same coordinate system as Y. As shown in FIG. 5, on the reticle R, the direction X of each side of the outer shape of the reticle,
Periodic vertical pattern Pv parallel to Y (pitch is in X direction)
There are many horizontal patterns Ph (pitch is in the Y direction),
There is also a periodical oblique pattern Ta, Tb rotated by 45 ° (or 135 °) with respect to each of the X and Y directions, although the ratio is smaller than those. The structure of such a pattern is not limited to this embodiment, and is common in a reticle as a circuit original plate for a semiconductor device. The ratio of the vertical pattern Pv and the horizontal pattern Ph is high, and the ratio of the diagonal patterns Ta and Tb is high. Is generally low.

【0021】これらのパターンを有するレチクルRに対
して、図4に示した遮光板8を適用した照明光学系から
の照明光を照射すると、幅2a、長さ2bの十字状遮光
部8Aによって区画された4つの扇状透明部81a、8
1b、81c、81dの夫々を面光源として、レチクル
R上の縦パターンPvと横パターンPhとの投影時の解
像度や焦点深度が従来と同様に向上する。ここで、遮光
板8は最外周に外径値r0 、内径rの輪帯遮光部8Bを
有し、原点(光軸AXの通る点)から十字状遮光部8A
の先端までの長さbは、r>bの関係に設定されてい
る。尚、輪帯遮光部8Bの内径エッジが図2中の円C1
に相当し、輪帯遮光部8Bの外径値r0 が投影光学系P
Lの瞳EPの実効的な最大径(すなわち最大開口数N.
A.)に対応するものとすると、輪帯遮光部8Bの内径値
rと外径値r0 との比r/r0 は、コヒーレンスファク
ターのσ値に他ならない。
When the reticle R having these patterns is irradiated with the illumination light from the illumination optical system to which the shading plate 8 shown in FIG. 4 is applied, the reticle R is divided by the cross-shaped shading portion 8A having a width 2a and a length 2b. 4 fan-shaped transparent portions 81a, 8
Using 1b, 81c, and 81d as surface light sources, the resolution and depth of focus of the vertical pattern Pv and the horizontal pattern Ph on the reticle R at the time of projection are improved as in the conventional case. Here, the light-shielding plate 8 has a ring-shaped light-shielding portion 8B having an outer diameter value r 0 and an inner diameter r on the outermost periphery, and the cross-shaped light-shielding portion 8A from the origin (the point where the optical axis AX passes).
The length b to the tip of is set to have a relationship of r> b. In addition, the inner diameter edge of the annular light shielding portion 8B is a circle C1 in FIG.
And the outer diameter value r 0 of the annular light-shielding portion 8B is the projection optical system P.
The effective maximum diameter of the pupil EP of L (that is, the maximum numerical aperture N.
A.), the ratio r / r 0 between the inner diameter value r and the outer diameter value r 0 of the annular light shielding portion 8B is nothing but the σ value of the coherence factor.

【0022】さらに、図4の遮光板8において、十字状
遮光部8AのX、Y方向の各先端部には、斜めパターン
Ta、Tbの結像に有効な透明部81e、81f、81
g、81hが形成されている。従来のこの種の照明方法
では、その4つの透明部81e、81f、81g、81
hは全て遮光部とされていた。この4つの透明部81e
〜81hの夫々に光源像(面光源)を作ると、縦パター
ンPvや横パターンPhの投影時の解像度や焦点深度を
多少劣化させる副作用がある。しかしながら、縦パター
ンPv、横パターンPhに対して有効な扇状透明部81
a〜81dの個々の面積(あるいは光量)に比べて、4
つの透明部81e〜81hの個々の面積(あるいは光
量)は十分に小さいため、縦パターンPvや横パターン
Phについての投影性能を大きく損なうものとはならな
い。
Further, in the light shielding plate 8 of FIG. 4, transparent portions 81e, 81f, 81 effective for forming an image of the oblique patterns Ta, Tb are provided at the respective tip portions of the cross-shaped light shielding portion 8A in the X and Y directions.
g, 81h are formed. In the conventional illumination method of this type, the four transparent portions 81e, 81f, 81g, 81
All h were used as a light shielding part. These four transparent parts 81e
Creating a light source image (surface light source) for each of the patterns 81h to 81h has a side effect of slightly degrading the resolution and the depth of focus when the vertical pattern Pv and the horizontal pattern Ph are projected. However, the fan-shaped transparent portion 81 effective for the vertical pattern Pv and the horizontal pattern Ph
a-81d compared to the individual area (or light quantity), 4
Since the area (or the light amount) of each of the two transparent portions 81e to 81h is sufficiently small, the projection performance for the vertical pattern Pv and the horizontal pattern Ph is not significantly impaired.

【0023】ここで遮光板8の各値r(σ)、a、bの
関係は、 0.1r/σ≦a≦ 0.4r/σ、 0.4r/σ≦b
≦ 0.8r/σ程度に定められる。値aが 0.1r/σ(す
なわち 0.1r0 )よりも小さくなると、変形光源として
の効果が消失し、通常照明(光軸AXを中心とする単な
る円形又は多角形面光源)と何ら変わらなくなる。さら
に、値aが 0.4r/σ(すなわち 0.4r0 )よりも大き
くなると、4つの扇状透明部81a〜81dの夫々の面
積上の重心点が、遮光板8の原点から大きく離れた所に
出来るため、レチクルR上のパターンPv、Phのうち
ピッチがより微細になったものに対しては照明光の傾斜
角の最適化がはかられるが、それよりもピッチが粗くな
ったパターンに対しては最適化がはかられず、焦点深度
の拡大効果が得られにくくなる。
Here, the relationship among the respective values r (σ), a and b of the light shielding plate 8 is 0.1r / σ ≦ a ≦ 0.4r / σ and 0.4r / σ ≦ b
≦ 0.8 r / σ is set. When the value a becomes smaller than 0.1r / σ (that is, 0.1r 0 ), the effect as a deformed light source disappears and there is no difference from normal illumination (a simple circular or polygonal surface light source centered on the optical axis AX). Further, when the value a becomes larger than 0.4r / σ (that is, 0.4r 0 ), the center of gravity on the area of each of the four fan-shaped transparent portions 81a to 81d is formed at a position far away from the origin of the light shielding plate 8. Therefore, although the inclination angle of the illumination light can be optimized for the pattern Pv, Ph on the reticle R having a finer pitch, it can be optimized for the pattern having a coarser pitch. Will not be optimized, and it will be difficult to obtain the effect of increasing the depth of focus.

【0024】また値bについても、 0.4r/σより小さ
いと縦パターンPv、横パターンPhの解像に不適当な
面光源、すなわち透明部81e〜81hの面積が増大す
るため、縦横パターンPv、Phの投影時の焦点深度が
著しく減少してくることになる。逆に値bが 0.8r/σ
より大きくなると、斜めパターンTa、Tbの投影時の
解像度や焦点深度の改善効果が薄らいでしまう。
If the value b is smaller than 0.4r / σ, the area of the surface light source unsuitable for resolving the vertical pattern Pv and the horizontal pattern Ph, that is, the areas of the transparent portions 81e to 81h, increases, so that the vertical and horizontal patterns Pv, The depth of focus at the time of projecting Ph is remarkably reduced. Conversely, the value b is 0.8r / σ
When it becomes larger, the effect of improving the resolution and the depth of focus when projecting the oblique patterns Ta and Tb becomes weak.

【0025】また図4に示した遮光板8の形状では、わ
ずかながらも斜めパターンTa、Tbの結像に有効な面
光源部を含んでおり、かつ中央の十字状遮光部8Aの大
部分は縦パターンPv、横パターンPhのみでなく、斜
めパターンTa、Tbに対しても不適当な面光源部をも
遮光している。このため斜めパターンTa、Tbの結像
においても、従来の通常照明(光軸AXを中心とする単
なる円形又は多角形面光源)よりは格段に高い解像度や
焦点深度を得ることができる。
Further, the shape of the light shielding plate 8 shown in FIG. 4 includes a surface light source portion which is effective for image formation of the oblique patterns Ta and Tb, and most of the central cross-shaped light shielding portion 8A. Not only the vertical pattern Pv and the horizontal pattern Ph, but also the inappropriate surface light source portion is shielded against the oblique patterns Ta and Tb. Therefore, even in the image formation of the oblique patterns Ta and Tb, it is possible to obtain a remarkably higher resolution and a greater depth of focus than the conventional normal illumination (a simple circular or polygonal surface light source centered on the optical axis AX).

【0026】さて、図6は遮光板8の第2実施例による
形状を示し、図4の遮光板8の構成と同じ部分には同一
の符号を付けてある。本実施例は基本的には図4の遮光
板と同じであるが、中央の十字状遮光部8A’の中心に
半径rc (rc >a)の円形遮光部を設けた点が異な
る。このように面光源の中心部を円形遮光部で遮へいす
ると、縦パターンPv、横パターンPhの結像に関して
特に有効な光源部、すなわち4つの扇状透明部81a〜
81dの夫々の面積が図4の場合よりも少なくなり、相
対的に斜めパターンTa、Tbの結像に関して有効な光
源部、すなわち4つの透明部81e〜81hの夫々の面
積の割合が増大する。この為、斜めパターンTa、Tb
の結像時の解像度や焦点深度を図4の場合よりもさらに
改善することができる。
FIG. 6 shows the shape of the shading plate 8 according to the second embodiment. The same parts as those of the shading plate 8 of FIG. 4 are designated by the same reference numerals. This embodiment is basically the same as the light shielding plate of FIG. 4, but is different in that a circular light shielding portion having a radius r c (r c > a) is provided at the center of the central cross-shaped light shielding portion 8A ′. When the central portion of the surface light source is shielded by the circular light-shielding portion in this manner, a light source portion that is particularly effective for image formation of the vertical pattern Pv and the horizontal pattern Ph, that is, four fan-shaped transparent portions 81a to 81a.
The area of each of 81d becomes smaller than that of the case of FIG. 4, and the ratio of the area of each of the light source portions, that is, the four transparent portions 81e to 81h, which are effective for forming the oblique patterns Ta and Tb relatively increases. Therefore, the diagonal patterns Ta, Tb
It is possible to further improve the resolution and the depth of focus at the time of image formation as compared with the case of FIG.

【0027】また図6の遮光板8によって新たに遮光さ
れる部分は、比較的に光軸AXに近い位置であり、やや
粗め(例えばウェハ上での線幅が0.5μm以上)のピ
ッチの縦パターンPv、横パターンPhの結像時に焦点
深度を改善する効果はあるものの、より微細なピッチの
縦、横パターンPv、Phに対しては解像度や焦点深度
を改善する効果があまりない。そのため、投影露光すべ
きレチクルR上のL&Sパターンが、比較的微細なピッ
チのものに限られていて、かつ同程度のピッチの斜めパ
ターンも、少ないながらも適度の割合で含まれている場
合、図6の遮光板8を用いた縦、横パターンPv、Ph
の総合的な結像性能は、図4の遮光板8を用いたときと
比べて特に劣化することはない。
The portion newly shielded by the light shielding plate 8 in FIG. 6 is a position relatively close to the optical axis AX, and the pitch is slightly rough (for example, the line width on the wafer is 0.5 μm or more). Although there is an effect of improving the depth of focus when the vertical pattern Pv and the horizontal pattern Ph are imaged, there is not much effect of improving the resolution and the depth of focus for the vertical and horizontal patterns Pv and Ph having a finer pitch. Therefore, when the L & S pattern on the reticle R to be projected and exposed is limited to a pattern having a relatively fine pitch, and an oblique pattern having a similar pitch is included in a small amount but in a proper ratio, Vertical and horizontal patterns Pv, Ph using the light shielding plate 8 of FIG.
The overall image forming performance of is not particularly deteriorated as compared with the case where the light shielding plate 8 of FIG. 4 is used.

【0028】ここで図6の遮光板8の中央の円形遮光部
の半径r2は、 0.3r/σ≦r2≦0.4r/σ程度に定
められ、厳密にはa<r2<bの条件も加味される。こ
こで半径r2の値が小さくなって結局、a≧r2となる
と、図4の遮光板8の形状と何ら変わらなくなってしま
うため、斜めパターンTa、Tbの結像時の焦点深度拡
大作用はやや減少することになる。逆に半径r2の値を
大きくしていくと、その面光源形状は輪帯に近づくた
め、縦、横パターンPv、Phの結像時の焦点深度拡大
作用が減少してしまう。
Here, the radius r2 of the circular light-shielding portion at the center of the light-shielding plate 8 in FIG. 6 is set to about 0.3r / σ ≦ r2 ≦ 0.4r / σ, and strictly speaking, the condition of a <r2 <b is also taken into consideration. To be done. Here, if the value of the radius r2 becomes smaller and eventually becomes a ≧ r2, there is no difference from the shape of the light-shielding plate 8 in FIG. 4, and therefore the depth-of-focus enlargement action during image formation of the oblique patterns Ta and Tb is slightly. Will decrease. On the contrary, when the value of the radius r2 is increased, the surface light source shape approaches the annular zone, so that the focal depth enlarging action at the time of image formation of the vertical and horizontal patterns Pv and Ph is reduced.

【0029】図7は遮光板8の第3実施例による形状を
示し、基本的には図4の遮光板8の形状と同じである
が、外周の輪帯状遮光部8Bの内側で、4つの扇状透過
部81a〜81dの夫々の一部に90°のコーナをもつ
微少遮光部8C、8Dを設けた点が異なる。これら微少
遮光部8C、8DはX軸、Y軸の夫々と平行なエッジを
有し、X軸からY方向に距離dyだけ離れており、Y軸
と平行エッジはY軸からX方向に距離dxだけ離れてい
る。その微少遮光部8C、8Dは扇状遮光部81a〜8
1dの夫々の中で、X軸、Y軸の夫々から最も遠い部分
に設けられており、この遮光部8C、8Dの部分からの
照明光束は縦パターンPv、横パターンPhとして最も
ピッチが小さいもの、あるいは微細なピッチの斜めパタ
ーンに対して最適化された配向特性を持つ。このため、
そのように最もピッチが小さい縦、横パターン、あるい
は微細な斜めパターンの結像時に、焦点深度拡大作用が
得られる。ところが遮光部8C、8Dの部分から照明光
束は、中程度(例えば0.4〜0.5μmの線幅)の微
細度のL&Sパターンの結像時に、むしろ焦点深度を減
少させる方向に作用してしまう。
FIG. 7 shows the shape of the shading plate 8 according to the third embodiment, which is basically the same as the shape of the shading plate 8 of FIG. 4, but four inside the outer ring-shaped shading portion 8B. The difference is that minute shielding portions 8C and 8D having 90 ° corners are provided in a part of each of the fan-shaped transmitting portions 81a to 81d. These minute light-shielding portions 8C and 8D have edges parallel to the X-axis and the Y-axis, respectively, and are separated from the X-axis by a distance dy in the Y direction, and the parallel edges with the Y-axis are a distance dx from the Y-axis in the X direction. Just away. The minute light shields 8C and 8D are fan-shaped light shields 81a-8a.
In each of 1d, it is provided in the farthest part from the X-axis and the Y-axis respectively, and the illumination light flux from these light-shielding portions 8C and 8D has the smallest pitch as the vertical pattern Pv and the horizontal pattern Ph. Or, it has an alignment characteristic optimized for an oblique pattern with a fine pitch. For this reason,
As described above, when a vertical or horizontal pattern having the smallest pitch or a fine diagonal pattern is formed, a depth of focus expanding action can be obtained. However, the illumination light flux from the light-shielding portions 8C and 8D acts in the direction of decreasing the depth of focus rather than when forming an L & S pattern with a fineness of medium degree (for example, a line width of 0.4 to 0.5 μm). I will end up.

【0030】従って図7の遮光板8は、ここでの変形光
源方式によって理論上結像可能な最小ピッチ程度に微細
な縦横パターンは含まないが、それよりも粗い中程度の
微細度のL&Sパターンを含むレチクルRを投影露光す
るのに適していると言える。尚、図7から明らかなよう
に、微少遮光部8C、8Dのエッジの距離dx、dy
は、ここではdx<r、dy<rに定められ、レチクル
上の縦パターン、横パターン、斜めパターンの各ピッチ
がほぼ同程度であれば、さらにdx=dyに定められ
る。そして図7の遮光板8内の扇状透明部81a〜81
dの夫々の面積的な重心点(光量重心点)の位置は、微
少遮光部8C、8Dが存在しないときの重心点位置とそ
れ程変化していない。また微少遮光部8C、8Dの各エ
ッジのX、Y軸からの距離dx、dyを小さくしていく
と、各扇状透明部81a〜81dは矩形(又は正方形)
に近づいていく。
Therefore, the light-shielding plate 8 of FIG. 7 does not include a fine vertical / horizontal pattern in the minimum pitch that can theoretically be imaged by the modified light source system here, but is a coarser and finer L & S pattern of a medium degree. It can be said that it is suitable for projection exposure of a reticle R containing a. As is apparent from FIG. 7, the distances dx and dy of the edges of the minute light shielding portions 8C and 8D are
Is set to dx <r and dy <r here, and is further set to dx = dy if the pitches of the vertical pattern, the horizontal pattern, and the diagonal pattern on the reticle are approximately the same. Then, the fan-shaped transparent portions 81a to 81 in the light shielding plate 8 of FIG.
The positions of the respective area-wise center of gravity points (light quantity center of gravity points) of d are not so different from the center of gravity point positions when the minute light shielding portions 8C and 8D are not present. Further, when the distances dx and dy from the X and Y axes of the edges of the minute light shielding portions 8C and 8D are reduced, the fan-shaped transparent portions 81a to 81d are rectangular (or square).
Approaching.

【0031】図8は、微少遮光部8C、8Dの各エッジ
のX、Y軸からの距離dx、dyを比較的小さくすると
ともに、十字状遮光部8A、輪帯状遮光部8B、微少遮
光部8C、8Dの夫々のエッジをフライアイレンズ7の
エレメントレンズの断面形状(ここでは正方形とする)
に合わせた場合の遮光板8の形状を示す。尚、先の図
4、図6、7の各遮光板の場合も遮光部エッジはエレメ
ントレンズの断面形状に合わせるのが好ましい。図8に
おいて、斜めパターンTa、Tbの結像時に有効な光源
部分を形成する4つの透明部81e〜81h夫々には、
2個のエレメントレンズがX軸、Y軸をはさんで位置す
る。また、十字状遮光部8Aの幅の半値aはエレメント
レンズの1個分の寸法に定められ、長さbは5個分の寸
法に定められている。そして扇状透明部81a〜81d
の夫々には、4×4個のエレメントレンズの集合から最
外角の1個のエレメントレンズを取り除いたものが位置
する。尚、微少遮光部8C、8Dに相当する部分は、そ
れぞれ2個のエレメントレンズを遮へいしている。ま
た、この図の遮光板8の場合、4つの扇状透明部81a
〜81dと透明部81e〜81hとは、今までの各実施
例のようにつながっておらず、互いに独立したものとな
っている。さらに4つの扇状透明部81a〜81dの夫
々の最内角(最も原点に近い隅)に位置する1個のエレ
メントレンズを遮へいするように、すなわち中心部に4
×4個のエレメントレンズの集合体の大きさと同じ正方
形(又は矩形)の遮光部を付加してもよい。このような
正方形の遮光部の付加によって、先の図6に示した第2
の実施例の遮光板8と同様の作用、効果を得ることがで
きる。この場合、中心の四角形遮光部の各辺のエッジの
X軸、Y軸からの距離は、図6の円形遮光部の半径Cと
同程度の範囲に定められる。
In FIG. 8, the distances dx and dy from the X and Y axes of the edges of the minute light-shielding portions 8C and 8D are made relatively small, and the cross-shaped light-shielding portion 8A, the ring-shaped light-shielding portion 8B, and the minute light-shielding portion 8C. , 8D have respective cross-sectional shapes of the element lenses of the fly-eye lens 7 (here, square)
The shape of the light-shielding plate 8 in the case of matching with FIG. In the case of each of the light-shielding plates shown in FIGS. 4, 6, and 7, it is preferable that the edge of the light-shielding portion is matched with the sectional shape of the element lens. In FIG. 8, each of the four transparent portions 81e to 81h forming a light source portion effective when forming the oblique patterns Ta and Tb is
Two element lenses are located across the X and Y axes. The half value a of the width of the cross-shaped light shielding portion 8A is set to the size of one element lens, and the length b is set to the size of five element lenses. And the fan-shaped transparent portions 81a to 81d
In each of the above, a group of 4 × 4 element lenses from which one element lens at the outermost angle is removed is located. The portions corresponding to the minute light shielding portions 8C and 8D shield two element lenses, respectively. Further, in the case of the light shielding plate 8 in this figure, four fan-shaped transparent portions 81a
.About.81d and the transparent portions 81e to 81h are not connected to each other as in the above-described embodiments, but are independent from each other. Further, one element lens located at the innermost corner (corner closest to the origin) of each of the four fan-shaped transparent portions 81a to 81d is shielded, that is, 4 in the center portion.
It is also possible to add a square (or rectangular) light-shielding portion having the same size as the aggregate of the × 4 element lenses. By adding such a square light-shielding portion, the second light shielding portion shown in FIG.
It is possible to obtain the same operation and effect as the light shielding plate 8 of the above embodiment. In this case, the distances from the X-axis and the Y-axis of the edges of each side of the central quadrangular light-shielding portion are set in the same range as the radius C of the circular light-shielding portion in FIG.

【0032】さらに図8中に示した扇状透明部81a〜
81dの夫々に位置するフライアイレンズ7のエレメン
トレンズ群は、全てX軸、及びY軸に対して対称な配置
になっている。このような対称配置を採ることによっ
て、レチクル上のL&Sパターンの投影像のテレセン誤
差(ベストフォーカス面からウェハ面がわずかにずれた
ときの像の横ずれ)が皆無となる。
Further, the fan-shaped transparent portions 81a to 81a shown in FIG.
The element lens groups of the fly-eye lens 7 located at 81d are all arranged symmetrically with respect to the X axis and the Y axis. By adopting such a symmetrical arrangement, there is no telecentric error in the projected image of the L & S pattern on the reticle (lateral displacement of the image when the wafer surface is slightly displaced from the best focus surface).

【0033】ここで図9を参照して、図4、図6〜8の
遮光板8を用いたとき、レチクルRから発生して投影光
学系PLに入射した結像光束の瞳面EP内での分布につ
いて説明する。図9は図2に対応して表したもので、所
定のピッチの縦、横パターンPv、Phに対して最適化
された4つの扇状面光源部の光量重心点80A、80
B、80C、80Dと、その縦、横パターンPv、Ph
と同一のピッチの斜めパターンTaに対して最適化され
た4つの光量重心点のうちの代表的な1つの重心点80
Eとを、瞳面EP上で示したものである。4つの重心点
80A〜80Dの夫々は、各実施例中の4つの扇状透明
部81a〜81dの夫々の面積的な重心とほぼ一致して
おり、重心点80Eは透明部81eの面積的な重心点と
ほぼ一致している。まず、4つの重心点80A〜80D
は、対象となる縦、横パターンのピッチに対して最適化
されているので、例えばレチクルRからの結像光束のう
ち、重心点80Aを通る照明光線の照射によって縦、横
パターンから発生する0次光は、重心点80Aを通り、
±1次回折光の一方は、X軸、Y軸の夫々と対称に位置
する重心点80B、80Dを重畳して通る。
Here, referring to FIG. 9, when the light shielding plate 8 of FIGS. 4 and 6 to 8 is used, in the pupil plane EP of the image-forming light flux generated from the reticle R and incident on the projection optical system PL. The distribution of will be described. FIG. 9 is a view corresponding to FIG. 2, in which the light amount centroids 80A, 80 of the four fan-shaped light source units optimized for the vertical and horizontal patterns Pv, Ph having a predetermined pitch are shown.
B, 80C, 80D and their vertical and horizontal patterns Pv, Ph
Of the four light amount centroids optimized for the diagonal pattern Ta having the same pitch as
E and E are shown on the pupil plane EP. Each of the four center-of-gravity points 80A to 80D substantially coincides with the area centroid of each of the four fan-shaped transparent portions 81a to 81d in each example, and the centroid point 80E corresponds to the area centroid of the transparent portion 81e. It almost agrees with the point. First, four center of gravity points 80A-80D
Is optimized for the pitch of the target vertical and horizontal patterns, so that, for example, in the image formation light flux from the reticle R, 0 generated from the vertical and horizontal patterns by irradiation of the illumination light beam passing through the center of gravity 80A. Next light passes through the center of gravity 80A,
One of the ± 1st-order diffracted lights passes through the center-of-gravity points 80B and 80D which are located symmetrically to the X-axis and the Y-axis, respectively.

【0034】一方、重心点80Eを通るように配向され
た照明光線によって縦パターンPvから発生する±1次
回折光±Dx1 (回折光束の重心)は、重心点80Eを
通りX軸と平行な線上に分布するが、その位置は図9の
ように瞳面EPの最大径の外側になってしまうので、縦
パターンPvの結像には影響を与えない。ところが横パ
ターンPhから発生する1つの1次回折光−Dy1 (回
折光束の重心)は瞳EP内のY軸上に分布するため、横
パターンPhの結像に影響を与える。この1次回折光−
Dy1 は横パターンPhの変形照明法による理想的な分
布位置とは異なるため、横パターンPhの結像にとって
はあまり好ましくない光である。しかしながら、重心点
80Eを作る照明光量は、小さな面積の透明部81eで
決まり、他の4つの重心点80A〜80Dの照明光量に
比べて格段に小さい。その比は例えば図8の場合、フラ
イアイレンズ7のエレメントレンズの数の比で決まり、
そのため、好ましくない1次回折光−Dy1 の光量自体
も格段に小さく、横パターンPhの結像性能を実用上大
きく劣化させることはない。
On the other hand, the ± first-order diffracted light ± Dx 1 (the center of gravity of the diffracted light beam) generated from the vertical pattern Pv by the illumination light beam oriented so as to pass through the center of gravity 80E passes through the center of gravity 80E and is parallel to the X axis. However, since the position is outside the maximum diameter of the pupil plane EP as shown in FIG. 9, it does not affect the image formation of the vertical pattern Pv. However, one first-order diffracted light beam −Dy 1 (the center of gravity of the diffracted light beam) generated from the lateral pattern Ph is distributed on the Y axis in the pupil EP, and therefore affects the image formation of the lateral pattern Ph. This first-order diffracted light
Since Dy 1 is different from the ideal distribution position of the lateral pattern Ph by the modified illumination method, Dy 1 is light that is not very preferable for imaging the lateral pattern Ph. However, the amount of illumination light that makes the center of gravity 80E is determined by the transparent portion 81e having a small area, and is much smaller than the amounts of illumination light of the other four centers of gravity 80A to 80D. For example, in the case of FIG. 8, the ratio is determined by the ratio of the number of element lenses of the fly-eye lens 7,
Therefore, the amount of undesired first-order diffracted light −Dy 1 itself is remarkably small, and the imaging performance of the lateral pattern Ph is not significantly deteriorated in practical use.

【0035】次に斜めパターンTa(45°)からの結
像光束の分布について考えてみる。ここでは、代表して
重心点80Bを0次光が通るように配向された照明光
(扇状透明部81bの透過部)の照射によって斜めパタ
ーンTaから発生する回折光について述べる。斜めパタ
ーンTaのピッチが縦、横パターンPv、Phのピッチ
と同程度であるとすると、斜めパターンTaからの1次
回折光−Dt1 (回折光束の重心)は、重心点80Bを
中心とした半径2yα(あるいは2xβ)の円上で、か
つ重心点80Bと80Bとを光軸AXを通って結ぶ線
(135°)上に位置する。この1次回折光−Dt
1 は、2つの重心点80A、80Cを結ぶ45°の線に
関して、重心点80Bを通る0次光束と対称的な関係に
なっていないために、斜めパターンTaの結像に対して
は好ましくない光になっている。
Next, let us consider the distribution of the image forming light beam from the oblique pattern Ta (45 °). Here, the diffracted light generated from the oblique pattern Ta by the irradiation of the illumination light (transmissive portion of the fan-shaped transparent portion 81b) oriented so that the 0th-order light passes through the center of gravity 80B will be described as a representative. Assuming that the pitch of the diagonal pattern Ta is about the same as the pitch of the vertical and horizontal patterns Pv and Ph, the first-order diffracted light −Dt 1 (the center of gravity of the diffracted light beam) from the diagonal pattern Ta has a radius around the center of gravity 80B. It is located on a circle of 2yα (or 2xβ) and on a line (135 °) connecting the centers of gravity 80B and 80B through the optical axis AX. This first-order diffracted light-Dt
1 is not preferable for the image formation of the oblique pattern Ta, because the 45 ° line connecting the two barycentric points 80A and 80C does not have a symmetrical relationship with the 0th-order light beam passing through the barycentric point 80B. It's becoming light.

【0036】ところが、重心点80Eに斜めパターンT
aからの0次光が位置するように,、遮光板8に透明部
81eが設けられているので、透明部81eからの照明
光によって斜めパターンTaから発生した1次回折光−
Dt1 ’は、重心点80Eを中心とした半径2yα(あ
るいは2xβ)の円上で、かつ重心点80Eを通る13
5°の線(重心点80Bと80Dを結ぶ線と平行)上に
位置する。その重心点80Eと1次回折光−Dt1 ’と
の位置関係は、重心点80Aと80Cとを結ぶ45°の
線(斜めパターンTaのフーリエ変換像における中心
軸)に対してほぼ対称になっている。従って、透明部8
1eからの照明光は、斜めパターンTaの結像に対して
有効な成分になり、斜めパターンの解像度や焦点深度を
改善する方向に働く。尚、図9の場合、重心点80Eを
0次光とする斜めパターンTaからの1次回折光−Dt
1 ’はほぼX軸上に位置し、さらにその位置は遮光板8
の斜めパターン用の他の透明部81hからの照明光の重
心点(80Hとする)に接近している。このように、1
次回折光−Dt1 ’の位置に透明部81hの重心点80
Hが位置することは、斜めパターンTaがそのピッチ方
向に対称的に傾斜した2つの照明光束で照明されること
を意味する。
However, the oblique pattern T is formed at the center of gravity 80E.
Since the transparent portion 81e is provided on the light-shielding plate 8 so that the 0th-order light from a is positioned, the 1st-order diffracted light generated from the oblique pattern Ta by the illumination light from the transparent portion 81e-
Dt 1 'is on a circle having a radius 2yα (or 2xβ) centered on the center of gravity 80E and passing through the center of gravity 80E 13
It is located on the 5 ° line (parallel to the line connecting the centers of gravity 80B and 80D). The positional relationship between the center of gravity 80E and the first-order diffracted light −Dt 1 ′ is substantially symmetrical with respect to the 45 ° line connecting the centers of gravity 80A and 80C (the central axis in the Fourier transform image of the oblique pattern Ta). There is. Therefore, the transparent portion 8
The illumination light from 1e becomes an effective component for forming an image of the oblique pattern Ta, and works in the direction of improving the resolution and the depth of focus of the oblique pattern Ta. In the case of FIG. 9, the first-order diffracted light −Dt from the oblique pattern Ta in which the center of gravity 80E is the 0th-order light.
1 'is located almost on the X axis, and that position is the light shield 8
Is closer to the center of gravity (80H) of the illumination light from the other transparent portion 81h for the oblique pattern. Like this one
The center of gravity 80 of the transparent portion 81h is located at the position of the next diffracted light −Dt 1 ′.
The position of H means that the oblique pattern Ta is illuminated by two illumination light beams that are symmetrically inclined in the pitch direction.

【0037】以上のことから、投影露光すべき縦、横パ
ターンPv、Ph、斜めパターンTa、Tbの各ピッチ
が1枚のレチクル上で同程度とすると、斜めパターン用
に付加した面光源部(透明部81e〜81h)の夫々の
光量重心点は、理想的にはX軸、Y軸上で原点から、√
(xβ2 +yα2 )の距離の所に配置すればよい。この
関係は理想的な条件であって、現実的にはその関係から
若干(例えば20%〜30%程度)はずれていても、本
発明の効果はそれなりに得られる。
From the above, assuming that the pitches of the vertical and horizontal patterns Pv and Ph and the oblique patterns Ta and Tb to be projected and exposed are the same on one reticle, the surface light source unit (for the oblique pattern) ( The light amount centroids of the transparent portions 81e to 81h) are ideally √ from the origin on the X axis and the Y axis.
It may be disposed (xβ 2 + yα 2) of the distance place. This relationship is an ideal condition, and even if the relationship deviates slightly (for example, about 20% to 30%) from reality, the effect of the present invention can be obtained to some extent.

【0038】図10は本発明の第4の実施例による照明
光学系の部分構成を示し、ここでは図3に示したフライ
アイレンズ7の部分を、特公平3−78607号公報に
開示されているような2連のフライアイレンズ系に変更
する。 図3中のコリメータレンズ4とプリズム30と
を通った照明光ILaは、図10のように1段目のフラ
イアイレンズ7Eに入射する。このフライアイレンズ7
EはX、Y方向に4個ずつのエレメントレンズを束ねた
ものとする。フライアイレンズ7Eの各エレメントレン
ズの射出端に結像した点光源像の夫々からの照明光は、
レンズ系25を介して2段目のフライアイレンズ7Fの
入射面の全面を重畳して照射する。2段目のフライアイ
レンズ7Fは6×6個の配列でエレメントレンズを束ね
たもので、各エレメントレンズの射出面から数mm程度
離れた空間中に3次元光源像(点光源)が結像される。
この2連フライアイレンズ系の場合、2段目のフライア
イレンズ7Fの個々のエレメントレンズの射出側には、
1段目のフライアイレンズ7Eの射出面に形成された4
×4個の点光源像が形成されるので、3次元光源像は1
6×36個の点光源が2次元的に集合した面光源とな
る。
FIG. 10 shows a partial structure of an illumination optical system according to a fourth embodiment of the present invention. Here, the fly-eye lens 7 shown in FIG. 3 is disclosed in Japanese Patent Publication No. 3-78607. Change to a two-lens fly-eye lens system. The illumination light ILa that has passed through the collimator lens 4 and the prism 30 in FIG. 3 enters the first-stage fly-eye lens 7E as shown in FIG. This fly eye lens 7
E is a bundle of four element lenses in the X and Y directions. The illumination light from each point light source image formed at the exit end of each element lens of the fly-eye lens 7E is
Through the lens system 25, the entire incident surface of the second-stage fly-eye lens 7F is superimposed and irradiated. The second-stage fly-eye lens 7F is a bundle of element lenses arranged in a 6 × 6 array, and a three-dimensional light source image (point light source) is formed in a space several mm away from the exit surface of each element lens. To be done.
In the case of this two-series fly-eye lens system, on the exit side of each element lens of the second-stage fly-eye lens 7F,
4 formed on the exit surface of the first-stage fly-eye lens 7E
Since 3 x 4 point light source images are formed, the 3D light source image is 1
It becomes a surface light source in which 6 × 36 point light sources are two-dimensionally assembled.

【0039】さて、本実施例の場合、図4、図6〜8に
示した遮光板8は、2段目のフライアイレンズ7Fの射
出側で、3次元光源像が形成される空間中の面内に配置
される。図11はフライアイレンズ7Fの射出側に形成
された3次元光源像と遮光板8の遮光部8A(8A')、
8Bの各エッジとの配置関係を示したものである。図1
1に示すように、フライアイレンズ7Fの1つのエレメ
ントレンズの射出側には、4×4個の点光源SPがX、
Y方向にほぼ等ピッチで整列している。このとき、十字
状遮光部8A(8A')の外形エッジや周辺の輪帯状遮光
部8Bの内径円C1に対応するエッジは、全て3次元光
源像を形成する点光源のピッチに合わせて屈曲される。
すなわち、単一のフライアイレンズ系のときは図8に示
したようにフライアイレンズのエレメントレンズの断面
形状に合わせて各遮光部のエッジを規定する必要があっ
たが、2連(タンデム)フライアイレンズ系では、その
ような必要がない。しかも3次元光源像を形成する点光
源の数は、単一フライアイレンズ系の場合よりも格段に
増えているため、面光源としての平均的な照度分布は極
めて平坦になる。
In the case of the present embodiment, the light shielding plate 8 shown in FIGS. 4 and 6 to 8 is located in the space where the three-dimensional light source image is formed on the exit side of the fly-eye lens 7F of the second stage. It is placed in the plane. FIG. 11 shows a three-dimensional light source image formed on the exit side of the fly-eye lens 7F and the light shielding portion 8A (8A ') of the light shielding plate 8,
8B shows an arrangement relationship with each edge of 8B. Figure 1
As shown in FIG. 1, on the exit side of one element lens of the fly-eye lens 7F, 4 × 4 point light sources SP are X,
They are arranged in the Y direction at substantially equal pitches. At this time, the outer edges of the cross-shaped light-shielding portion 8A (8A ') and the edges corresponding to the inner diameter circle C1 of the peripheral ring-shaped light-shielding portion 8B are all bent according to the pitch of the point light sources forming the three-dimensional light source image. It
That is, in the case of a single fly-eye lens system, it was necessary to define the edge of each light-shielding portion in accordance with the cross-sectional shape of the element lens of the fly-eye lens as shown in FIG. The fly-eye lens system does not have such a need. Moreover, since the number of point light sources forming a three-dimensional light source image is much larger than in the case of the single fly-eye lens system, the average illuminance distribution as a surface light source becomes extremely flat.

【0040】図12は本発明の第5の実施例によせる照
明系の構成を示し、ここでは特開平4−225514号
公報に開示されているように、照明系内のフーリエ変換
面上のXY座標系で4つの象限の夫々に位置する縦横パ
ターン用の面光源を、それぞれ独立したフライアイレン
ズ70A、70B、70C、70Dで構成する。そして
コリメータレンズ4からの輪帯状分布の照明光束を四角
錐プリズム26で4つの光束に分割し、それぞれを4つ
のフライアイレンズ70A〜70Dへ入射する。また、
斜めパターン用の面光源は、4本のオプチカルファイバ
ー90の先端部70E、70F、70G、70Hで構成
し、その4本のオプチカルファイバー90の他端(入射
端)側は1本に束ねられ、シャッター19Aの後で分岐
された照明光の一部がその入射端に集光される。
FIG. 12 shows the configuration of an illumination system according to the fifth embodiment of the present invention. Here, as disclosed in Japanese Patent Laid-Open No. 4-225514, XY on the Fourier transform plane in the illumination system. The vertical and horizontal pattern surface light sources located in each of the four quadrants in the coordinate system are composed of independent fly-eye lenses 70A, 70B, 70C, and 70D. Then, the illumination luminous flux having a ring-shaped distribution from the collimator lens 4 is divided into four luminous fluxes by the quadrangular pyramid prism 26, and the luminous fluxes are respectively incident on the four fly-eye lenses 70A to 70D. Also,
The surface light source for the oblique pattern is composed of the tip portions 70E, 70F, 70G, and 70H of the four optical fibers 90, and the other end (incident end) side of the four optical fibers 90 is bundled into one. A part of the illumination light branched after the shutter 19A is condensed at the incident end.

【0041】本実施例では斜めパターン用の面光源を作
る系が、縦横パターン用の面光源を作る系と独立してい
るので、投影対象となったレチクル上に斜めパターンが
全く存在していないときは、オプチカルファイバー90
の入射端側の光路中に別のシャッターや減光フィルター
(NDフィルター)を挿入して、先端部70E〜70H
の発光を禁止するか、大幅に光量低下させることができ
る。さらに、そのNDフィルターの減光率の調整等によ
って先端部70E〜70Hの発光強度を変化させること
ができるので、レチクルR上のL&Sパターンのうち斜
めパターンがしめる割合に応じて最適な光量を与えるこ
とができる。従って、オペレータがレチクルR上の斜め
パターンの割合に関する情報を、図3中の主制御ユニッ
ト20に入力する構成にしておけば、4つの先端部70
E〜70Hの発光強度を、予め定められたテーブルに従
って自動的に最適値(零も含む)に調整することもでき
る。 また、図12に示したように、4つのフライアイ
レンズ70A〜70D、4つの先端部70E〜70Hが
独立に設けられるから、レチクルR上のL&Sのパター
ンのピッチに応じて、個々のフライアイレンズ、または
先端部をXY面内で2次元、または1次元に可動にして
おいてもよい。その場合、縦横パターン、斜めパターン
のピッチが同程度であり、4つのフライアイレンズ70
A〜70Dの夫々の射出側の面光源の光量重心点が、X
Y面内で光軸AXを中心とする正方形の4隅に対応した
配置をとるときは、4つのフライアイレンズ70A〜7
0Dの光量重心点の光軸AXからの偏心量と、先端部7
0E〜70Hの光量重心点の光軸からの偏心量とがほぼ
等しくなるような関係で可動にするとよい。
In this embodiment, since the system for producing the surface light source for the oblique pattern is independent of the system for producing the surface light source for the vertical and horizontal patterns, there is no oblique pattern on the reticle to be projected. Optical fiber 90
Insert another shutter or neutral density filter (ND filter) into the optical path on the incident end side of
It is possible to prohibit the emission of light or significantly reduce the amount of light. Furthermore, since the emission intensity of the tip portions 70E to 70H can be changed by adjusting the extinction rate of the ND filter, an optimum light amount is given according to the ratio of the diagonal pattern of the L & S pattern on the reticle R. be able to. Therefore, if the operator inputs the information regarding the ratio of the oblique pattern on the reticle R to the main control unit 20 in FIG.
It is also possible to automatically adjust the emission intensity of E to 70H to an optimum value (including zero) according to a predetermined table. Further, as shown in FIG. 12, since four fly-eye lenses 70A to 70D and four tip portions 70E to 70H are independently provided, each fly-eye lens is adjusted according to the pitch of the L & S pattern on the reticle R. The lens or the tip may be two-dimensionally or one-dimensionally movable in the XY plane. In that case, the pitches of the vertical and horizontal patterns and the diagonal pattern are almost the same, and the four fly-eye lenses 70 are used.
The light amount centroids of the surface light sources on the exit sides of A to 70D are X.
When the arrangement corresponding to the four corners of the square centered on the optical axis AX in the Y plane is taken, the four fly-eye lenses 70A to 7A are used.
The eccentric amount from the optical axis AX of the center of gravity of the light amount of 0D and the tip portion 7
It is advisable to move the light amount centroids of 0E to 70H in such a relationship that the eccentric amount from the optical axis of the gravity center point becomes substantially equal.

【0042】尚、図12の構成において、4つのフライ
アイレンズ70A〜70Dの夫々は、図10と同様にタ
ンデム・フライアイレンズ系としてもよく、また各フラ
イアイレンズ70A〜70Dの夫々の射出側に個別に絞
り(遮光板)を設け、4つの面光源のそれぞれの大きさ
を個別に、又は連動して変えられるようにしてもよい。
ところで図12において、フライアイレンズ70A〜7
0Dの夫々の間には、特別に遮光板等を設けていない
が、各フライアイレンズの間の空間を通ってくる迷光が
無視できない程に多いときは、簡単な遮光板(十字状)
を設けるのが望ましい。従ってその迷光成分が十分に小
さければ、特別に遮光板を設ける必要はない。このこと
は、先の図4、図6〜8に示した遮光板8に対しても同
様に適用できることであって、十字状遮光部8A、8
A’や輪帯状遮光部8B等を完全な遮光層にしなくても
よいことを意味する。例えば遮光板8上の各遮光部を、
露光用の照明光の波長(i線では365nm、KrFエ
キシマレーザでは248nm)において90%以上の減
光率をもつ誘電体薄膜等で構成してもよい。
Note that in the configuration of FIG. 12, each of the four fly-eye lenses 70A to 70D may be a tandem fly-eye lens system as in FIG. 10, and each fly-eye lens 70A to 70D emits light. A diaphragm (light-shielding plate) may be separately provided on the side so that the size of each of the four surface light sources can be changed individually or in conjunction with each other.
By the way, in FIG. 12, fly-eye lenses 70A to 7A are provided.
No special light-shielding plate, etc. is provided between 0D, but when there is a large amount of stray light passing through the space between the fly-eye lenses that cannot be ignored, a simple light-shielding plate (cross shape)
Is desirable. Therefore, if the stray light component is sufficiently small, it is not necessary to provide a special light shielding plate. This can be similarly applied to the light shielding plate 8 shown in FIGS. 4 and 6 to 8, and the cross-shaped light shielding portions 8A and 8A.
This means that A ′, the ring-shaped light-shielding portion 8B, etc. do not have to be a complete light-shielding layer. For example, for each light shield on the light shield plate 8,
It may be composed of a dielectric thin film or the like having an extinction ratio of 90% or more at the wavelength of the illumination light for exposure (365 nm for i-line, 248 nm for KrF excimer laser).

【0043】さて、ここで以下のシミュレーションの説
明のために、これまでに発表されている従来の変形光源
の絞り形状の例を図13、14に示す。図13は特定の
ピッチを有する縦パターンPv、横パターンPhに最適
化された中心位置(xβ、yα)と、適当な半径(σ値
で0.1〜0.3)を有する円形4光源用の遮光板の例
である。図14は図13の円形開口の代わりに夫々正方
形の開口とし、かつそれら4つの正方形開口の周辺の一
部が照明光学系のσ値に相当する半径rより大きい扇状
4光源用の遮光板の例である。
Now, for the sake of explanation of the following simulation, examples of the diaphragm shapes of the conventional modified light sources that have been published so far are shown in FIGS. FIG. 13 is for a circular 4 light source having a center position (xβ, yα) optimized for a vertical pattern Pv having a specific pitch and a horizontal pattern Ph and an appropriate radius (a value of 0.1 to 0.3). It is an example of the light shielding plate. FIG. 14 shows a shading plate for a fan-shaped four light source, in which square openings are replaced by square openings in FIG. 13, and a part of the periphery of these four square openings is larger than a radius r corresponding to the σ value of the illumination optical system. Here is an example.

【0044】一例として、図14に示す光源形状を用い
た縦横L&Sパターン、及び斜め(45°または135
°方向)L&Sパターンの投影時に得られるL&Sパタ
ーン像のライン、又はスペースの線幅サイズ〔μm〕に
対する焦点深度DOF〔μm〕のシミュレーション結果
を図15に示す。ここでシミュレーションの条件は、波
長λをi線の0.365〔μm〕、投影光学系PLのウ
ェハ側の開口数 N.A. を0.50(レチクル側では0.
1)、遮光板8の輪帯状遮光部8Bの内径rをσ値(r
/r0 )として0.8(通常の円形面光源のσ値も0.
8とする)、十字状遮光部の幅の半値aを開口数換算で
0.28、すなわちa=0.28r/σ=0.35rと
した(通常照明ではa=0で十字状遮光部なし)。ここ
で焦点深度(DOF)の値は、1:1ラインアンドスペ
ース(L/S)パターン像のコントラストが60%以上
になる範囲(全幅)から、パターンニングすべきレジス
トの厚さ1.2μm、その屈折率1.7によって決まる
一定値、1.2/1.7≒0.706〔μm〕を差し引
いた値とした。図15中で2点鎖線で表したシミュレー
ション結果の特性DV1は、図14の従来の遮光板を用
いたときの縦、横L&Sパターンに対する焦点深度特性
を示し、破線のシミュレーション特性DO1は、同様に
図14の遮光板を用いたときの斜め(45°、135
°)L&Sパターンに対する焦点深度特性を示す。図1
4の如き従来の変形光源形状では、斜めパターンに対す
る焦点深度特性DO1が、比較のためにシュミレートし
た通常の円形面光源を用いたときの斜めパターンに対す
る焦点深度特性DCよりわずかに劣る結果となる。尚、
通常の円形光源形状の場合は縦、横、斜めパターンのい
ずれに対しても焦点深度特性DCになる。
As an example, the vertical and horizontal L & S pattern using the light source shape shown in FIG. 14 and the oblique (45 ° or 135 °
(° direction) FIG. 15 shows a simulation result of the depth of focus DOF [μm] with respect to the line width size [μm] of the L & S pattern image obtained when the L & S pattern is projected. Here, the simulation conditions are that the wavelength λ is 0.365 [μm] for the i-line, and the numerical aperture NA on the wafer side of the projection optical system PL is 0.50 (0.
1), the inner diameter r of the ring-shaped light-shielding portion 8B of the light-shielding plate 8 is set to a value (r
/ R 0 ) is 0.8 (σ value of an ordinary circular surface light source is also 0.
8), and the half-value a of the width of the cross-shaped light-shielding portion is set to 0.28 in terms of numerical aperture, that is, a = 0.28r / σ = 0.35r (a = 0 in normal illumination and no cross-shaped light-shielding portion is provided). ). Here, the value of the depth of focus (DOF) is from the range (full width) where the contrast of the 1: 1 line and space (L / S) pattern image is 60% or more, the thickness of the resist to be patterned is 1.2 μm, A constant value determined by the refractive index 1.7, which is a value obtained by subtracting 1.2 / 1.7≈0.706 [μm]. The characteristic DV1 of the simulation result represented by the two-dot chain line in FIG. 15 shows the depth of focus characteristics for the vertical and horizontal L & S patterns when the conventional light shielding plate of FIG. 14 is used, and the simulation characteristic DO1 of the broken line is the same. Diagonal (45 °, 135
°) Depicts the depth of focus characteristics for the L & S pattern. Figure 1
In the conventional modified light source shape as shown in FIG. 4, the depth of focus characteristic DO1 for the diagonal pattern is slightly inferior to the depth of focus characteristic DC for the diagonal pattern when using a normal circular surface light source simulated for comparison. still,
In the case of a normal circular light source shape, the depth of focus characteristic DC is obtained for any of vertical, horizontal, and diagonal patterns.

【0045】図16は本発明の第1実施例(図4)によ
る遮光板8を用いたときの焦点深度特性のシミュレーシ
ョン結果を示す。このとき、図4中の十字状遮光部8A
の幅の半値aはa=0.28r0 =0.35rに定めら
れ、長さの半値bはb=0.56r0 =0.7rとし、
露光波長λ、N.A.、σは図15の場合と同じにした。こ
の条件での縦横の1:1のL&Sパターンでの焦点深度
特性DV2は、図15中の従来の変形光源(図14)に
よる特性DV1よりわずかに劣るが、一方斜めL&Sパ
ターンに対する焦点深度特性DO2は、通常の円形面光
源を用いたときの焦点深度特性DCより上まわってお
り、本発明の効果が確認されている。また、縦横パター
ンに対する焦点深度特性DV2も十分にあり、変形光源
が本質的に持つ能力を損なうものではない。尚、本シミ
ュレーションでは、十字状遮光部の幅の半値aと長さの
半値bをそれぞれa=0.28r0 (投影光学系の開口
数N.A.の0.28倍)、b=0.56r0 (開口数 N.
A.の0.56倍)としたが、これらの値はそれに限定さ
れるものではなく先に述べたように、値aは 0.1r
0 ( 0.1・N.A.)≦a≦ 0.4r0( 0.4・N.A.)程度であ
ればよく、値bについては 0.4r0( 0.4・N.A.)≦b<
0.8r0( 0.8・N.A.) 程度であれば、本発明の効果を得
ることができる。ただし、値bの上限は、半径rの値に
対してb<rになっている必要がある。
FIG. 16 shows a first embodiment (FIG. 4) of the present invention.
Simulation of depth of focus characteristics when using a light shield 8
Indicates the result. At this time, the cross-shaped light-shielding portion 8A in FIG.
Half width a is a = 0.28r0= 0.35r
And half length b is b = 0.56r0= 0.7r,
The exposure wavelengths λ, N.A. and σ were the same as those in FIG. This
Depth of focus in 1: 1 L & S pattern in the vertical and horizontal directions under
The characteristic DV2 corresponds to the conventional modified light source (FIG. 14) in FIG.
The characteristics are slightly inferior to DV1, but the diagonal L & S
Depth-of-focus characteristics DO2 for a turn is a normal circular surface light.
Depth of focus characteristics DC when using a source
Therefore, the effect of the present invention has been confirmed. In addition, vertical and horizontal putter
The depth of focus characteristics DV2 for
It does not impair the inherent ability of. In addition, this stain
In the simulation, the half-width a of the cross-shaped light-shielding part and the length
Half value b is a = 0.28r0(Aperture of projection optical system
0.28 times the number N.A.), b = 0.56r0(Numerical aperture N.
0.56 times A.), but these values are not
As mentioned above, the value a is 0.1r
0(0.1 ・ N.A.) ≦ a ≦ 0.4r0(0.4 ・ N.A.)
0.4r for the value b0(0.4 ・ N.A.) ≦ b <
 0.8r0If it is about (0.8N.A.), the effect of the present invention can be obtained.
You can However, the upper limit of value b is the value of radius r
On the other hand, it is necessary that b <r.

【0046】図17は本発明の第2の実施例(図6)に
よる遮光板8を用いたときの焦点深度特性のシミュレー
ション結果を示す。このとき遮光板8は図6に示した通
り、十字状遮光部と中心円形遮光部とを組み合わせたも
ので、シミュレーション条件は露光波長λを0.365
μm(i線)、投影光学系PLのウェハ側開口数N.A.を
0.50、遮光板8の外周の輪帯状遮光部8Bの内径r
をσ値(r/r0 )換算で0.7、十字状遮光部の幅の
半値aを0.28r0 、長さの半値bを0.56r0
そして中心円形遮光部の半径cを0.46r0 とした。
図17のシミュレーション結果のように、斜めL&Sパ
ターンの焦点深度特性DO3は、従来の通常の円形面光
源(σ=0.7)での焦点深度特性DCに比べて格段に
改善されており、かつ、縦、横のL&Sパターンに対す
る焦点深度特性DV3も十分に大きな値となっている。
FIG. 17 shows a simulation result of the depth of focus characteristics when the light shielding plate 8 according to the second embodiment (FIG. 6) of the present invention is used. At this time, the shading plate 8 is a combination of a cross-shaped shading portion and a central circular shading portion as shown in FIG. 6, and the simulation condition is that the exposure wavelength λ is 0.365.
μm (i line), the numerical aperture NA of the projection optical system PL on the wafer side is 0.50, and the inner diameter r of the ring-shaped light shielding portion 8B on the outer periphery of the light shielding plate 8
Is 0.7 in terms of σ value (r / r 0 ), the half width a of the cross-shaped light shielding portion is 0.28 r 0 , and the half length b is 0.56 r 0 .
The radius c of the central circular light-shielding portion was set to 0.46r 0 .
As shown in the simulation result of FIG. 17, the depth of focus characteristic DO3 of the oblique L & S pattern is significantly improved as compared with the depth of focus characteristic DC of the conventional normal circular surface light source (σ = 0.7), and The depth of focus characteristics DV3 for the vertical and horizontal L & S patterns are also sufficiently large values.

【0047】ここでのシミュレーションでは、中心円形
遮光部の半径cの値を0.46r/σとしたが、これも
前述の半値a、b同様、0.46r/σに限定されるわ
けではなく、 0.3r/σ( 0.3・N.A.)<c< 0.6r/
σ( 0.6・N.A.)程度であれば本発明の効果を十分に得
ることができる。ただし、半径cの値があまりにも小さ
いと、図6の遮光板8は図4の遮光板と同様の形状とな
るため、斜めパターンについての焦点深度の改善度はや
や減少することになる。すなわち、図17中の特性DO
3が、図16中の特性DO2のようになる。また、半径
cの値があまり大きいと、それは輪帯照明(後述)に近
づくため、縦横のL&Sパターンに対する焦点深度特性
DV3中で、パターンサイズが0.45μm付近に見ら
れるような焦点深度が特に大きくなる部分が存在しなく
なり、やはり望ましくない。
In the simulation here, the value of the radius c of the central circular light-shielding portion was set to 0.46r / σ, but this is not limited to 0.46r / σ as in the half values a and b described above. , 0.3r / σ (0.3 · NA) <c <0.6r /
If it is about σ (0.6 · NA), the effect of the present invention can be sufficiently obtained. However, if the value of the radius c is too small, the shading plate 8 in FIG. 6 has the same shape as the shading plate in FIG. 4, so that the degree of improvement in the depth of focus for the diagonal pattern is slightly reduced. That is, the characteristic DO in FIG.
3 becomes like the characteristic DO2 in FIG. Further, if the value of the radius c is too large, it approaches annular illumination (described later), so in the depth-of-focus characteristic DV3 for the vertical and horizontal L & S patterns, the depth of focus as seen near the pattern size of 0.45 μm is particularly noticeable. There is no part that grows larger, which is also undesirable.

【0048】図18は本発明の第3の実施例(図7)に
よる遮光板8を用いたときのシミュレーション結果を示
す。この場合のシミュレーション条件は、投影光学系の
開口数 N.A. を0.50、面光源の最大半径であるσ値
(r/r0 )を0.8、十字遮光部8Aの各寸法、半値
a、半値bをそれぞれ0.28r0 、0.56r0 、そ
して周辺の微小遮光8C、8Dまでの距離dを0.64
0 とした。この図18のシミュレーション結果と、前
述の図16に示したシミュレーション結果とを比べる
と、図7の遮光板8を用いたときの斜めパターンについ
ての焦点深度特性DO4は、図4の遮光板8を用いたと
きの焦点深度特性DO2(図16)、又は図6の遮光板
を用いたときの焦点深度特性DO3(図17)と同程度
に改善されていながら、縦横のL&Sパターンのうち、
特に0.45μm程度のライン幅の中程度の微細度のパ
ターンについても、焦点深度特性DV4の如く、焦点深
度が改善されることがわかる。
FIG. 18 shows a simulation result when the light shielding plate 8 according to the third embodiment (FIG. 7) of the present invention is used. The simulation conditions in this case are: the numerical aperture NA of the projection optical system is 0.50, the σ value (r / r 0 ) which is the maximum radius of the surface light source is 0.8, each dimension of the cross shading portion 8A, and the half value a, The half value b is 0.28r 0 and 0.56r 0 , respectively, and the distance d to the peripheral minute light shields 8C and 8D is 0.64.
It was set to r 0 . Comparing the simulation result of FIG. 18 with the simulation result shown in FIG. 16 described above, the depth of focus characteristics DO4 for the oblique pattern when the light shielding plate 8 of FIG. While the depth of focus characteristics DO2 when used (FIG. 16) or the depth of focus characteristics DO3 when the shading plate of FIG. 6 is used (FIG. 17) are improved to the same extent,
It can be seen that the depth of focus is improved as in the case of the depth-of-focus characteristic DV4 even for a pattern with a medium fineness of a line width of about 0.45 μm.

【0049】尚、図7の遮光板中の微小遮光部8C、8
Dのエッジ距離dの値も、0.64r0 に限定されるわ
けではなく、0.5r0 <d<0.8r0 程度の範囲で
あればよい。ただし距離dがあまり小さいと縦横パター
ンに対する解像度が低下してしまうことになり、あまり
大きいと効果が表れない。そこで図7に示した遮光板8
の光軸近傍をさらに遮光する図6のような中心円形遮光
部、あるいは四角形遮光部を追加してもよい。
Incidentally, the minute light shielding portions 8C, 8 in the light shielding plate of FIG.
The value of the edge distance d of D is not limited to 0.64r 0 , but may be in the range of 0.5r 0 <d <0.8r 0 . However, if the distance d is too small, the resolution with respect to the vertical and horizontal patterns will decrease, and if it is too large, the effect will not appear. Therefore, the light shielding plate 8 shown in FIG.
A central circular light-shielding portion as shown in FIG. 6 or a quadrangle light-shielding portion that further shields the vicinity of the optical axis may be added.

【0050】図19は比較のために輪帯照明での同様の
シミュレーション結果を示すものである。このときの条
件は露光波長λを0.365μmとし、そして0.7・
N.A.(σ=0.7)に相当する半径の円形面光源のう
ち、その半分の半径(σ=0.35)に相当する中心円
形部を遮光部とした輪帯状面光源を考える。このような
輪帯照明で得られるL&Sパターンに対する焦点深度特
性DAでは、0.42μm以上のライン(又はスペー
ス)幅をもつ粗いパターンについて、幅でほぼ1.5μ
m程度の焦点深度が得られる。従来の円形面光源のとき
の焦点深度特性DCでは1μmもないのが実情である。
ただし、実際のメモリーパターンの露光時を考えると、
特に金属配線層の露光工程では大きな焦点深度が要求さ
れ、例えば64MDRAMでは0.45μm程度の線幅
のL&Sパターンに対して、幅で2μm以上の焦点深度
が必要とされる。従って図19の如く輪帯照明で得られ
る焦点深度特性DAではこの要求を満たすことは難し
い。また、上述の金属配線層の露光工程でも、特に焦点
深度が必要とされているのは段差(1μm程度)部に形
成されている縦、横のL&Sパターンであるため、本発
明のような変形光源形状はきわめて有効なものである。
FIG. 19 shows a similar simulation result with annular illumination for comparison. At this time, the exposure wavelength λ is 0.365 μm, and 0.7.
Consider a circular surface light source having a radius corresponding to NA (σ = 0.7) and a central circular portion corresponding to a half radius (σ = 0.35) as a light shielding portion. According to the depth of focus characteristic DA for the L & S pattern obtained by such an annular illumination, the width of a rough pattern having a line (or space) width of 0.42 μm or more is approximately 1.5 μm.
A depth of focus of about m can be obtained. The depth of focus characteristic DC of the conventional circular surface light source is actually less than 1 μm.
However, considering the exposure time of the actual memory pattern,
In particular, a large depth of focus is required in the exposure step of the metal wiring layer, and for example, in 64M DRAM, a depth of focus of 2 μm or more is required for an L & S pattern having a line width of about 0.45 μm. Therefore, it is difficult to satisfy this requirement with the focal depth characteristic DA obtained by the annular illumination as shown in FIG. Further, even in the above-mentioned exposure process of the metal wiring layer, the depth of focus is especially required for the vertical and horizontal L & S patterns formed in the step (about 1 μm) portion, and therefore the modification as in the present invention. The light source shape is extremely effective.

【0051】尚、実施例中においては、光源を水銀ラン
プとしてi線を用いるものとしたが、これは他の波長で
あってもレーザ等の光源であってもよい。またシミュレ
ーションの条件では、投影光学系の開口数 N.A. を0.
5とし、遮光板によって作られる最大の面光源の半径r
をσ値で0.7、又は0.8としたが、開口数 N.A.、
σ値はこれに限定されるものではない。ただしσ値につ
いては、0.7以上程度が効果的である。また光源形状
の最外形は、遮光板8の輪帯遮光部8Bの内径エッジで
規定される円(σ)によって制限されるものとしたが、
その最外形は四角形、六角形等で規定してもよい。さら
に各実施例中の遮光板8の遮光部形状はX方向、Y方向
に関して同形状(対称形)としたが、その形状はX方向
とY方向とで異なってもよい。すなわち、各遮光部の寸
法値a、b、d、あるいは中心に四角形遮光部を設けた
場合の各エッジの中心からの距離cの値が、X方向とY
方向とで異なってもよい。
In the embodiments, the light source is the mercury lamp and the i-line is used, but this may be another wavelength or a light source such as a laser. Also, under the conditions of the simulation, the numerical aperture NA of the projection optical system is set to 0.
5 and the maximum radius r of the surface light source created by the shading plate
Was set to 0.7 or 0.8 by the σ value, but numerical aperture NA,
The σ value is not limited to this. However, it is effective that the σ value is about 0.7 or more. Further, the outermost shape of the light source shape is limited by the circle (σ) defined by the inner diameter edge of the annular light shielding portion 8B of the light shielding plate 8,
The outermost shape may be defined by a quadrangle, a hexagon, or the like. Further, the shape of the light-shielding portion of the light-shielding plate 8 in each embodiment is the same (symmetrical) in the X and Y directions, but the shape may be different in the X and Y directions. That is, the dimension values a, b, and d of each light-shielding portion, or the value of the distance c from the center of each edge when a square light-shielding portion is provided in the center, are the X direction and the Y
The direction may be different.

【0052】実際の照明系中では、フライアイレンズの
射出面の光量分布はフライアイレンズの各エレメントレ
ンズの配列に応じて離散的、すなわち点光源の離散的な
集合となる。このとき、各エレメントレンズの断面形状
が長方形であると、離散的な点光源のそれぞれの間隔も
X、Y方向で異なってくる。そこで実効的な照明条件
(レチクルへの照明光の配向特性)をX、Y方向で揃え
るために、各遮光部の寸法値a、b、c、dの値をX、
Y方向で積極的に異ならせることが必要となることもあ
る。また、本発明の各実施例で用いる遮光板8の各透過
部81a〜81d、81e〜81hに対して効率よく照
明光を集中させて光量損失を減らすために、遮光板8の
前に、それらの透過部に照明光を集中させる集光手段
(プリズム、ミラー、ファイバー等)を設けるとよい。
さらに各実施例の遮光板8は透過部と遮光部より成ると
したが、遮光部の一部、または全てを半透過部(望まし
くは透過率が50%以下)としてもよい。また、露光を
行う工程によって、必要な焦点深度や縦横パターンと斜
めパターンの重要度が異なるため、それらに対応できる
形状をもった複数の遮光板8を、図3のターレット10
に用意し、交換使用可能としておくことが望ましい。シ
ミュレーションにおいては、使用するレチクルを遮光部
(クロム層)と透過部から成る通常のレチクルとした
が、本発明を、いわゆるハーフトーン位相シフト(遮光
部の代わりに1〜15%程度の透過率を持ち、かつ透過
部を通る光との間の位相をπだけ異ならしめるハーフト
ーン透過部(薄膜)を設ける)方式のレチクルの投影時
に用いると、本発明の効果をさらに高めることができ
る。
In an actual illumination system, the light quantity distribution on the exit surface of the fly-eye lens is discrete according to the arrangement of the element lenses of the fly-eye lens, that is, a discrete set of point light sources. At this time, if the cross-sectional shape of each element lens is rectangular, the intervals of the discrete point light sources also differ in the X and Y directions. Therefore, in order to make effective illumination conditions (orientation characteristics of the illumination light to the reticle) in the X and Y directions, the dimension values a, b, c, and d of the light shielding portions are set to X,
It may be necessary to positively make the difference in the Y direction. In addition, in order to efficiently concentrate the illumination light and reduce the light amount loss with respect to each of the transmissive portions 81a to 81d and 81e to 81h of the light shielding plate 8 used in each embodiment of the present invention, they are provided in front of the light shielding plate 8. Condensing means (prism, mirror, fiber, etc.) for concentrating the illuminating light may be provided in the transmissive part.
Further, the light-shielding plate 8 of each embodiment is composed of the light-transmitting portion and the light-shielding portion, but a part or all of the light-shielding portion may be a semi-light-transmitting portion (desirably, the transmittance is 50% or less). Further, since the required depth of focus and the importance of the vertical and horizontal patterns and the diagonal pattern differ depending on the exposure process, a plurality of light-shielding plates 8 having a shape corresponding to them are provided in the turret 10 of FIG.
It is desirable to prepare it in advance and make it replaceable. In the simulation, the reticle used was a normal reticle composed of a light-shielding portion (chrome layer) and a light-transmitting portion. However, the present invention uses a so-called halftone phase shift (a transmittance of about 1 to 15% instead of the light-shielding portion). The effect of the present invention can be further enhanced by using it when projecting a reticle of a halftone transmissive portion (thin film is provided) which has a phase difference of π with light passing through the transmissive portion.

【0053】以上の各シミュレーション結果から明らか
なように、縦横パターンPv、Phのウェハ上での線幅
が、64M−DRAM製造時に使われる0.4〜0.5
μm程度のとき、各実施例に示した遮光板8は焦点深度
の改善に良好に作用している。しかも、同時に斜めパタ
ーンTa、Tbについても焦点深度の改善効果が得られ
ている。ただし縦横パターンと斜めパターンとで同じ線
幅サイズでの焦点深度を比べてみると、確かに斜めパタ
ーンの方の焦点深度はそれ程大きくない。しかしなが
ら、1枚のレチクル内での縦横パターンのピッチ(線幅
サイズ)に対して、斜めパターンのピッチ(線幅サイ
ズ)の方が1.2〜1.5倍程度粗い場合、例えば図1
7中の縦横パターンに対する特性DV3中で線幅サイズ
が0.42μmのとき、斜めパターンの線幅サイズがそ
の1.5倍(0.63μm)であると、斜めパターンに
対する特性DO3中の線幅サイズ0.63μmでの焦点
深度は2μm程度得られることになる。
As is clear from the above simulation results, the line widths of the vertical and horizontal patterns Pv and Ph on the wafer are 0.4 to 0.5 which are used when the 64M-DRAM is manufactured.
When the thickness is about μm, the light shielding plate 8 shown in each of the embodiments works well for improving the depth of focus. Moreover, at the same time, the effect of improving the depth of focus is obtained for the oblique patterns Ta and Tb. However, when comparing the depths of focus in the same line width size between the vertical and horizontal patterns and the diagonal pattern, the depth of focus of the diagonal pattern is certainly not so large. However, when the pitch (line width size) of the diagonal pattern is about 1.2 to 1.5 times rougher than the pitch (line width size) of the vertical and horizontal patterns in one reticle, for example, as shown in FIG.
When the line width size is 0.42 μm in the characteristic DV3 for the vertical and horizontal patterns in FIG. 7, the line width in the characteristic DO3 for the diagonal pattern is 1.5 times (0.63 μm) the line width size of the diagonal pattern. With a size of 0.63 μm, a depth of focus of about 2 μm can be obtained.

【0054】ところで先の図9から明らかなように、対
象とする縦横パターンのピッチに対して最適化された4
つの光量重心点(0次光の重心点)80A〜80Dが、
投影光学系PLの瞳EP内で正方形の各角に位置すると
き、対象とする斜めパターンのピッチが縦横パターンの
ピッチの約1.4倍程度である場合、斜めパターン用に
補助的に加えられる照明光の光量重心点80Eは、理想
的には2つの重心点80A、80Bを結ぶ線分とY軸と
の交点に一致する。
By the way, as is clear from FIG. 9 described above, 4 optimized for the pitch of the target vertical and horizontal patterns.
The two light amount centroids (centroid of 0th order light) 80A-80D are
When located at each corner of the square in the pupil EP of the projection optical system PL, if the pitch of the diagonal pattern of interest is about 1.4 times the pitch of the vertical and horizontal patterns, it is supplementarily added for the diagonal pattern. The light amount centroid point 80E of the illumination light ideally coincides with the intersection of the line segment connecting the two centroid points 80A and 80B and the Y axis.

【0055】図20は、縦横パターンと斜めパターンと
のピッチ関係とが上述のように約1.4倍になっている
ときに、ほぼ理想的な関係で各光量重心点を配置した様
子を示す。この図20中で、瞳EPに分布する0次光、
1次回折光は各重心点の回りに所定の大きさで広がりを
持つものとする。その広がりの形(領域)は、本来、遮
光板8の透明部81a〜81d、81e〜81h等の面
光源の形状に一致するが、ここでは単に円形で表してあ
る。
FIG. 20 shows a state in which the light amount centroids are arranged in an almost ideal relationship when the pitch relationship between the vertical and horizontal patterns and the diagonal pattern is about 1.4 times as described above. . In FIG. 20, zero-order light distributed in the pupil EP,
It is assumed that the first-order diffracted light has a predetermined size and spreads around each centroid. Originally, the shape (area) of the spread corresponds to the shape of the surface light source such as the transparent portions 81a to 81d and 81e to 81h of the light shielding plate 8, but it is simply represented here as a circle.

【0056】図20の場合、斜めパターン(45°、1
35°)から発生する4つの0次光(重心点80A〜8
0D)の夫々に対応した1次回折光−Dt1 は、瞳EP
のほぼ中心を重畳して通る。また、重心点80Eを0次
光として通る斜めパターンからの1次回折光−Dt1
は、斜めパターン用の補助光源の重心点80Hと80F
の夫々の近傍、又は一致した位置を通る。同時に、重心
点80Eを0次光として通る横パターンからの1次回折
光−Dy1 は、斜めパターン用の補助光源の重心点80
Gの近傍、又は一致した位置を通る。
In the case of FIG. 20, an oblique pattern (45 °, 1
Four 0th-order lights (center of gravity 80A-8
0D) corresponding to the first-order diffracted light −Dt 1
Pass through almost the center of. Also, the first-order diffracted light -Dt 1 'from an oblique pattern that passes through the center of gravity 80E as the 0th-order light.
Is the center of gravity 80H and 80F of the auxiliary light source for the diagonal pattern.
Pass each of the vicinity of, or the matched position. At the same time, the first-order diffracted light −Dy 1 from the lateral pattern passing through the center of gravity 80E as the 0th order light is the center of gravity 80 of the auxiliary light source for the oblique pattern.
Pass the vicinity of G or the matched position.

【0057】このような0次光、1次回折光の分布のう
ち、変形光源を用いたときの斜めパターンに対する焦点
深度拡大効果を低減させる成分は、瞳EPの中心に現れ
る4つの1次回折光−Dt1 である。そこでこのような
条件のときには、投影光学系の瞳EPの中央部のみに減
光フィルター(NDフィルター)を配置し、4つの1次
回折光−Dt1 の光量を適度に減衰させるとよい。
Among the distributions of the 0th-order light and the 1st-order diffracted light, the components that reduce the effect of increasing the depth of focus with respect to the oblique pattern when the modified light source is used are the 4th-order diffracted lights appearing at the center of the pupil EP. It is Dt 1 . Therefore, under such a condition, a neutral density filter (ND filter) may be arranged only in the central portion of the pupil EP of the projection optical system to appropriately attenuate the light amounts of the four first-order diffracted lights −Dt 1 .

【0058】尚、図20中の縦横パターン用の4つの光
量重心点80A〜80Dを作る円形領域と、斜めパター
ン用の4つの光量重心点80E〜80Hを作る小さな円
形領域との配置関係は、そのまま照明系内に設ける変形
光源用の遮光板8の透明部形状と相似になる。従って遮
光板8として、図20中の4つの大きな円形領域と4つ
の小さな円形領域とを透明にした形状のものがそのまま
使える。
Note that the positional relationship between the circular areas for forming the four light quantity centroids 80A to 80D for the vertical and horizontal patterns and the small circular area for forming the four light quantity centroids 80E to 80H for the diagonal pattern in FIG. The shape is similar to the shape of the transparent portion of the light shielding plate 8 for the modified light source provided in the illumination system as it is. Therefore, as the light-shielding plate 8, the one in which the four large circular regions and the four small circular regions in FIG. 20 are made transparent can be used as it is.

【0059】[0059]

【発明の効果】以上のように本発明によれば、これまで
変形光源で問題とされていた斜めパターンに対する結像
性能、特に焦点深度改善度の劣化を防止することがで
き、また縦横パターンについても従来の変形光源とほぼ
同様の性能を得ることができる。
As described above, according to the present invention, it is possible to prevent the deterioration of the image forming performance, particularly the depth of focus improvement degree, for an oblique pattern, which has been a problem in the modified light source. Can obtain almost the same performance as the conventional modified light source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基礎となる変形光源を持った照明系の
斜視図。
FIG. 1 is a perspective view of an illumination system having a modified light source that is the basis of the present invention.

【図2】本発明による変形光源の原理的な形状を示す
図。
FIG. 2 is a view showing a principle shape of a modified light source according to the present invention.

【図3】本発明の実施例としての投影露光装置の全体構
成を示す図。
FIG. 3 is a diagram showing an overall configuration of a projection exposure apparatus as an embodiment of the present invention.

【図4】第1の実施例による変形光源用の遮光板の形状
を示す図。
FIG. 4 is a view showing the shape of a light shielding plate for a modified light source according to the first embodiment.

【図5】レチクル上のL&Sパターンの周期方向の一例
を示す図。
FIG. 5 is a diagram showing an example of a periodic direction of an L & S pattern on a reticle.

【図6】第2の実施例による変形光源用の遮光板の形状
を示す図。
FIG. 6 is a diagram showing the shape of a light shielding plate for a modified light source according to a second embodiment.

【図7】第3の実施例による変形光源用の遮光板の形状
を示す図。
FIG. 7 is a diagram showing the shape of a light shielding plate for a modified light source according to a third embodiment.

【図8】図7の遮光板の形状とフライアイレンズとの配
置関係の一例を示す図。
FIG. 8 is a diagram showing an example of a positional relationship between the shape of the light shielding plate of FIG. 7 and a fly-eye lens.

【図9】各実施例に示した変形光源を用いたときの、投
影光学系の瞳面での光束分布を模式的に示す図。
FIG. 9 is a diagram schematically showing the luminous flux distribution on the pupil plane of the projection optical system when the modified light source shown in each example is used.

【図10】第4の実施例による照明系の一部の構成を示
す図。
FIG. 10 is a diagram showing a partial configuration of an illumination system according to a fourth embodiment.

【図11】図10の照明系に好適な遮光板の形状を示す
図。
11 is a diagram showing the shape of a light shielding plate suitable for the illumination system of FIG.

【図12】第5の実施例による照明系の一部の構成を示
す図。
FIG. 12 is a diagram showing a partial configuration of an illumination system according to a fifth embodiment.

【図13】従来の変形光源用の遮光板の形状を示す図。FIG. 13 is a view showing the shape of a conventional light shielding plate for a modified light source.

【図14】従来の変形光源用の遮光板の形状を示す図。FIG. 14 is a view showing a shape of a conventional light shielding plate for a modified light source.

【図15】図14の遮光板を用いたときの焦点深度特性
のシミュレーション結果を示すグラフ。
15 is a graph showing a simulation result of depth of focus characteristics when the light shielding plate of FIG. 14 is used.

【図16】図4の遮光板を用いたときの焦点深度特性の
シミュレーション結果を示すグラフ。
16 is a graph showing a simulation result of depth of focus characteristics when the light shielding plate of FIG. 4 is used.

【図17】図6の遮光板を用いたときの焦点深度特性の
シミュレーション結果を示すグラフ。
FIG. 17 is a graph showing a simulation result of depth of focus characteristics when the light shielding plate of FIG. 6 is used.

【図18】図7の遮光板を用いたときの焦点深度特性の
シミュレーション結果を示すグラフ。
FIG. 18 is a graph showing a simulation result of depth of focus characteristics when the light shielding plate of FIG. 7 is used.

【図19】輪帯照明を行ったときの焦点深度特性のシミ
ュレーション結果を示すグラフ。
FIG. 19 is a graph showing a simulation result of depth-of-focus characteristics when annular illumination is performed.

【図20】本発明による変形光源を用いたときの投影光
学系の瞳面での光束分布を模式的に示す図。
FIG. 20 is a diagram schematically showing the luminous flux distribution on the pupil plane of the projection optical system when the modified light source according to the present invention is used.

【符号の説明】[Explanation of symbols]

1・・・・水銀ランプ 7、7A〜7F、70A〜70D・・・・フライアイレ
ンズ 70E〜70H・・・・オプチカルファイバー先端 8・・・・遮光板 11・・・・コンデンサーレンズ R・・・・レチクル PL・・・・投影光学系 W・・・・ウェハ
1 ... Mercury lamp 7, 7A-7F, 70A-70D ... Fly-eye lens 70E-70H ... Optical fiber tip 8 ... Shading plate 11 ... Condenser lens R ... ..Reticle PL ... Projection optical system W ... Wafer

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/20 521 7316−2H Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G03F 7/20 521 7316-2H

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 投影すべきパターンが形成されたマスク
を照明する照明系と、前記パターンの像を感光基板上に
投影する投影光学系とを備えた投影露光装置において、 前記照明系は、前記マスクのパターン面に対して光学的
にフーリエ変換の関係となる面を内部に有する照明光学
系と、前記フーリエ変換面上、もしくはその近傍面上で
光軸を中心とした所定半径内に照明光を分布させる光分
布設定手段とを含み;該光分布設定手段は前記光軸を中
心とした所定幅の輪帯状の領域内に前記照明光を分布さ
せるとともに、該輪帯状の領域の内側の中心部を除く離
散的な複数部分の領域に前記照明光を分布させることを
特徴とする投影露光装置。
1. A projection exposure apparatus comprising: an illumination system for illuminating a mask on which a pattern to be projected is formed; and a projection optical system for projecting an image of the pattern onto a photosensitive substrate. An illumination optical system having a surface that is optically in a Fourier transform relationship with the pattern surface of the mask, and illumination light within a predetermined radius centered on the optical axis on the Fourier transform surface or on a surface in the vicinity thereof. And a light distribution setting unit that distributes the illumination light in a ring-shaped region having a predetermined width around the optical axis, and the center of the inside of the ring-shaped region. A projection exposure apparatus, characterized in that the illumination light is distributed in a plurality of discrete regions excluding parts.
【請求項2】 投影すべきパターンが形成されたマスク
に照明光を照射するための光源と、前記マスクのパター
ン面に対して光学的にフーリエ変換の関係となる面が内
部に形成され、該フーリエ変換面、もしくはその近傍面
に前記光源の2次光源が作られる照明光学系と、該照明
光学系からの照明光によって照射された前記マスクのパ
ターンからの光を入射して、該パターンの像を感光基板
上に結像投影する投影光学系とを備えた投影露光装置に
おいて、 前記マスク上のパターンが互いに直交する2方向の夫々
に周期性を持つ第1のパターン形状と、該2方向の夫々
と交差する方向に周期性をもつ第2のパターン形状とで
形成され、前記マスク上で前記第1のパターン形状のし
める割合が前記第2のパターン形状のしめる割合よりも
多いとき、前記第1のパターンの形状の周期性の方向に
対応した傾斜照明光を作るように、前記フーリエ変換
面、もしくはその近傍面上で前記照明光学系の光軸から
所定量だけ偏心して互いに対称的に位置する4つの領域
の夫々に第1の光源面を設定する第1設定部材と、 前記第2のパターン形状の周期性の方向に対応した傾斜
照明光を作るように、前記フーリエ変換面、もしくはそ
の近傍面上で前記照明光学系の光軸から所定量だけ偏心
して互いに対称的に位置する4つの領域の夫々に第2の
光源面を設定する第2設定部材とを備え、前記第1の光
源面の面積を前記第2の光源面の面積よりも大きくした
ことを特徴とする投影露光装置。
2. A light source for irradiating a mask on which a pattern to be projected is formed with illumination light, and a surface having an optical Fourier transform relationship with the pattern surface of the mask are formed inside, The light from the pattern of the mask, which is illuminated by the illumination light from the illumination optical system and the illumination optical system in which the secondary light source of the light source is formed, is incident on the Fourier transform surface or a surface in the vicinity thereof, In a projection exposure apparatus including a projection optical system for image-forming and projecting an image on a photosensitive substrate, a first pattern shape in which patterns on the mask have periodicity in each of two directions orthogonal to each other, and the two directions And a second pattern shape having a periodicity in a direction intersecting with each other, and the proportion of the first pattern shape on the mask is larger than the proportion of the second pattern shape. In order to produce tilted illumination light corresponding to the direction of periodicity of the shape of the first pattern, the Fourier transform surface or a surface in the vicinity thereof is decentered from the optical axis of the illumination optical system by a predetermined amount and is symmetrical to each other. A first setting member that sets a first light source surface in each of the four regions located at, and the Fourier transform surface so as to create inclined illumination light corresponding to the direction of the periodicity of the second pattern shape, Alternatively, a second setting member that sets a second light source surface in each of four regions that are eccentric from the optical axis of the illumination optical system by a predetermined amount and are symmetrically located on the surface in the vicinity thereof is provided. The area of the light source surface is larger than the area of the second light source surface.
【請求項3】 前記第1設定部材と第2設定部材は、前
記照明光学系のフーリエ変換面、もしくはその近傍面に
配置された遮光板の透過部形状によって規定したことを
特徴とする請求項第2項に記載の装置。
3. The first setting member and the second setting member are defined by a transmission part shape of a light shielding plate arranged on a Fourier transform surface of the illumination optical system or a surface in the vicinity thereof. The apparatus according to item 2.
【請求項4】 前記照明光学系は前記光源面を作るフラ
イアイレンズを含み、該フライアイレンズの射出面側に
前記遮光板を配置したことを特徴とする請求項第3項に
記載の装置。
4. The apparatus according to claim 3, wherein the illumination optical system includes a fly-eye lens that forms the light source surface, and the light-shielding plate is arranged on the exit surface side of the fly-eye lens. .
【請求項5】 マスク上で直交する2方向に周期性をも
って形成された第1のパターン形状と、それ以外の方向
に周期性をもつ第2のパターン形状とを感光基板上に結
像投影する投影光学系と、光源からの光を入射して所定
半径の円形領域に包含される大きさの光源像を形成する
フライアイレンズと、該フライアイレンズによる光源像
を前記投影光学系の瞳面、又はその近傍面の中央に結像
させるとともに、前記光源像内の各点からの光を前記マ
スク上で重畳させる集光光学系とを備えた投影露光装置
において、 前記光源像の中心を原点として前記パターンの周期性の
方向のうち互いに直交する2方向の夫々に対応した2つ
の座標軸を設定したとき、該2つの座標軸で規定される
4つの象限の夫々にほぼ同一面積で形成された第1の透
過部と、前記原点からほぼ等距離の位置で前記2つの座
標軸上の夫々の4ヶ所に、ほぼ同一面積で形成された第
2の透過部とを有する遮光板を前記フライアイレンズの
射出側に配置し、前記第1パターン形状と第2パターン
形状との重要度に応じて前記遮光板の第1の透過部と第
2の透過部との面積を異ならせたことを特徴とする投影
露光装置。
5. A first pattern shape having periodicity in two directions orthogonal to each other on a mask, and a second pattern shape having periodicity in the other directions are image-projected onto a photosensitive substrate. A projection optical system, a fly-eye lens that receives light from a light source to form a light source image having a size included in a circular area having a predetermined radius, and a light source image formed by the fly-eye lens is used as a pupil plane of the projection optical system. , Or a condensing optical system that forms an image in the center of a surface near the source and superimposes light from each point in the light source image on the mask, wherein the center of the light source image is the origin. When two coordinate axes corresponding to two directions orthogonal to each other among the periodicity directions of the pattern are set, the four quadrants defined by the two coordinate axes have substantially the same area. With a transparent part of 1 A light-shielding plate having second transmissive portions formed in substantially the same area at four positions on the two coordinate axes at positions substantially equidistant from the origin is disposed on the exit side of the fly-eye lens, The projection exposure apparatus is characterized in that the areas of the first transmissive portion and the second transmissive portion of the light shielding plate are different according to the importance of the first pattern shape and the second pattern shape.
【請求項6】 マスクのパターンを感光基板上に結像投
影する投影光学系と、光源からの光を入射して、前記マ
スクに対する光学的なフーリエ変換面、もしくはその近
傍面に所定形状の面光源を形成し、該面光源からの光を
前記マスク上に一様に照射する照明光学系とを備えた投
影露光装置において、 前記面光源の中心を原点として直交座標系XYを定め、
前記面光源の外形に近似した円の半径をr、前記面光源
のコヒーレンスファクターをσ値としたとき、係数a、
bをそれぞれ 0.1r/σ≦a≦ 0.4r/σ 、 0.4r/
σ≦b≦ 0.8r/σとして、前記面光源上で−a≦X≦
a、かつ−b≦Y≦bの領域内と−a≦Y≦a、かつ−
b≦X≦bの領域内との光強度を他の領域よりも小さく
するか、もしくはほぼ零にする光強度分布調整部材を設
けたことを特徴とする投影露光装置。
6. A projection optical system for image-forming and projecting a pattern of a mask on a photosensitive substrate, and a surface of a predetermined shape on an optical Fourier transform surface with respect to the mask, or a surface in the vicinity thereof, upon incidence of light from a light source. In a projection exposure apparatus including a light source and an illumination optical system that uniformly irradiates light from the surface light source on the mask, an orthogonal coordinate system XY is defined with the center of the surface light source as an origin.
When the radius of a circle approximated to the outer shape of the surface light source is r and the coherence factor of the surface light source is a value, a coefficient a,
b is 0.1r / σ ≦ a ≦ 0.4r / σ, 0.4r /
σ ≦ b ≦ 0.8 r / σ, and −a ≦ X ≦ on the surface light source.
a, within the region of −b ≦ Y ≦ b and −a ≦ Y ≦ a, and −
A projection exposure apparatus comprising a light intensity distribution adjusting member for making the light intensity within the region of b ≦ X ≦ b smaller than that of other regions or substantially zero.
【請求項7】 前記光強度分布調整部材は、係数cを
0.3r/σ≦c≦ 0.6r/σとしたとき、前記面光源上
で、X2 +Y2 ≦c2 の領域内の光強度を他の領域より
も小さくするか、もしくはほぼ零とすることを特徴とす
る請求項第6項に記載の装置。
7. The light intensity distribution adjusting member has a coefficient c.
When 0.3r / σ ≦ c ≦ 0.6r / σ, on the surface light source, the light intensity in the region of X 2 + Y 2 ≦ c 2 should be smaller than that of other regions, or should be almost zero. 7. A device according to claim 6, characterized in that
【請求項8】 前記照明光学系は前記面光源の原点を前
記投影光学系の瞳面の中心に結像するように構成され、
該投影光学系の実効的な瞳径の前記面光源上での半径を
0 としたとき、前記面光源の半径rとの比r/r0
あるσ値を、0.7以上にしたことを特徴とする請求項
第6項又は第7項のいずれか1項に記載の装置
8. The illumination optical system is configured to form an image of the origin of the surface light source at the center of the pupil plane of the projection optical system,
When the radius at the surface on the light source of the effective pupil diameter of the projection optical system and r 0, the ratio r / r 0 the radius r is σ value of the surface light source, and a 0.7 or higher Device according to any one of claims 6 or 7, characterized in that
JP34231692A 1992-12-22 1992-12-22 Projection exposure apparatus and method Expired - Lifetime JP3201027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34231692A JP3201027B2 (en) 1992-12-22 1992-12-22 Projection exposure apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34231692A JP3201027B2 (en) 1992-12-22 1992-12-22 Projection exposure apparatus and method

Publications (2)

Publication Number Publication Date
JPH06196388A true JPH06196388A (en) 1994-07-15
JP3201027B2 JP3201027B2 (en) 2001-08-20

Family

ID=18352787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34231692A Expired - Lifetime JP3201027B2 (en) 1992-12-22 1992-12-22 Projection exposure apparatus and method

Country Status (1)

Country Link
JP (1) JP3201027B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1357426A2 (en) * 2002-04-23 2003-10-29 Canon Kabushiki Kaisha Method for setting mask pattern and its illumination condition
WO2004090952A1 (en) * 2003-04-09 2004-10-21 Nikon Corporation Exposure method and apparatus, and device manufacturing method
US6811939B2 (en) 2001-08-09 2004-11-02 Renesas Technology Corp. Focus monitoring method, focus monitoring system, and device fabricating method
US7217503B2 (en) 2001-04-24 2007-05-15 Canon Kabushiki Kaisha Exposure method and apparatus
JP2007266155A (en) * 2006-03-28 2007-10-11 Asml Netherlands Bv Variable illumination source
JP2007531327A (en) * 2004-03-31 2007-11-01 インテル コーポレイション Light source for photolithography
JP2008124177A (en) * 2006-11-10 2008-05-29 Nikon Corp Method and device for exposure, and manufacturing method of device
US7548302B2 (en) 2005-03-29 2009-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014143445A (en) * 2005-06-02 2014-08-07 Carl Zeiss Smt Gmbh Microlithography projection objective
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7217503B2 (en) 2001-04-24 2007-05-15 Canon Kabushiki Kaisha Exposure method and apparatus
US6811939B2 (en) 2001-08-09 2004-11-02 Renesas Technology Corp. Focus monitoring method, focus monitoring system, and device fabricating method
EP1357426A3 (en) * 2002-04-23 2005-11-23 Canon Kabushiki Kaisha Method for setting mask pattern and its illumination condition
US7107573B2 (en) 2002-04-23 2006-09-12 Canon Kabushiki Kaisha Method for setting mask pattern and illumination condition
EP1357426A2 (en) * 2002-04-23 2003-10-29 Canon Kabushiki Kaisha Method for setting mask pattern and its illumination condition
JP4735258B2 (en) * 2003-04-09 2011-07-27 株式会社ニコン Exposure method and apparatus, and device manufacturing method
WO2004090952A1 (en) * 2003-04-09 2004-10-21 Nikon Corporation Exposure method and apparatus, and device manufacturing method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
JP2008072129A (en) * 2003-04-09 2008-03-27 Nikon Corp Exposure method and apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US7446858B2 (en) 2003-04-09 2008-11-04 Nikon Corporation Exposure method and apparatus, and method for fabricating device
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2007531327A (en) * 2004-03-31 2007-11-01 インテル コーポレイション Light source for photolithography
US7548302B2 (en) 2005-03-29 2009-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097984B2 (en) 2005-06-02 2015-08-04 Carl Zeiss Smt Gmbh Microlithography projection objective
US10281824B2 (en) 2005-06-02 2019-05-07 Carl Zeiss Smt Gmbh Microlithography projection objective
JP2014143445A (en) * 2005-06-02 2014-08-07 Carl Zeiss Smt Gmbh Microlithography projection objective
JP2007266155A (en) * 2006-03-28 2007-10-11 Asml Netherlands Bv Variable illumination source
JP4495104B2 (en) * 2006-03-28 2010-06-30 エーエスエムエル ネザーランズ ビー.ブイ. Variable illumination source
JP2008124177A (en) * 2006-11-10 2008-05-29 Nikon Corp Method and device for exposure, and manufacturing method of device
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
JP3201027B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
EP0614097B1 (en) Image projection method and semiconductor device manufacturing method using the same
JP3201027B2 (en) Projection exposure apparatus and method
US7023522B2 (en) Multiple exposure method
JP2995820B2 (en) Exposure method and method, and device manufacturing method
KR101682727B1 (en) Illumination optical system, exposure device, anf device manufacturing method
JPH0567558A (en) Exposure method
JPH0729808A (en) Projection aligner
US5636004A (en) Projection exposure method and apparatus
JPH04273427A (en) Mask, exposure method and aligner
JP3600869B2 (en) Projection optical system and projection exposure apparatus having the optical system
JP3210123B2 (en) Imaging method and device manufacturing method using the method
JPH06163350A (en) Projection exposure method and device thereof
KR100407885B1 (en) Exposure method and exposure apparatus
JP2936190B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
JPH04225358A (en) Projection type exposure device
JP3262074B2 (en) Exposure method and exposure apparatus
JP2884950B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
JP3351417B2 (en) Exposure method
JPH06267822A (en) Fine pattern formation
JPH08203807A (en) Projection exposure system
JP3427210B2 (en) Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
TWI798581B (en) Exposure device and article manufacturing method
JP3337983B2 (en) Exposure method and exposure apparatus
JP3278802B2 (en) Mask and exposure method using the same
JP3123543B2 (en) Exposure method and exposure apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12