JPH0618471B2 - Sealing lead-acid battery charging method and charging device - Google Patents

Sealing lead-acid battery charging method and charging device

Info

Publication number
JPH0618471B2
JPH0618471B2 JP62292390A JP29239087A JPH0618471B2 JP H0618471 B2 JPH0618471 B2 JP H0618471B2 JP 62292390 A JP62292390 A JP 62292390A JP 29239087 A JP29239087 A JP 29239087A JP H0618471 B2 JPH0618471 B2 JP H0618471B2
Authority
JP
Japan
Prior art keywords
voltage
charging
current
battery
polarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62292390A
Other languages
Japanese (ja)
Other versions
JPH01136533A (en
Inventor
彰彦 工藤
浩司 山口
他▲く▼美 早川
健介 弘中
昭夫 小牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP62292390A priority Critical patent/JPH0618471B2/en
Publication of JPH01136533A publication Critical patent/JPH01136533A/en
Publication of JPH0618471B2 publication Critical patent/JPH0618471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、密閉形鉛蓄電池の充電方法及び充電装置に関
するものである。
The present invention relates to a method for charging a sealed lead acid battery and a charging device.

[従来の技術] 従来、密閉形鉛蓄電池を充電する方法として、充電電圧
が充電末期電圧に達するまでは、通常の充電電流を流
し、充電電圧が充電末期電圧に達すると充電電流を微小
充電電流に切換える充電方法(例えばトリクル充電方
法)が知られている。この充電方法を実施するための従
来の充電装置の一例の概略構成は第7図に示す通りであ
る。この従来の装置は、交流電源を整流して直流出力を
得る直流電源DCと、充電電流の電流値を切換える電流
値切換回路10と、充電電圧が充電末期電圧に達したこ
とを検出する充電末期電圧検出器20と、検出器20か
ら検出信号S2 が出力されると電流値切換回路10に充
電電流を微小充電電流に切換えるための電流値切換指令
信号S1 を出力する電流値切換制御回路30とを備えて
いる。
[Prior Art] Conventionally, as a method of charging a sealed lead-acid battery, a normal charging current is supplied until the charging voltage reaches the terminal charging voltage, and when the charging voltage reaches the terminal charging voltage, the charging current is changed to a minute charging current. There is known a charging method (for example, a trickle charging method) for switching to. A schematic structure of an example of a conventional charging device for carrying out this charging method is as shown in FIG. This conventional device includes a DC power supply DC that rectifies an AC power supply to obtain a DC output, a current value switching circuit 10 that switches the current value of a charging current, and a charging end period that detects that the charging voltage has reached a charging end voltage. A voltage detector 20, and a current value switching control circuit 30 which outputs a current value switching command signal S1 for switching the charging current to a minute charging current to the current value switching circuit 10 when the detection signal S2 is output from the voltage detector 20. Is equipped with.

この装置で過放電放置後の密閉形鉛蓄電池(以下過放電
放置電池という。)を充電しようとする場合、過放電放
置電池の内部抵抗が高くなると、十分に充電できないと
いう問題がある。これは従来の装置で内部抵抗が高い過
放電放置電池の充電を行うと、充電を開始した直後に高
い内部抵抗で充電電圧が充電末期電圧より高くなってし
まい、充電末期電圧検出器20が動作して充電電流が微
小充電電流に切換ってしまうからである。
When attempting to charge a sealed lead-acid battery (hereinafter referred to as an over-discharge abandoned battery) after being left over-discharged by this device, there is a problem that the battery cannot be sufficiently charged if the internal resistance of the over-discharged battery becomes high. This is because when a conventional device charges an over-discharged battery with a high internal resistance, the charging voltage becomes higher than the end-of-charge voltage due to the high internal resistance immediately after starting charging, and the end-of-charge voltage detector 20 operates. This is because the charging current is switched to the minute charging current.

そこでこのような問題を解決するために、出願人は先
に、過放電放置電池に対して充電開始直後に所定の期間
通常の充電とは逆方向の電流を電池電圧が負の状態にな
るまで流し(以下逆充電と言う。)、過放電放置電池の
内部抵抗を低くした上で充電を行う方法を提案した(特
願昭61−16196号)。
Therefore, in order to solve such a problem, the applicant first applied a current in the opposite direction to the normal charging for a predetermined period immediately after the start of charging of the over-discharged battery until the battery voltage becomes a negative state. A method has been proposed in which the battery is allowed to flow (hereinafter referred to as reverse charging), and the internal resistance of the over-discharged battery is lowered (Japanese Patent Application No. 61-16196).

[発明が解決しようとする問題点] 上記の充電方法を実際の充電装置に適用する場合、逆充
電を打ち切る条件を如何にするかが問題になる。逆充電
を打ち切る条件として最も簡単な方法は、逆充電時間を
一律に一定(例えば1時間)とすることである。しかし
ながら、過放電放置電池といっても、過放電放置の程度
に応じても内部抵抗は異なる。そのため、過放電放置電
池でも、内部抵抗が非常に高いものや、あまり高くない
もの、あるいは比較的低いもの等が存在する。従って、
逆充電時間を一律に一定とする方法では、内部抵抗の非
常に高い電池では逆充電が不十分で電池性能の回復性が
悪く、逆に内部抵抗が比較的低い電池の場合は、あえて
逆充電を行う必要がないものもあり、また、必要以上の
逆充電により充電時間の増加、充電時の発熱増大、ある
いは電池の寿命特性の悪化等の弊害を生ずることにな
る。
[Problems to be Solved by the Invention] When the above charging method is applied to an actual charging device, a problem is how to set a condition for ending reverse charging. The simplest method for canceling the reverse charge is to uniformly set the reverse charge time (for example, 1 hour). However, even if the battery is left over-discharged, the internal resistance varies depending on the degree of over-discharged. Therefore, there are some over-discharged batteries that have very high internal resistance, some that are not very high, and some that have relatively low internal resistance. Therefore,
With the method of uniformly setting the reverse charge time, the reverse charge is insufficient for batteries with extremely high internal resistance and the recovery of the battery performance is poor, and conversely, for batteries with relatively low internal resistance, reverse charge is intentionally performed. In some cases, it is not necessary to carry out the above-mentioned operation, and the reverse charging more than necessary causes adverse effects such as an increase in charging time, an increase in heat generation during charging, and deterioration of life characteristics of the battery.

次にこの具体例を示す。使用した電池は4V−4Ahの
密閉形鉛蓄電池で、逆充電時間を1時間とした場合の充
電特性を第8図及び第9図に示した。第8図は内部抵抗
が約300Ωの過放電放置電池の充電特性、第9図は内
部抵抗が約1600Ωの過放電放置電池の充電特性であ
る。第8図の場合は逆充電後に通常の充電が順調に行わ
れているが、第9図の場合には、逆充電からの通常の充
電に戻った後、早期にトイクル充電に入り満足な充電が
行われなかった。また、次表は内部抵抗が約300Ωの
過放電放置電池で逆充電時間を変えた場合の電池表面温
度の最高値を示したもので、逆充電時間が長い程発熱が
多くなっている。
Next, a specific example of this will be shown. The battery used was a sealed lead acid battery of 4V-4Ah, and the charging characteristics when the reverse charging time was 1 hour are shown in FIGS. 8 and 9. FIG. 8 shows the charging characteristics of an over-discharged battery having an internal resistance of about 300Ω, and FIG. 9 shows the charging characteristics of an over-discharged battery having an internal resistance of about 1600Ω. In the case of FIG. 8, the normal charging is smoothly performed after the reverse charging, but in the case of FIG. 9, the normal charging from the reverse charging is resumed, and then the toicle charging is started early and the satisfactory charging is completed. Was not done. Further, the following table shows the maximum value of the battery surface temperature when the reverse charge time is changed in the over-discharged battery having the internal resistance of about 300Ω, and the longer the reverse charge time is, the more heat is generated.

更に、第10図は1時間の逆充電後に通常の充電を行っ
て電池性能の回復した過放電放置電池の回復後のサイク
ル寿命特性を示したものである。同図からわかるよう
に、内部抵抗が約10Ωの電池では、内部抵抗が約30
0Ωの電池に比べて容量の低下が早く、約150サイク
ルの寿命となっている。
Furthermore, FIG. 10 shows the cycle life characteristics after recovery of an over-discharged battery in which the battery performance has been recovered by performing normal charging after 1 hour of reverse charging. As can be seen from the figure, a battery with an internal resistance of about 10Ω has an internal resistance of about 30Ω.
Compared to a 0Ω battery, the capacity drops faster, and the life is about 150 cycles.

以上述べたことから、過放電放置電池の逆充電は個々の
電池の内部抵抗の実態に即して行うことが望まれる。
From the above, it is desired that the reverse charging of the over-discharged battery be performed in accordance with the actual state of the internal resistance of each battery.

本発明の目的は、上記従来の技術の問題点を解決した充
電方法及びこの方法を実施するのに好適な充電装置を提
供することにある。
An object of the present invention is to provide a charging method that solves the above-mentioned problems of the conventional technology and a charging device suitable for implementing this method.

[問題点を解決するための手段] 本発明の方法は、充電電圧が充電末期電圧になると充電
電流を微小充電電流に切換えて充電を行う密閉形鉛蓄電
池の充電方法において、出力に交流電圧成分を含む直流
電源を用いて前記蓄電池の充電電圧の交流電圧成分が基
準値以上あるときには所定の充電期間強制的に充電電流
を流す充電動作を行い、 前記充電期間中に前記交流電圧成分が前記基準値より小
さくならない場合には電池電圧が逆極性になるまで逆極
性電圧を所定の期間前記蓄電池に印加する逆電圧印加動
作を行い、 前記交流電圧成分が前記基準値より小さくなるまで前記
充電動作と逆電圧印加動作とを繰り返し、前記交流電圧
成分が前記基準値より小さくなった場合に通常の充電動
作を行う。
[Means for Solving the Problems] The method of the present invention is a method for charging a sealed lead-acid battery, which performs charging by switching the charging current to a minute charging current when the charging voltage reaches the end-of-charging voltage. When the AC voltage component of the charging voltage of the storage battery is equal to or higher than a reference value using a DC power supply, a charging operation is performed to force a charging current for a predetermined charging period, and the AC voltage component is the reference during the charging period. If it does not become smaller than the value, a reverse voltage application operation of applying a reverse polarity voltage to the storage battery for a predetermined period until the battery voltage becomes a reverse polarity is performed, and the charging operation is performed until the AC voltage component becomes smaller than the reference value. The reverse voltage application operation is repeated, and when the AC voltage component becomes smaller than the reference value, the normal charging operation is performed.

また本発明の装置では、交流電源ACの出力を整流して
交流電圧成分を含んだ直流電圧を出力する直流電源1
と、密閉形鉛蓄電池Bの充電電圧を検出して該充電電圧
が充電末期電圧を越えると充電末期電圧検出信号S2 を
出力する充電末期電圧検出器4と、充電末期電圧検出信
号S2 が出力されると電流値切換指令信号S1 を出力す
る電流値切換制御回路3と、電流値切換指令信号S1 が
入力されると充電電流を微小充電電流に切換える電流値
切換回路2とを具備してなる密閉形鉛蓄電池用充電装置
において、上記問題点を解消する。そこで本発明の充電
装置では、電流値切換回路2と前記蓄電池Bとの間に設
けられて電圧極性切換信号S5 が出力されている期間だ
け充電電圧を逆極性で蓄電池Bに印加する極性切換スイ
ッチ回路(SW1 ,SW2 )と、充電電圧から交流電圧
成分を検出し該交流電圧成分が基準値よりも大きいとき
に交流電圧成分検出信号S3 を出力する交流電圧成分検
出器5と、前記充電電圧が正極性で前記蓄電池Bに印加
されている所定の充電期間に前記交流電圧成分が前記基
準値より小さくならない場合には所定の期間極性切換ス
イッチ回路に前記電圧極性切換信号S5 を出力するとと
もに前記電前記流値切換制御回路3に電流値切換停止信
号S4 を出力する電圧極性切換回路6とを設けている。
そして更に、電流値切換制御回路3を電流値切換停止信
号S4 または交流電圧成分検出信号S3 が入力されてい
るときには電流値切換指令信号S1 を出力しないように
構成した。
Further, in the device of the present invention, a DC power supply 1 for rectifying the output of the AC power supply AC and outputting a DC voltage containing an AC voltage component.
The end-of-charge voltage detector 4 which outputs the end-of-charge voltage detection signal S2 when the charge voltage of the sealed lead-acid battery B is detected and the end-of-charge voltage exceeds the end-of-charge voltage, and the end-of-charge voltage detection signal S2 is output. Then, a hermetically sealed structure comprising a current value switching control circuit 3 which outputs a current value switching command signal S1 and a current value switching circuit 2 which switches the charging current to a minute charging current when the current value switching command signal S1 is input. In a charging device for a lead-acid battery, the above problems are solved. Therefore, in the charging device of the present invention, a polarity changeover switch which is provided between the current value changeover circuit 2 and the storage battery B and applies the charging voltage to the storage battery B in reverse polarity only during the period when the voltage polarity changeover signal S5 is output. A circuit (SW1, SW2), an AC voltage component detector 5 for detecting an AC voltage component from the charging voltage and outputting an AC voltage component detection signal S3 when the AC voltage component is larger than a reference value, and the charging voltage When the AC voltage component does not become smaller than the reference value during the predetermined charging period of positive polarity applied to the storage battery B, the voltage polarity switching signal S5 is output to the polarity switching switch circuit for the predetermined period and the voltage The flow value switching control circuit 3 is provided with a voltage polarity switching circuit 6 for outputting a current value switching stop signal S4.
Further, the current value switching control circuit 3 is configured not to output the current value switching command signal S1 when the current value switching stop signal S4 or the AC voltage component detection signal S3 is input.

[発明の作用] 出力に交流電圧成分を含む直流電源による蓄電池の充電
において、充電電圧の中の交流電圧成分を検出すると、
電池の内部抵抗を検出できることを見出した。
[Operation of the Invention] When the ac voltage component in the charging voltage is detected in the charging of the storage battery by the DC power supply including the ac voltage component in the output,
It was found that the internal resistance of the battery can be detected.

そこで、前記のような本発明の方法で充電を行うと、過
放電放置電池に対してその内部抵抗の高さの度合に応じ
て適切な時間長の逆充電が行われて、電池の内部抵抗が
効果的に下げられるため、後に通常の充電を行っても充
電電圧は充電末期電圧以下になり、十分な充電を行え
る。以後は従来と同じく、充電電圧が充電末期電圧を越
えると、充電電流が微小充電電流に切換えられる。
Therefore, when the battery is charged by the method of the present invention as described above, the over-charged battery is reverse-charged for an appropriate period of time according to the degree of the internal resistance, and the internal resistance of the battery is increased. Is effectively lowered, the charging voltage becomes equal to or lower than the terminal voltage at the end of charging even if normal charging is performed later, and sufficient charging can be performed. Thereafter, as in the conventional case, when the charging voltage exceeds the terminal voltage of the charging, the charging current is switched to the minute charging current.

以上により、本発明の方法では内部抵抗がそれ程高くな
い電池において、必要以上の長時間の逆充電により、充
電時間の増加、充電時の発熱増大、あるいは電池寿命の
低下等が生ずるのを未然に防止することができる。ま
た、逆充電が不必要な内部抵抗の低い過放電放置電池
は、逆充電を行うことなく通常の充電方法で迅速に充電
できる。
As described above, in the battery of which the internal resistance is not so high in the method of the present invention, it is possible to cause an increase in charging time, an increase in heat generation during charging, or a decrease in battery life due to reverse charging for a longer time than necessary. Can be prevented. Further, an over-discharged battery that does not require reverse charging and has a low internal resistance can be quickly charged by a normal charging method without performing reverse charging.

本発明の装置は、上記の方法を簡単な構成で誤動作なく
実施することができる。
The apparatus of the present invention can implement the above method with a simple structure and without malfunction.

[実施例] 以下図面を参照して、本発明の方法及び装置の実施例を
詳細に説明する。
Embodiments Embodiments of the method and apparatus of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例の概略回路図を示してい
る。同図において、1は変圧器Tによって所定の電圧に
変圧した交流電源ACの出力を整流する整流回路であ
り、本実施例において、この整流回路は2つのダイオー
ドDa 及びDb によって全波整流回路として構成されて
いる。整流回路1の正の出力端子には電流値切換指令信
号S1 が入力されると充電電流を微小充電電流に切換え
る電流値切換回路2が接続されている。この電流値切換
回路2は、例えば信号S1 が入力されるまでは通常の充
電電流を供給できるインピーダンスを通電回路に挿入
し、信号S1 が入力されると充電電流を微小充電電流ま
たはトリクル充電電流に切換えるインピーダンスを通電
回路に挿入するようにして充電電流値を切換える。
FIG. 1 shows a schematic circuit diagram of an embodiment of the present invention. In the figure, reference numeral 1 is a rectifier circuit that rectifies the output of the AC power supply AC that has been transformed into a predetermined voltage by a transformer T. In this embodiment, this rectifier circuit is a full-wave rectifier circuit with two diodes Da and Db. It is configured. A current value switching circuit 2 that switches the charging current to a minute charging current when the current value switching command signal S1 is input is connected to the positive output terminal of the rectifier circuit 1. The current value switching circuit 2 inserts an impedance capable of supplying a normal charging current into the energizing circuit until, for example, the signal S1 is input, and when the signal S1 is input, the charging current becomes a minute charging current or a trickle charging current. The charging current value is switched by inserting the impedance to be switched into the energizing circuit.

スイッチSW1 及びSW2 は、電流値切換回路2と蓄電
池Bとの間に設けられて電圧極性切換信号S5 が出力さ
れている期間だけ充電電圧を逆極性で蓄電池Bに印加す
る極性切換スイッチ回路を構成する。これらのスイッチ
SW1 及びSW2 は、電磁スイッチであり、これらのス
イッチは後述する電圧極性切換回路6の電磁リレーのコ
イルLに電流が流れると、蓄電池Bに逆電圧を印加する
ように接点aから接点bに切換わる。
The switches SW1 and SW2 are provided between the current value switching circuit 2 and the storage battery B, and constitute a polarity switching switch circuit for applying the charging voltage to the storage battery B in reverse polarity only during the period when the voltage polarity switching signal S5 is output. To do. These switches SW1 and SW2 are electromagnetic switches, and when a current flows through the coil L of the electromagnetic relay of the voltage polarity switching circuit 6 which will be described later, these switches make contact from the contact a so as to apply a reverse voltage to the storage battery B. Switch to b.

充電末期電圧検出器4は、密閉形鉛蓄電池Bの充電電圧
を検出して、該充電電圧が充電末期電圧を越えると充電
末期電圧検出信号S2 を出力する。交流電圧成分検出器
5は、充電電圧の交流電圧成分を検出し、交流電圧成分
が基準値以上あるときに交流電圧成分検出信号S3 を出
力する。この検出器5は、蓄電池Bの内部抵抗を検出す
るために充電電圧から交流電圧成分、即ち脈動電圧成分
を検出する。そして、交流電圧成分を検出する場合に検
出した交流電圧成分と対比される基準値は、予め蓄電池
の内部抵抗と交流電圧成分との関係を調べておき、逆充
電が必要な内部抵抗に相応する交流電圧成分に相当する
電圧値を基準値としている。
The end-of-charge voltage detector 4 detects the charge voltage of the sealed lead-acid battery B and outputs a end-of-charge voltage detection signal S2 when the charge voltage exceeds the end-of-charge voltage. The AC voltage component detector 5 detects the AC voltage component of the charging voltage and outputs the AC voltage component detection signal S3 when the AC voltage component is equal to or higher than the reference value. This detector 5 detects an AC voltage component, that is, a pulsating voltage component, from the charging voltage in order to detect the internal resistance of the storage battery B. Then, when the AC voltage component is detected, the reference value to be compared with the detected AC voltage component corresponds to the internal resistance that requires reverse charging, by previously examining the relationship between the internal resistance of the storage battery and the AC voltage component. The voltage value corresponding to the AC voltage component is used as the reference value.

6は、交流電圧成分検出信号S3 が入力されると所定の
期間だけ極性切換スイッチ回路(スイッチSW1 及びS
W 2)に電圧極性切換信号S5 を出力するとともに電流
値切換制御回路3に電流値切換停止信号S4 を出力する
電圧極性切換回路である。
6 is a polarity changeover switch circuit (switches SW1 and S1) for a predetermined period when the AC voltage component detection signal S3 is input.
The voltage polarity switching circuit outputs a voltage polarity switching signal S5 to W2) and a current value switching stop signal S4 to the current value switching control circuit 3.

電流値切換制御回路3は、原則として充電末期電圧検出
器4から充電末期電圧検出信号S2 が出力されると電流
値切換指令信号S1 を出力するが、電流値切換停止信号
S4 又は交流電圧成分検出信号S3 が入力されていると
きには充電末期電圧検出器4から充電末期電圧検出信号
S2 が出力されていても、電流値切換指令信号S1 を出
力しないように構成されている。したがって、蓄電池B
の内部抵抗が高くて蓄電池Bに逆電圧が印加されている
間は、電流値切換回路2によって充電電流が微小充電電
流に切換られることはない。
As a general rule, the current value switching control circuit 3 outputs the current value switching command signal S1 when the terminal charging voltage detector 4 outputs the terminal charging voltage detection signal S2, but detects the current value switching stop signal S4 or the AC voltage component detection. When the signal S3 is input, even if the end-of-charge voltage detector 4 outputs the end-of-charge voltage detection signal S2, the current value switching command signal S1 is not output. Therefore, the storage battery B
While the internal resistance is high and the reverse voltage is applied to the storage battery B, the charging current is not switched to the minute charging current by the current value switching circuit 2.

次に第1図の装置の動作について説明する。まず第2図
は、内部抵抗が高い過放電放置電池を本発明によって充
電した時の充電特性を示している。この電池は内部抵抗
が約300Ωになった4V−4Ahの密閉形鉛蓄電池で
あり、スイッチSWが閉じられると、蓄電池Bに充電電
圧が印加されるが、内部抵抗が高い場合には、ほとんど
充電電流Iが流れることはなく、充電電圧Vは充電末期
電圧Vs よりもかなり大きな状態にある。したがって充
電末期電圧検出器4は直ちに充電末期電圧検出信号S2
を電流値切換制御回路3に出力する。このときの充電電
圧Vの交流電圧成分は、かなり基準値よりも大きな値に
なっている。したがって、交流電圧成分検出器5から
も、交流電圧成分検出信号S3 が出力され、該検出信号
S3 が電流値切換制御回路3及び電圧極性切換回路6に
入力される。電圧極性切換回路6は、上記の検出信号S
3 を所定期間受けると、所定の期間(実施例では約15
分間)だけ電流値切換停止信号S4 と電圧極性切換信号
S5 とを出力する。
Next, the operation of the apparatus shown in FIG. 1 will be described. First, FIG. 2 shows charging characteristics when an over-discharged battery having a high internal resistance was charged according to the present invention. This battery is a sealed lead-acid battery of 4V-4Ah with an internal resistance of about 300Ω. When the switch SW is closed, the charging voltage is applied to the battery B, but when the internal resistance is high, the battery is almost charged. The current I does not flow, and the charging voltage V is considerably higher than the terminal charging voltage Vs. Therefore, the end-of-charge voltage detector 4 immediately detects the end-of-charge voltage detection signal S2.
Is output to the current value switching control circuit 3. The AC voltage component of the charging voltage V at this time is considerably larger than the reference value. Therefore, the AC voltage component detector 5 also outputs the AC voltage component detection signal S3, and the detection signal S3 is input to the current value switching control circuit 3 and the voltage polarity switching circuit 6. The voltage polarity switching circuit 6 uses the above detection signal S
3 is received for a predetermined period, a predetermined period (about 15 in the embodiment)
The current value switching stop signal S4 and the voltage polarity switching signal S5 are output only for (minutes).

電流値切換制御回路3は、電流値切換停止信号S4 又は
交流電圧成分検出信号S3 が入力されている間は、充電
末期電圧検出器4から信号S2 が出力されていても、電
流値切換指令信号S1 を出力しない。よって電流値切換
回路2は、通常の充電電流を流すインピーダンスのまま
に保持される。電圧極性切換回路6から電圧極性切換信
号S5 がコイルLに通電されると、スイッチSW1 及び
SW2 は接点b側に切換わり、電池Bには逆極性の電圧
が印加されることになる。スイッチSW1 及びSW2 が
切換わった場合でも、電圧極性切換回路6は、予め設定
した時間長の期間が経過するまでは、信号S4 及びS5
を出力し続けるように構成されている。本実施例におい
ては、この期間は約15分の時間長に設定されている。
この時間は逆電圧を印加した場合に、蓄電池と電池電圧
すなわち端子電圧が逆極性となり過放電放置電池の内部
抵抗が適宜低くなるのに必要な時間であり、電池の種類
及び温度等に応じて適宜に設定される。
While the current value switching stop signal S4 or the AC voltage component detection signal S3 is input, the current value switching control circuit 3 outputs the current value switching command signal even if the signal S2 is output from the end-of-charge voltage detector 4. Do not output S1. Therefore, the current value switching circuit 2 is maintained as an impedance that allows a normal charging current to flow. When the voltage polarity switching signal S5 is applied to the coil L from the voltage polarity switching circuit 6, the switches SW1 and SW2 are switched to the contact b side, and the voltage of the reverse polarity is applied to the battery B. Even when the switches SW1 and SW2 are switched, the voltage polarity switching circuit 6 keeps the signals S4 and S5 until the preset time length period elapses.
Is configured to continue to output. In this embodiment, this period is set to a time length of about 15 minutes.
This time is the time required for the battery voltage and the battery voltage, that is, the terminal voltage, to have opposite polarities when the reverse voltage is applied, and for the internal resistance of the over-discharged battery to appropriately decrease, depending on the type and temperature of the battery. It is set appropriately.

上記の期間が経過すると、電圧極性切換回路6からの信
号S4 及びS5 の出力が停止されてスイッチSW1 及び
SW2 が接点a側に切換わり、電池Bには正規の極性の
充電電圧が印加されるようになる。
When the above period elapses, the output of the signals S4 and S5 from the voltage polarity switching circuit 6 is stopped, the switches SW1 and SW2 are switched to the contact a side, and the charging voltage of the regular polarity is applied to the battery B. Like

ところが、第2図の充電例の場合は、前記1回(約15
分間)の逆充電によっては電池Bの内部抵抗が未だ充分
に低下していなくて、電池Bに正規極性の充電電圧が印
加されると、交流電圧成分検出器5から再び検出信号S
3 が出力される。これにより、電圧極性切換回路6が前
述と同様に動作して、再度約15分間の逆充電が行われ
た後、電池Bに正規極性の充電電圧が印加される。この
2回の逆充電によって電池Bの内部抵抗は充分低くなっ
ているため、交流電圧成分検出器5から検出信号S30が
出力されず、また充電末期電圧検出器4からも検出信号
S2 が出力されることはない。よって以後は通常の充電
と同じようにして充電が行われ、充電電圧Vが充電末期
電圧Vs に達すると、充電末期電圧検出器4が検出信号
S2 を出力し、この信号S2 を受けて電流値切換制御回
路3は電流値切換信号S1 を電流値切換回路2に出力す
る。その結果充電電流Iは微小充電電流に切換わり、ト
リクル充電に入る。
However, in the case of the charging example shown in FIG.
The internal resistance of the battery B has not yet been sufficiently reduced by the reverse charge of (between minutes), and when the charging voltage of the normal polarity is applied to the battery B, the detection signal S is detected again from the AC voltage component detector 5.
3 is output. As a result, the voltage polarity switching circuit 6 operates in the same manner as described above, the reverse charging is performed again for about 15 minutes, and then the charging voltage having the normal polarity is applied to the battery B. Since the internal resistance of the battery B has become sufficiently low by these two reverse charges, the detection signal S30 is not output from the AC voltage component detector 5, and the detection signal S2 is also output from the end-of-charge voltage detector 4. There is no such thing. Therefore, after that, charging is performed in the same manner as normal charging, and when the charging voltage V reaches the end-of-charge voltage Vs, the end-of-charge voltage detector 4 outputs a detection signal S2, and the current value is received in response to this signal S2. The switching control circuit 3 outputs the current value switching signal S1 to the current value switching circuit 2. As a result, the charging current I is switched to a minute charging current, and trickle charging is started.

次に、第3図は第2図の電池と同形の電池で内部抵抗が
極めて高くなった(約1600Ω)過放電放置電池Bを
本発明により充電したときの充電特性を示したもので、
前述のような1回約15分間の逆充電を4回繰り返し行
なって始めて電池Bの内部抵抗が所期のように低下し
て、通常の充電が行われた後、トリクル充電に入ってい
る状態を示している。
Next, FIG. 3 shows charging characteristics when an over-discharged battery B having the same shape as that of FIG. 2 and having an extremely high internal resistance (about 1600Ω) was charged according to the present invention.
The state where the internal resistance of the battery B decreases as expected and the normal charge is performed and then the trickle charge is started after the reverse charge of about 15 minutes is repeated four times as described above. Is shown.

第4図は、内部抵抗が比較的低い過放電放置電池を本発
明によって充電した時の充電特性を示したものである。
この電池は内部抵抗が約10Ωになった前記と同形の電
池であり、内部抵抗がこの程度に低い場合には、十分に
正常な充電を行うことができるから、逆充電を行う必要
はない。内部抵抗が小さい電池では、充電電圧が充電末
期電圧VS 以下になっており、また交流電圧成分も小さ
くなっているので、当然交流電圧成分検出器5及び充電
末期電圧検出器4から検出信号が出力されることはな
く、通常の充電が行われる。
FIG. 4 shows charging characteristics when an over-discharged battery having a relatively low internal resistance was charged according to the present invention.
This battery is a battery of the same shape as described above having an internal resistance of about 10Ω, and when the internal resistance is as low as this, it is possible to perform sufficiently normal charging, and therefore it is not necessary to perform reverse charging. In a battery with a small internal resistance, the charging voltage is less than the end-of-charge voltage VS and the AC voltage component is also small, so naturally the detection signals are output from the AC voltage component detector 5 and the end-of-charge voltage detector 4. No charging is performed, and normal charging is performed.

(具体的実施例) 第5図は、第1図の実施例の直流電源部分を除いた具体
的な回路構成を示している。同図において、第1図の構
成と同じ部分には、第1図に示した符号と同じ符号が付
してある。電流値切換回路2は、抵抗R1 〜R3 とトラ
ンジスタTr1 及びTr2 とから構成される。なお抵抗
値は、R1 >R2 の関係にある。トランジスタTr1 が
導通しているときには抵抗R2 と抵抗R1 とが並列に充
電回路に挿入されて大きな充電電流が流され、トランジ
スタTr1 が遮断すると抵抗R1 を通して微小充電電流
が流される。トランジスタTr1 が導通すると、後述の
発光ダイオードLEDが発光して充電状態を表示する。
(Specific Embodiment) FIG. 5 shows a specific circuit configuration of the embodiment of FIG. 1 excluding the DC power source portion. In the figure, the same parts as those in the configuration of FIG. 1 are designated by the same reference numerals as those shown in FIG. The current value switching circuit 2 is composed of resistors R1 to R3 and transistors Tr1 and Tr2. The resistance values have a relation of R1> R2. When the transistor Tr1 is conducting, the resistor R2 and the resistor R1 are inserted in parallel in the charging circuit to allow a large charging current to flow, and when the transistor Tr1 is cut off, a minute charging current flows through the resistor R1. When the transistor Tr1 becomes conductive, a light emitting diode LED, which will be described later, emits light to display the charging state.

電流値切換制御回路3はトランジスタTr3 〜Tr5,発
光ダイオードLED、ダイオードD6 ,D10及び抵抗R
4 〜R8 等から構成され、充電末期電圧検出信号S2 ,
交流電圧成分検出信号S3 及び電流値切換停止信号S4
の何れもが入力されないとき、抵抗R7 を通してトラン
ジスタTr4 にベース電流が流されてトランジスタTr
4 が導通することにより、電流値切換回路2のトランジ
スタTr1 に導通信号が与えられる。
The current value switching control circuit 3 includes transistors Tr3 to Tr5, a light emitting diode LED, diodes D6 and D10 and a resistor R.
4 to R8, etc., and has a terminal voltage detection signal S2,
AC voltage component detection signal S3 and current value switching stop signal S4
When neither of the above is input, the base current is made to flow to the transistor Tr4 through the resistor R7 and the transistor Tr4 is
When 4 becomes conductive, a conduction signal is given to the transistor Tr1 of the current value switching circuit 2.

充電末期電圧検出器4は、ツェナーダイオードZD1 ,
サイリスタSCR1 ,抵抗R9 〜R11、及びコンデンサ
C4 等で構成されていて、ツエナーダイオードZD1 に
は充電電圧が印加される。充電電圧が充電末期電圧以上
あって、充電電圧がツエナーダイオードZD1 のツエー
ナ電圧を越えると、ツエナーダイオードZD1 が導通し
て、サイリスタSCR1 のゲートに点弧信号が供給され
る。その結果、サイリスタSCR1 が導通して、トラン
ジスタTr4 を遮断する。もしこのときに、電池Bの内
部抵抗が低く、交流電圧成分検出器5が交流電圧成分検
出信号S3 を出力していない場合には、トランジスタT
r3 が非導通状態になっているため、トランジスタTr
4 の遮断によって電流値切換回路2 のトランジスタTr
1 が遮断状態となって微小充電電流の充電に切換わる。
The end-of-charge voltage detector 4 includes a Zener diode ZD1,
A thyristor SCR1, resistors R9 to R11, a capacitor C4, etc. are provided, and a charging voltage is applied to the Zener diode ZD1. When the charging voltage is equal to or higher than the end-of-charging voltage and the charging voltage exceeds the zener voltage of the zener diode ZD1, the zener diode ZD1 becomes conductive and the ignition signal is supplied to the gate of the thyristor SCR1. As a result, the thyristor SCR1 becomes conductive and the transistor Tr4 is cut off. At this time, if the internal resistance of the battery B is low and the AC voltage component detector 5 does not output the AC voltage component detection signal S3, the transistor T
Since r3 is non-conducting, the transistor Tr
Transistor Tr of current value switching circuit 2 by shutting off 4
1 turns off and switches to charging with a small charging current.

電池Bの内部抵抗が大きい場合には、交流電圧成分検出
器5が交流電圧成分検出信号S3 を出力するため、トラ
ンジスタTr3 が導通状態にあり、トランジスタTr4
が遮断したとしてもトランジスタTr1 の遮断は阻止さ
れる。
When the internal resistance of the battery B is large, the AC voltage component detector 5 outputs the AC voltage component detection signal S3, so that the transistor Tr3 is in the conducting state and the transistor Tr4
Even if is cut off, the cutoff of the transistor Tr1 is blocked.

交流電圧成分検出器5は、オペアンプOP1 ,OP2 ,
ダイオードD9 、可変抵抗器VR1 、コンデンサC6 ,
C7 、及び抵抗R21〜R26等で構成されている。そして
コンデンサC6 と抵抗R21とにより充電電圧から直流分
を引いて、交流電圧成分だけを入力とする。オペアンプ
OP1 を通して所定の値に増幅された交流電圧成分は、
コンデンサC7 を充電し、コンデンサC7 の端子電圧が
比較器を構成するオペアンプOP2 の+入力端子に入力
され、可変抵抗器VR1 によって構成される第1の基準
電圧設定器から出力される基準電圧と比較される。この
基準電圧は、予め蓄電池の内部抵抗と交流電圧成分との
関係を調べておき、逆充電が必要な内部抵抗に相応する
交流電圧成分に相当する電圧値である。したがって、電
池の内部抵抗が逆充電を必要とする程度に高い場合に
は、オペアンプOP2 から検出信号S3 が出力される。
The AC voltage component detector 5 includes operational amplifiers OP1, OP2,
Diode D9, variable resistor VR1, capacitor C6,
It is composed of C7 and resistors R21 to R26. Then, the DC component is subtracted from the charging voltage by the capacitor C6 and the resistor R21, and only the AC voltage component is input. The AC voltage component amplified to a predetermined value through the operational amplifier OP1 is
The capacitor C7 is charged, and the terminal voltage of the capacitor C7 is input to the + input terminal of the operational amplifier OP2 forming the comparator and compared with the reference voltage output from the first reference voltage setter formed by the variable resistor VR1. To be done. This reference voltage is a voltage value corresponding to an AC voltage component corresponding to the internal resistance that needs to be reverse-charged by previously examining the relationship between the internal resistance of the storage battery and the AC voltage component. Therefore, when the internal resistance of the battery is high enough to require reverse charging, the operational amplifier OP2 outputs the detection signal S3.

検出信号S3 が出力されると、電流値切換制御回路3の
トランジスタTr3 が導通して、トランジスタTr1 の
遮断が阻止される。
When the detection signal S3 is output, the transistor Tr3 of the current value switching control circuit 3 becomes conductive and the cutoff of the transistor Tr1 is blocked.

電圧極性切換回路6は、抵抗R13,R14及びコンデンサ
C5 等からなるコンデンサ充放電回路、オペアンプOP
3 ,OP4 、トランジスタTr6 、可変抵抗器VR2 、
抵抗R15〜R20、及びリレーのコイルL等で構成されて
いる。
The voltage polarity switching circuit 6 includes a capacitor charging / discharging circuit including resistors R13 and R14 and a capacitor C5, an operational amplifier OP.
3, OP4, transistor Tr6, variable resistor VR2,
It is composed of resistors R15 to R20 and a coil L of a relay.

そして、交流電圧成分検出信号S3 が出力されると、該
信号電圧により抵抗R13を通して一定の時定数でコンデ
ンサC5 が充電され、該信号電圧が消滅すると蓄積電荷
が抵抗R14を通して一定の時定数で放電される。即ち、
コンデンサC5 の端子電圧の上昇・低下は、それぞれ抵
抗R13,R14の抵抗値及びコンデンサC5 の容量により
定まる所定の時間かかって行われる。これらの時間の設
定により、電池Bに対する逆電圧印加の開始時期及び印
加期間が所要の条件に設定される。第6図は逆電圧印加
を繰り返し行っている場合のコンデンサC5 の端子電圧
の変化を示したものである。可変抵抗器VR2 は第2の
基準電圧設定器を構成して、コンデンサC 5の所定の端
子電圧と一定の関係をもつ大きさの基準電圧をオペアン
プOP4 の一方の入力として与えるもので、オペアンプ
OP4 はこの基準電圧に基づいて入力電圧の大きさが所
定の範囲にある間だけ出力信号を生ずる。即ち、入出力
の関係がヒステリシス特性をもつ所謂、ウインドウコン
パレータの作用をするものである。第6図により説明す
ると、コンデンサC5 の端子電圧が第1の電圧値E1 に
まで上昇するとオペアンプOP4 から信号が出力され、
この出力信号はコンデンサC5 の端子電圧が第2の電圧
値E2 に低下するまで続く。この出力信号がある間、ト
ランジスタTr6 が導通することによりコイルLに励磁
電流が通電されて、スイッチSW1 及びSW2 が切換わ
り、電池Bに逆電圧が印加される。そして、オペアンプ
OP4 からの出力が停止した時点で、トランジスタTR
6 が遮断してスイッチSW1 及びSW2 が接点a側に切
換わり、逆充電が停止される。
When the AC voltage component detection signal S3 is output, the signal voltage charges the capacitor C5 through the resistor R13 with a constant time constant, and when the signal voltage disappears, the accumulated charge is discharged through the resistor R14 with a constant time constant. To be done. That is,
The rise and fall of the terminal voltage of the capacitor C5 are carried out over a predetermined time determined by the resistance values of the resistors R13 and R14 and the capacitance of the capacitor C5. By setting these times, the start timing and application period of the reverse voltage application to the battery B are set to the required conditions. FIG. 6 shows changes in the terminal voltage of the capacitor C5 when the reverse voltage application is repeated. The variable resistor VR2 constitutes a second reference voltage setting device and gives a reference voltage of a magnitude having a fixed relation to a predetermined terminal voltage of the capacitor C5 as one input of the operational amplifier OP4. Produces an output signal based on this reference voltage only while the magnitude of the input voltage is within a predetermined range. That is, the input / output relationship acts as a so-called window comparator having a hysteresis characteristic. Referring to FIG. 6, when the terminal voltage of the capacitor C5 rises to the first voltage value E1, a signal is output from the operational amplifier OP4,
This output signal continues until the terminal voltage of the capacitor C5 drops to the second voltage value E2. While this output signal is present, the transistor Tr6 is turned on, so that an exciting current is passed through the coil L, the switches SW1 and SW2 are switched, and a reverse voltage is applied to the battery B. Then, when the output from the operational amplifier OP4 is stopped, the transistor TR
6 is cut off, switches SW1 and SW2 are switched to the contact a side, and reverse charging is stopped.

他方、オペアンプOP4 からの出力により、電流値切換
制御回路3の抵抗R5 及び抵抗R8 を通してトランジス
タTr3 及びTr5 に導通信号(電流値切換停止信号S
4 )が与えられてこれらのトランジスタは導通する。ト
ランジスタTr5 は、逆充電期間中、サイリスタSCR
1 のアノードカソード間を短絡してサイリスタSCR1
を遮断させる機能を果たしている。これは逆充電から正
常な充電に戻った際に、サイリスタSCR1 が導通して
いると、微小充電電流によるトリクル充電に入ってしま
うため、これを防止するためである。オペアンプOP4
の出力が無くなると、トランジスタTr3 ,Tr5 及び
Tr6 は遮断して、通常の充電に戻る。
On the other hand, due to the output from the operational amplifier OP4, a conduction signal (current value switching stop signal S) is sent to the transistors Tr3 and Tr5 through the resistors R5 and R8 of the current value switching control circuit 3.
4) is applied, these transistors become conductive. The transistor Tr5 keeps the thyristor SCR during the reverse charging period.
Thyristor SCR1 by shorting the anode and cathode of 1
Plays the function of shutting off. This is because if the thyristor SCR1 is conducting when the reverse charging is returned to the normal charging, trickle charging due to a minute charging current is started, and this is prevented. Operational amplifier OP4
When the output of is lost, the transistors Tr3, Tr5 and Tr6 are cut off and the normal charging is resumed.

なお上記実施例においては、スイッチSW1 ,SW2 を
電磁スイッチで構成したが、これらのスイッチとして半
導体スイッチ回路を用いてもよいのは勿論である。
Although the switches SW1 and SW2 are electromagnetic switches in the above embodiment, it goes without saying that semiconductor switch circuits may be used as these switches.

[発明の効果] 本発明によれば、逆充電が必要な内部抵抗の高い過放電
放置電池に対して、その内部抵抗を高さ度合に応じて適
切な時間長の逆充電を行うことができる。これにより、
内部抵抗がそれ程高くない電池において、必要以上の長
時間の逆充電により、充電時間の増加、充電時の発熱増
大、あるいは電池寿命の低下等が生ずるのを未然に防止
することができる。また、逆充電が不要な内部抵抗の低
い過放電放置電池を逆充電を行うことなく通常の充電方
法で迅速に充電することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to perform reverse charging of an overdischarge left-over battery having a high internal resistance that requires reverse charging for an appropriate length of time depending on the height of the internal resistance. . This allows
In a battery whose internal resistance is not so high, it is possible to prevent increase in charging time, increase in heat generation during charging, or decrease in battery life due to reverse charging for a longer time than necessary. In addition, an over-discharged battery that does not require reverse charging and has a low internal resistance can be quickly charged by a normal charging method without performing reverse charging.

また本発明の装置によれば、簡単な構成で本発明の方法
を確実に実施することができる利点がある。
Further, the apparatus of the present invention has an advantage that the method of the present invention can be reliably performed with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の概略構成図、第2図は内部
抵抗が高い過放電放置電池を第1図の実施例で充電した
場合の充電特性を示す図、第3図は内部抵抗が極めて高
い過放電放置電池を第1図の実施例で充電した場合の充
電特性を示す図、第4図は内部抵抗が低い過放電放置電
池を第1図の実施例で充電した場合の充電特性を示す
図、第5図は第1図の実施例の具体的な回路図、第6図
は第5図における電圧極性切換回路のコンデンサ電圧の
変化を示す図、第7図は従来の充電装置の概略構成を示
す図、第8図及び第9図はそれぞれ内部抵抗の異なる過
放電放置電池に対して一律に1時間の逆充電を行なった
場合の充電特性の異なる例を示す図、第10図は1時間
の逆充電後に通常の充電を行なって電池性能の回復した
蓄電池の回復後のサイクル寿命特性を示す図である。 1……整流回路、2……電流値切換回路、3……電流値
切換制御回路、4……充電末期電圧検出器、5……交流
電圧成分検出器、6……電圧極性切換回路、SW1 、S
W2 ……極性切換スイッチ回路、B……密閉形鉛蓄電
池。
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 is a diagram showing charging characteristics when an over-discharged battery having a high internal resistance is charged in the embodiment of FIG. 1, and FIG. FIG. 4 is a diagram showing the charging characteristics when an over-discharged battery having an extremely high resistance was charged in the embodiment of FIG. 1, and FIG. 4 is a graph showing an over-discharged battery having a low internal resistance when charged in the embodiment of FIG. FIG. 5 is a diagram showing charging characteristics, FIG. 5 is a concrete circuit diagram of the embodiment shown in FIG. 1, FIG. 6 is a diagram showing changes in the capacitor voltage of the voltage polarity switching circuit in FIG. 5, and FIG. FIG. 8 is a diagram showing a schematic configuration of a charging device, FIGS. 8 and 9 are diagrams showing different examples of charging characteristics when reverse charging is uniformly performed for over-discharged batteries having different internal resistances, Figure 10 shows the battery after recovery of the battery performance after normal charging after 1 hour of reverse charging. It is a diagram showing a cycle life characteristic. 1 ... Rectifier circuit, 2 ... Current value switching circuit, 3 ... Current value switching control circuit, 4 ... End-of-charge voltage detector, 5 ... AC voltage component detector, 6 ... Voltage polarity switching circuit, SW1 , S
W2: Polarity switch circuit, B: Sealed lead acid battery.

フロントページの続き (72)発明者 弘中 健介 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿2丁目1番1号 新神 戸電機株式会社内Front page continuation (72) Inventor Kensuke Hironaka 2-1-1 Nishishinjuku, Shinjuku-ku, Tokyo Inside Shin-Kamido Electric Co., Ltd. (72) Akio Komaki 2-1-1 Nishishinjuku, Shinjuku-ku, Tokyo New Inside Kando Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】充電電圧が充電末期電圧になると充電電流
を微小充電電流に切換えて充電を行う密閉形鉛蓄電池の
充電方法において、 出力に交流電圧成分を含む直流電源を用いて前記蓄電池
の充電電圧の交流電圧成分が基準値以上あるときには所
定の充電期間強制的に充電電流を流す充電動作を行い、 前記充電期間中に前記交流電圧成分が前記基準値より小
さくならない場合には電池電圧が逆極性になるまで逆極
性電圧を所定の期間前記蓄電池に印加する逆電圧印加動
作を行い、 前記交流電圧成分が前記基準値より小さくなるまで前記
充電動作と逆電圧印加動作とを繰り返し、前記交流電圧
成分が前記基準値より小さくなった場合に通常の充電動
作を行うことを特徴とする密閉形鉛蓄電池の充電方法。
1. A method for charging a sealed lead-acid battery, wherein charging is performed by switching a charging current to a minute charging current when the charging voltage reaches an end-of-charging voltage, and the battery is charged by using a DC power supply containing an AC voltage component in its output. When the AC voltage component of the voltage is equal to or higher than the reference value, a charging operation is performed in which a charging current is forced to flow for a predetermined charging period, and when the AC voltage component does not become smaller than the reference value during the charging period, the battery voltage is reversed. A reverse voltage application operation of applying a reverse polarity voltage to the storage battery for a predetermined period until it becomes a polarity is performed, and the charging operation and the reverse voltage application operation are repeated until the AC voltage component becomes smaller than the reference value, and the AC voltage A method for charging a sealed lead-acid battery, comprising performing a normal charging operation when the components become smaller than the reference value.
【請求項2】交流電源ACの出力を整流して交流電圧成
分を含んだ直流電圧を出力する直流電源1と、 密閉形鉛蓄電池Bの充電電圧を検出して該充電電圧が充
電末期電圧を越えると充電末期電圧検出信号S2 を出力
する充電末期電圧検出器4と、 前記充電末期電圧検出信号S2 が出力されると電流値切
換指令信号S1 を出力する電流値切換制御回路3と、 前記電流値切換指令信号S1 が入力されると充電電流を
微小充電電流に切換える電流値切換回路2とを具備して
なる密閉形鉛蓄電池用充電装置において、 前記電流値切換回路2と前記蓄電池Bとの間に設けられ
て電圧極性切換信号S5 が出力されている期間だけ前記
充電電圧を逆極性で前記蓄電池Bに印加する極性切換ス
イッチ回路(SW1 ,SW2 )と、 前記充電電圧から交流電圧成分を検出して該交流電圧成
分が基準値より大きいときに交流電圧成分検出信号S3
を出力する交流電圧成分検出器5と、 前記充電電圧が正極性で前記蓄電池Bに印加されている
所定の充電期間に前記交流電圧成分が前記基準値より小
さくならない場合には所定の期間前記極性切換スイッチ
回路に前記電圧極性切換信号S5 を出力するとともに前
記電流値切換制御回路3に電流値切換停止信号S4 を出
力する電圧極性切換回路6とを設け、 前記電流値切換制御回路3を前記電流値切換停止信号S
4 または前記交流電圧成分検出信号S3 が入力されてい
るときには前記電流値切換指令信号S1 を出力しないよ
うに構成したことを特徴とする密閉形鉛蓄電池用充電装
置。
2. A DC power supply 1 for rectifying an output of an AC power supply AC to output a DC voltage containing an AC voltage component, and a charging voltage of a sealed lead-acid battery B is detected, and the charging voltage is determined as a terminal charging voltage. An end-of-charge voltage detector 4 that outputs an end-of-charge voltage detection signal S2 when it exceeds, a current-value switching control circuit 3 that outputs a current-value switching command signal S1 when the end-of-charge voltage detection signal S2 is output, and the current In a sealed lead acid battery charging device comprising a current value switching circuit 2 for switching a charging current to a minute charging current when a value switching command signal S1 is input, the current value switching circuit 2 and the storage battery B are connected to each other. A polarity changeover switch circuit (SW1, SW2) which is provided between them and applies the charging voltage to the storage battery B in reverse polarity only during the period when the voltage polarity switching signal S5 is output, and an AC voltage component from the charging voltage. When the detected and detected AC voltage component is larger than the reference value, the AC voltage component detection signal S3
And an AC voltage component detector 5 that outputs the polarity, and the polarity for a predetermined period when the AC voltage component does not become smaller than the reference value during a predetermined charging period in which the charging voltage is positive and is applied to the storage battery B. A voltage polarity switching circuit 6 that outputs the voltage polarity switching signal S5 to the switching switch circuit and outputs a current value switching stop signal S4 to the current value switching control circuit 3 is provided, and the current value switching control circuit 3 is switched to the current Value switching stop signal S
4 or a charging device for a sealed lead storage battery, characterized in that the current value switching command signal S1 is not output when the AC voltage component detection signal S3 is input.
【請求項3】前記電圧極性切換回路は、前記交流電圧成
分検出器5から出力される前記交流電圧成分検出信号S
3 によって一定の時定数で充電されるコンデンサと、該
コンデンサの電荷を一定の時定数で放電するコンデンサ
放電回路と、前記コンデンサの充電電圧が第1の電圧値
に達した後に放電電圧が第2の電圧値に達するまでの間
前記電圧極性切換信号S5 及び前記電流値切換停止信号
S4 を出力するウインドウコンパレータ回路とからなる
特許請求の範囲第2項に記載の密閉形鉛蓄電池用充電装
置。
3. The voltage polarity switching circuit outputs the AC voltage component detection signal S output from the AC voltage component detector 5.
3, a capacitor charged with a constant time constant by 3, a capacitor discharge circuit for discharging the charge of the capacitor with a constant time constant, and a discharge voltage of the second voltage after the charge voltage of the capacitor reaches a first voltage value. 3. The sealed lead acid battery charging device according to claim 2, further comprising a window comparator circuit that outputs the voltage polarity switching signal S5 and the current value switching stop signal S4 until the voltage value of 4 is reached.
JP62292390A 1987-11-19 1987-11-19 Sealing lead-acid battery charging method and charging device Expired - Lifetime JPH0618471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292390A JPH0618471B2 (en) 1987-11-19 1987-11-19 Sealing lead-acid battery charging method and charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292390A JPH0618471B2 (en) 1987-11-19 1987-11-19 Sealing lead-acid battery charging method and charging device

Publications (2)

Publication Number Publication Date
JPH01136533A JPH01136533A (en) 1989-05-29
JPH0618471B2 true JPH0618471B2 (en) 1994-03-09

Family

ID=17781171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292390A Expired - Lifetime JPH0618471B2 (en) 1987-11-19 1987-11-19 Sealing lead-acid battery charging method and charging device

Country Status (1)

Country Link
JP (1) JPH0618471B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151149A1 (en) * 2013-03-15 2014-09-25 General Atomics An apparatus and method for use in storing energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003061293A1 (en) 2002-01-17 2003-07-24 Koninklijke Philips Electronics N.V. Unit for and method of estimating a current motion vector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014151149A1 (en) * 2013-03-15 2014-09-25 General Atomics An apparatus and method for use in storing energy

Also Published As

Publication number Publication date
JPH01136533A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
US4354148A (en) Apparatus for charging rechargeable battery
JPH0956080A (en) Battery charger
JPH0618471B2 (en) Sealing lead-acid battery charging method and charging device
JP3096319B2 (en) Quick charger
JP3517708B2 (en) Power supply using solar cells
JP3952585B2 (en) Secondary battery charger
JPH0727805Y2 (en) Sealed lead acid battery charger
JP2525653B2 (en) Charger
JP3642105B2 (en) Battery pack
JPH04281334A (en) Quick charger
JP3003210B2 (en) How to charge lead storage batteries
JPS63140631A (en) Charger with overcharging-proof function
JPH0773062B2 (en) Sealing lead-acid battery charging method and charging device
JPH0618470B2 (en) Sealing lead-acid battery charging method and charging device
JP2672100B2 (en) Charge controller for rechargeable vacuum cleaner
JP2747601B2 (en) Battery charger
JP2543063B2 (en) Charger
JPH079567Y2 (en) Lead acid battery charger
JPH1014123A (en) Charging circuit of secondary battery
JPH0618469B2 (en) Sealed lead acid battery charger
JPH01107625A (en) Charging circuit
JP2524258B2 (en) Power adapter with charging and discharging functions
JPH0618468B2 (en) Sealed lead acid battery charger
JPH0618466B2 (en) Sealed lead acid battery charger
JPH0618467B2 (en) Sealed lead acid battery charger

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 14