JPH06180304A - Magnetism sensing method - Google Patents

Magnetism sensing method

Info

Publication number
JPH06180304A
JPH06180304A JP33184492A JP33184492A JPH06180304A JP H06180304 A JPH06180304 A JP H06180304A JP 33184492 A JP33184492 A JP 33184492A JP 33184492 A JP33184492 A JP 33184492A JP H06180304 A JPH06180304 A JP H06180304A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
coercive force
detected
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33184492A
Other languages
Japanese (ja)
Other versions
JP3283930B2 (en
Inventor
Naoki Kamiyama
直樹 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glory Ltd
Original Assignee
Glory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glory Ltd filed Critical Glory Ltd
Priority to JP33184492A priority Critical patent/JP3283930B2/en
Publication of JPH06180304A publication Critical patent/JPH06180304A/en
Application granted granted Critical
Publication of JP3283930B2 publication Critical patent/JP3283930B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To sense the magnetism of a specimen and the range of coercive force by making a magnetic sensor with a biased positive field pass after a magnetic specimen is saturated negative to judge whether or not the coercive force of the specimen is larger than an impressed field and then by making a magnetic sensor with a biased field close to the coercive force of the specimen pass to detect a change in output. CONSTITUTION:After a bill (magnetic substance) is moved in the arrow direction and saturated negative by a magnet 10 at position A, a coercive force of the bill is detected by a differential magnetoresistance element MR 120 with a positive field biased by a magnet 30 at position B. Further, a coercive force of the bill is detected at position C by a magnetoresistance element MR 240 with a field close to the coercive force of the bill biased by a magneto 50, so that the range of coercive forces inherit to the bill is restricted. Analyzing a saturation magnetization curve and a mode of each differential magnetoresistance element signal enables sensing of a magnetism without being affected by a presensing residual magnetization state and judgment of false and truth from a magnetism pattern and a magnetism of the bill.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気質検知方法に係
り、特に紙幣等の印刷インクに含まれる磁性体の磁気質
の検出に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting magnetic properties, and more particularly to detection of magnetic properties of magnetic materials contained in printing ink such as banknotes.

【0002】[0002]

【従来の技術】近年、複写技術の進歩は目覚ましく、紙
幣、小切手等の有価証券が複写により、悪用されるとい
う問題が生じてきている。
2. Description of the Related Art In recent years, the progress of copying technology has been remarkable, and there has been a problem that securities such as banknotes and checks are misused by copying.

【0003】そこで、このような紙葉類の識別のための
研究が急速に進められている。
Therefore, research for identifying such paper sheets is being rapidly advanced.

【0004】例えば、紙幣の識別には、光による識別と
磁気による識別との2つが用いられている。
For example, for identifying bills, there are two types of identification, that is, identification by light and identification by magnetism.

【0005】これらのうち、磁気による識別は、紙幣に
はなんらかの形で磁性インクが用いられていることを利
用し、この磁性インクの分布を検出することにより紙幣
識別を行うものである。
Among these, the magnetic identification uses the fact that the magnetic ink is used in some form for the bill, and the bill is identified by detecting the distribution of the magnetic ink.

【0006】例えば、従来は、あらかじめ磁石を用いて
紙幣に磁界を与え、その磁界を取り去った後の残留磁束
密度により、真性な磁性体であるか磁気鉛筆あるいは磁
気コピーなどを使用したものであるかを判別するという
方法がある。(特開昭52−152793号)しかしな
がら、上述したような方法では、単に残留磁束密度しか
みていないため、磁気鉛筆で淡く塗られた場合などは残
留磁束密度が磁気インクと同程度となり、確実な識別が
できないという問題があった。
[0006] For example, conventionally, a magnetic field is applied to a bill in advance by using a magnet, and a magnetic pencil or a magnetic copy is used because of the residual magnetic flux density after removing the magnetic field. There is a method of determining whether or not. (Japanese Patent Laid-Open No. 52-152793) However, in the method as described above, since only the residual magnetic flux density is observed, the residual magnetic flux density becomes approximately the same as that of the magnetic ink when it is lightly painted with a magnetic pencil, which is reliable. There was a problem that it could not be identified.

【0007】また、一般に、磁性体の測定装置によれ
ば、残留磁束密度、保磁力等を測定することができる
が、被測定物は静止させておかねばならず、また測定に
ある程度時間がかかり、特定の磁気質を有するか否かの
みを判断したい場合には、操作が複雑である上、ある程
度の質量がないと測定することができず、紙幣の磁気イ
ンクなどの磁性体の磁気質は測定できないという問題が
あった。
[0007] In general, a magnetic measuring device can measure the residual magnetic flux density, the coercive force, etc., but the object to be measured must be stationary, and the measurement takes some time. , If you only want to determine whether or not you have a certain magnetic quality, the operation is complicated, and it is impossible to measure without a certain amount of mass, and the magnetic quality of magnetic materials such as magnetic ink of banknotes is There was a problem that it could not be measured.

【0008】そこで、本発明者らは、簡単な装置で容易
に磁性体の磁気質を検出する方法を提供すべく、磁束分
布の変化を測定する磁気センサと、磁気センサよりも上
流側に配設されかつ、検出しようとする磁性体にその保
磁力よりも絶対値の大きな飽和磁界を印加する第1の磁
石と、磁気センサの近傍に配設され、第1の磁石と反対
の極性であって検出しようとする磁性体のその保磁力に
等しい値の磁界を印加する第2の磁石とを具備し、目的
とする磁性体が通過するときには、磁気センサからの出
力が出ないようにすることにより、所望の磁気質をもつ
磁性体であるか否かを検出する方法を提案している。
Therefore, in order to provide a method for easily detecting the magnetic substance of a magnetic substance with a simple device, the inventors of the present invention arranged a magnetic sensor for measuring a change in the magnetic flux distribution and an upstream side of the magnetic sensor. A first magnet that is installed and applies a saturation magnetic field whose absolute value is larger than its coercive force to the magnetic body to be detected and that is disposed near the magnetic sensor and has a polarity opposite to that of the first magnet. And a second magnet for applying a magnetic field having a value equal to the coercive force of the magnetic substance to be detected by the magnetic sensor, so that no output from the magnetic sensor is produced when the target magnetic substance passes through. Have proposed a method of detecting whether or not the magnetic substance has a desired magnetic property.

【0009】しかしながら、紙幣の飽和磁界強度は約3
000G程度と大きく、また被検体と離間しているた
め、この値を確保するには更に強い磁石が必要であり、
検知用磁気センサにかかるバイアス磁界が強いため、感
度が低くなり、詳細な磁気パターンは検知できないとい
う問題がある。
However, the saturation magnetic field strength of a bill is about 3
Since it is as large as about 000G and is separated from the subject, a stronger magnet is required to secure this value.
Since the bias magnetic field applied to the detection magnetic sensor is strong, the sensitivity is low, and there is a problem that a detailed magnetic pattern cannot be detected.

【0010】また、紙幣のように真券はいかなる保磁力
をもつものであるかがあらかじめ分かっている場合はよ
いが、まったく分からない場合は、この方法は用いるこ
とができない。
Further, it is good if it is known beforehand what kind of coercive force a genuine note has, such as a bill, but this method cannot be used if it is not known at all.

【0011】さらに保磁力が小さいのに大きすぎる磁界
を印加する必要はなく、大きい磁界をかけると、感度が
低下するという問題もある。
Further, although the coercive force is small, it is not necessary to apply a too large magnetic field, and when a large magnetic field is applied, there is a problem that the sensitivity is lowered.

【0012】[0012]

【発明が解決しようとする課題】このように従来の磁気
質検知装置では、感度が低いため、磁気パターンの有無
すなわち磁気印刷が施されているか否かを検出できるの
みであり、またいかなる磁気パターンをもつものである
か、いかなる保磁力をもつものであるか分からない場合
についてはまったく検出することができないという問題
があった。
As described above, since the conventional magnetic substance detecting device has low sensitivity, it can only detect the presence or absence of a magnetic pattern, that is, whether or not magnetic printing is performed, and any magnetic pattern. There is a problem in that it cannot be detected at all when it is not known what the coercive force has or the coercive force.

【0013】本発明は前記実情に鑑みてなされたもの
で、磁気質を精度よくかつ高感度に検出することがで
き、またいかなる程度の保磁力をもつものであるかを検
知することのできる磁気質検知方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and it is possible to detect a magnetic substance with high accuracy and high sensitivity, and to detect what degree of coercive force the magnetic substance has. The purpose is to provide a quality detection method.

【0014】[0014]

【課題を解決するための手段】本発明の第1の方法は、
検出しようとする磁性体が飽和するのに必要な第1の磁
界を、被検出体に印加する飽和磁界印加工程と、前記検
出しようとする磁性体の磁気質に応じて設定され、前記
第1の磁界とは反対極性の第2の磁界を、バイアス磁界
として、磁気センサに印加した状態で、前記第1の磁界
を印加された被検出体を通過せしめ、磁気センサの出力
変化を検出する第1の検出工程と、前記出力変化に基づ
いて、前記被検出体が、自身の保磁力が前記第2の磁界
よりも大であるか否かを判断する判断工程と、前記判断
工程の判断結果に基づいて被検出体の保磁力により近い
第3の磁界を、バイアス磁界として、磁気センサに印加
した状態で、前記被検出体を通過せしめ、磁気センサの
出力変化を検出する第2の検出工程とを含み、被検出体
がいかなる磁気質をもつ磁性体であるかを検知するよう
にしている。
The first method of the present invention comprises:
The first magnetic field necessary for saturating the magnetic substance to be detected is set according to the saturation magnetic field applying step of applying the first magnetic field to the detection target and the magnetic quality of the magnetic substance to be detected. A second magnetic field having a polarity opposite to that of the first magnetic field is applied to the magnetic sensor as a bias magnetic field, and the object to which the first magnetic field is applied is passed through to detect a change in output of the magnetic sensor. No. 1 detection step, a determination step of determining whether the coercive force of the detection target object is larger than the second magnetic field based on the output change, and a determination result of the determination step. A second detection step of detecting a change in the output of the magnetic sensor by passing a third magnetic field closer to the coercive force of the detected object as a bias magnetic field to the magnetic sensor based on Including, and So that to detect whether a magnetic substance having.

【0015】本発明の第2の方法は、検出しようとする
磁性体が飽和するのに必要な第1の磁界を、被検出体に
印加する飽和磁界印加工程と、前記検出しようとする磁
性体の磁気質に応じて設定され、前記第1の磁界とは反
対極性の第2の磁界を、バイアス磁界として、磁気セン
サに印加した状態で、前記第1の磁界を印加された被検
出体を通過せしめ、磁気センサの出力変化を検出する第
1の検出工程と、前記第2の磁界とは異なる第3の磁界
を、バイアス磁界として、磁気センサに印加した状態
で、被検出体を通過せしめ、磁気センサの出力変化を検
出する第2の検出工程と、前記第1および第2の検出工
程の出力に基づいて、前記被検出体の保磁力の範囲を算
出し、被検出体がいかなる磁気質をもつ磁性体であるか
を検知するようにしている。
According to a second method of the present invention, a saturation magnetic field applying step of applying a first magnetic field necessary for saturating a magnetic body to be detected to a detected body, and the magnetic body to be detected. A second magnetic field having a polarity opposite to that of the first magnetic field and applied to the magnetic sensor as a bias magnetic field is applied to the detected object to which the first magnetic field is applied. A first detection step of allowing the magnetic sensor to detect an output change of the magnetic sensor, and a third magnetic field different from the second magnetic field as a bias magnetic field applied to the magnetic sensor, and passing the object to be detected. A second detection step of detecting an output change of the magnetic sensor, and a range of coercive force of the detected object is calculated based on the outputs of the first and second detection steps, and To detect if it is a magnetic material with quality. There.

【0016】ここで用いられる装置は、例えば、前述し
た改良型の磁気質検出装置に加え、検出しようとする磁
性体に絶対値の十分に大きな飽和磁界を印加する飽和着
磁専用の第1の磁石を配設し、磁束分布の変化を測定す
る磁気センサとこの磁気センサの近傍に配設される第2
の磁石との対を複数対用意し、出力のピーク高さの比あ
るいは符号によって、保持力の範囲を検知し、磁気セン
サに最適な強度のバイアス磁界を与える程度の大きさと
したことを特徴とするものである。
The device used here is, for example, in addition to the above-described improved magnetic substance detection device, a first device dedicated to saturation magnetization for applying a saturation magnetic field having a sufficiently large absolute value to a magnetic body to be detected. A magnetic sensor which is provided with a magnet and measures a change in magnetic flux distribution, and a second magnetic sensor which is provided near the magnetic sensor
A plurality of pairs of magnets are prepared, and the range of the coercive force is detected by the ratio or sign of the peak height of the output, and the size is set to give a bias magnetic field of optimum strength to the magnetic sensor. To do.

【0017】[0017]

【作用】磁性体の保磁力Hc とは、図7(a) に示すよう
に、磁束密度−磁界強度(B−H)曲線において、H軸
とループとの交点であり、正と負の値をとる。このとき
すなわち、磁界強度HがHc または−Hc であるとき、
磁性体内部を通る磁束密度はゼロである。残留磁束密度
が−Br の磁性体が+Hc の磁界の中に入るとき、磁性
体の残留磁束密度の絶対値は減少し、0となる。
The coercive force Hc of the magnetic substance is the intersection of the H axis and the loop in the magnetic flux density-magnetic field strength (BH) curve, as shown in FIG. Take At this time, that is, when the magnetic field strength H is Hc or -Hc,
The magnetic flux density passing through the inside of the magnetic body is zero. When a magnetic material having a residual magnetic flux density of -Br enters a magnetic field of + Hc, the absolute value of the residual magnetic flux density of the magnetic material decreases and becomes zero.

【0018】このBr =0の状態のものが図7(b) に示
すような差動型磁気抵抗素子の上を移動しても、磁界に
変化は表れず、差動出力に変化はない。
Even if this Br = 0 state moves on the differential type magnetoresistive element as shown in FIG. 7 (b), the magnetic field does not change and the differential output does not change.

【0019】逆に、+Br の磁性体が+Hc の磁界の中
に入ると、Br ´の残留磁束密度があるため、磁束分布
を変化させ、差動出力に変化が表れる。
On the contrary, when the magnetic substance of + Br enters the magnetic field of + Hc, the residual magnetic flux density of Br 'causes the magnetic flux distribution to change, and the differential output changes.

【0020】これは−Hc の磁束分布の場合でも同様で
ある。
This is the same in the case of the magnetic flux distribution of -Hc.

【0021】そして差動型磁気抵抗素子を用いて磁気検
知を行うとき、その信号の出力形態が検知する磁性体の
残留磁化の方向とMR素子に印加するバイアス磁界の方
向に相関関係があることに着目し、複数のバイアス磁界
を与えそれぞれMR素子の出力を検出し、図8(a) に示
すように残留磁化の方向とバイアス磁石の磁化方向が同
じ場合、MR素子の出力は図8(b) に示すように変化す
る。また図9(a) に示すように残留磁化の方向とバイア
ス磁石の磁化方向が反対である場合、MR素子の出力は
図9(b) に示すように反転して変化する。
When magnetic detection is performed using the differential magnetoresistive element, the output form of the signal has a correlation between the detected residual magnetization direction of the magnetic material and the bias magnetic field applied to the MR element. Focusing on, the output of the MR element is detected by applying a plurality of bias magnetic fields, and when the direction of the residual magnetization and the magnetization direction of the bias magnet are the same as shown in FIG. 8 (a), the output of the MR element is It changes as shown in b). Further, when the direction of residual magnetization is opposite to the direction of magnetization of the bias magnet as shown in FIG. 9 (a), the output of the MR element reverses and changes as shown in FIG. 9 (b).

【0022】例えば図10に示すように飽和磁化曲線に
沿って磁性体の磁化状態を変化させる場合、正方向の印
加バイアス磁界中では、保磁力Hc を境に図8および図
9のような現象があらわれる。したがって出力信号の形
態を識別することによって保磁力の値の範囲を検知する
ことができる。さらにまた、MR素子とバイアス磁石の
数を増設することによって、保磁力の値の細かな範囲限
定が可能となる。 上記方法によれば、また保磁力の大
きさの程度に応じてバイアス磁石を変化させるようにす
ればよいため、高感度の磁気質の検出と同時に磁気パタ
ーンについても、磁気センサに最適な強度のバイアス磁
界を設定することができるため、高精度の検出が可能と
なる。
For example, when changing the magnetization state of the magnetic material along the saturation magnetization curve as shown in FIG. 10, the phenomenon as shown in FIGS. 8 and 9 with the coercive force Hc as the boundary in the applied bias magnetic field in the positive direction. Appears. Therefore, the range of coercive force values can be detected by identifying the form of the output signal. Furthermore, by increasing the number of MR elements and bias magnets, it is possible to finely limit the coercive force value range. According to the method described above, the bias magnet may be changed according to the magnitude of the coercive force. Therefore, at the same time as the detection of the high-sensitivity magnetic substance, the magnetic pattern has the optimum strength of the magnetic sensor. Since the bias magnetic field can be set, highly accurate detection is possible.

【0023】なお、異なる磁界強度のもとで磁気検知を
行い判別するようにしてもよいし、1つの磁界強度のも
とで磁気検知を行い判別したのち、より近く適切な磁界
強度を付与しその中で磁気検知を行うようにしてもよ
い。
The magnetic field may be detected and discriminated under different magnetic field strengths. Alternatively, the magnetic field may be detected and discriminated under one magnetic field strength, and then an appropriate magnetic field strength may be applied. Magnetic detection may be performed therein.

【0024】また、磁性体側を動かすようにしてもよい
し、検出装置側を動かすようにしても良く、つまるとこ
ろ測定装置に対して磁性体が相対的に動くように構成す
ればよい。
Further, the magnetic body side may be moved, the detection device side may be moved, and the magnetic body may be moved relative to the measuring device.

【0025】[0025]

【実施例】以下本発明の実施例について図面を参照しつ
つ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0026】実施例1 図1は、本発明実施例の保磁力検知方法を実現するため
の装置の概要説明図である。図2は各素子位置における
磁性体の飽和磁化曲線を示す図である。
Embodiment 1 FIG. 1 is a schematic explanatory view of an apparatus for realizing the coercive force detecting method of the embodiment of the present invention. FIG. 2 is a diagram showing a saturation magnetization curve of the magnetic substance at each element position.

【0027】この装置は、前述した改良型の磁気質検出
装置に加え、検出しようとする磁性体にその保磁力より
も絶対値の大きな飽和磁界Hm を印加する飽和着磁専用
の第1の磁石10を配設し、磁束分布の変化を測定する
磁気センサとしての第1の差動型磁気抵抗素子20の近
傍に配設される第2の磁石30と、同様に磁束分布の変
化を測定する磁気センサとしての第2の差動型磁気抵抗
素子40の近傍に配設される第3の磁石50とを具備
し、これらの出力を図3に示すような信号処理回路を介
してとりだすようにしたものである。この信号処理回路
は第1および第2の差動型磁気抵抗素子20,40にそ
れぞれ接続されたコンデンサ60と、抵抗61〜63
と、オペアンプ64とから構成されている。
This device is, in addition to the improved magnetic substance detecting device described above, a first magnet dedicated to saturation magnetization for applying a saturation magnetic field Hm having an absolute value larger than its coercive force to a magnetic substance to be detected. The second magnet 30 is provided in the vicinity of the first differential type magnetoresistive element 20 as a magnetic sensor for arranging 10 to measure the change in the magnetic flux distribution, and similarly measures the change in the magnetic flux distribution. A third magnet 50 arranged near the second differential type magnetoresistive element 40 as a magnetic sensor is provided, and these outputs are taken out through a signal processing circuit as shown in FIG. It was done. This signal processing circuit includes a capacitor 60 connected to the first and second differential magnetoresistive elements 20 and 40, and resistors 61 to 63.
And an operational amplifier 64.

【0028】紙幣1の走行方向aに対して、最も上流側
に設置された飽和着磁専用の第1の磁石10と、更に走
行方向aに対して所定の間隔を隔てて順次配列され、検
出しようとする磁性体が通過する位置にて負の磁界−H
1 (図1のA位置)を発する第1の磁石10と、この第
1の磁石の反転の極性の磁界である正の磁界H2 (図1
のB位置)を発する第2の磁石30と、この第2の磁石
30の近傍に配設され、第2の磁石30によって正の磁
界H2 にバイアスされた差動型磁気抵抗素子20と、第
2の磁石30の下流側に配設され、第3の磁石50によ
って正の磁界H3 (図1のC位置)にバイアスされた第
2の差動型磁気抵抗素子40とから構成され、紙幣1は
検出装置本体の非磁性のトップメタルG上を移送手段
(図示せず)により走行するように構成されている。ま
た第1および第2の磁石は、トップメタルGの下方にこ
れと平行となるように設置される支持基板60の裏面に
配設され、第1および第2の差動型磁気抵抗素子30,
50はこの支持基板60の表面に配設されている。これ
ら第1および第2の差動型磁気抵抗素子は、絶縁性基板
の表面に配設された薄膜磁気抵抗素子で構成されてい
る。ここで正の磁界Hcが紙幣の磁気インクの保磁力で
あるとする。また負の磁界−H1 はその絶対値が、正の
磁界Hc の絶対値よりも十分に大きい飽和磁界とする。
The first magnet 10 for saturation magnetization, which is installed on the most upstream side with respect to the traveling direction a of the banknote 1, and is further sequentially arranged at a predetermined interval in the traveling direction a, and is detected. Negative magnetic field −H at the position where the magnetic material to be passed passes
1 (position A in FIG. 1) and a positive magnetic field H2 (Fig. 1) which is a magnetic field of the reverse polarity of the first magnet 10.
A second magnet 30 which emits the B position), a differential type magnetoresistive element 20 which is arranged in the vicinity of the second magnet 30 and is biased by the second magnet 30 to a positive magnetic field H2, The second differential type magnetoresistive element 40 is provided downstream of the second magnet 30 and biased to the positive magnetic field H3 (position C in FIG. 1) by the third magnet 50. Is configured to travel on a non-magnetic top metal G of the detection device main body by a transfer means (not shown). The first and second magnets are disposed on the back surface of the support substrate 60 installed below the top metal G so as to be parallel to the top metal G, and the first and second differential magnetoresistive elements 30,
50 is arranged on the surface of the support substrate 60. The first and second differential magnetoresistive elements are thin film magnetoresistive elements arranged on the surface of an insulating substrate. Here, it is assumed that the positive magnetic field Hc is the coercive force of the magnetic ink of the bill. The negative magnetic field -H1 is a saturated magnetic field whose absolute value is sufficiently larger than the absolute value of the positive magnetic field Hc.

【0029】次に、この装置を用い、第1の磁性体F1
100Oe ,第2の磁性体F2 500Oe ,第3の磁性
体F3 900Oe の3種類の磁性体を判別する方法につ
いて説明する。
Next, using this apparatus, the first magnetic material F1
A method for discriminating three kinds of magnetic substances, that is, 100 Oe, the second magnetic substance F2 500 Oe, and the third magnetic substance F3 900 Oe will be described.

【0030】紙幣1を矢印aの方向に走行させ、図2に
示すように、まず位置Aで第1の磁石で測定すべき磁性
体を負に飽和させた後、位置Bで第2の磁石によってバ
イアスされた第1の差動型磁気抵抗素子によって保磁力
を検出すると共に、位置Cで第3の磁石によってバイア
スされた磁気抵抗素子によって、保磁力を検出する。こ
こでは第1の磁石は−3000G,第2の磁石は300
G,第3の磁石は700Gとする。
The bill 1 is run in the direction of arrow a, and as shown in FIG. 2, first, at position A, the magnetic material to be measured by the first magnet is negatively saturated, and then at position B, the second magnet is used. The coercive force is detected by the first differential type magnetoresistive element biased by and the coercive force is detected by the magnetoresistive element biased by the third magnet at the position C. Here, the first magnet is -3000 G and the second magnet is 300
G, and the third magnet is 700G.

【0031】この第1の磁石は−3000Gであるた
め、いずれの磁性体も十分飽和磁化する。このときの各
磁性体F1 〜F3 の飽和磁化曲線は図4に示すようにな
り、各差動型磁気抵抗素子信号の形態は図5(a) 〜(c)
に示すようになった。磁性体F1 は、BおよびCの位置
で共に+方向の磁化となるため、第1および第2の差動
型磁気抵抗素子からの出力信号はともに図5(a) に示す
ような形態となり、磁性体F1 の飽和磁化曲線がBでの
磁界強度300Gより小さい値のところで横軸と交わ
る、すなわち保磁力が0〜300Oe の範囲に存在する
ことがわかる。
Since this first magnet is -3000 G, any magnetic material is sufficiently saturated. The saturation magnetization curves of the magnetic bodies F1 to F3 at this time are as shown in FIG. 4, and the form of each differential magnetoresistive element signal is shown in FIGS. 5 (a) to 5 (c).
It came to be shown in. Since the magnetic material F1 is magnetized in the + direction at both B and C positions, the output signals from the first and second differential magnetoresistive elements both have the form shown in FIG. 5 (a). It can be seen that the saturation magnetization curve of the magnetic material F1 intersects with the horizontal axis at a value smaller than the magnetic field strength of 300 G at B, that is, the coercive force exists in the range of 0 to 300 Oe.

【0032】一方、磁性体F3 は、BおよびCの位置で
−方向の磁化となるため、その出力信号は図5(c) に示
すようにF1 の場合とは逆になり、その飽和磁化曲線は
Cでの磁界強度700Gより大きい値の所で横軸と交わ
り、保磁力が700Oe以上でであると分かる。
On the other hand, since the magnetic substance F3 is magnetized in the-direction at the positions of B and C, its output signal is opposite to that of the case of F1 as shown in FIG. 5 (c), and its saturation magnetization curve. Indicates that the magnetic field strength at C intersects with the horizontal axis at a value larger than 700 G and the coercive force is 700 Oe or more.

【0033】また磁性体F2 の場合にはBとCとで磁化
方向が異なるため、第1および第2の差動型磁気抵抗素
子からの出力信号の形態は図5(b) に示すように異なっ
て現れる。これよりその飽和磁化曲線が、磁界強度30
0〜700Gの間で横軸と交わる。すなわち、その保磁
力が300〜700Gの間にあることがわかる。
Further, in the case of the magnetic material F2, since the magnetization directions of B and C are different, the form of the output signal from the first and second differential type magnetoresistive elements is as shown in FIG. 5 (b). Appear differently. From this, the saturation magnetization curve is
It intersects with the horizontal axis between 0 and 700G. That is, it can be seen that the coercive force is between 300 and 700G.

【0034】したがって、未知の保磁力の磁性体からの
出力信号の形態が、図5(a) 〜(c)のいずれにあてはま
るかを判定すれば、その保磁力が0〜300,300〜
700,700Oe以上のどの範囲内の値をもつかを容
易に判定することができる。さらに磁石と差動型磁気抵
抗素子の対を増設して、横軸を細かく分割するようにす
れば、さらに細かい保磁力の値の範囲を限定することが
できる。
Therefore, if it is determined which one of FIGS. 5 (a) to 5 (c) the form of the output signal from the magnetic material having an unknown coercive force is determined, the coercive force is 0 to 300, 300 to.
It is possible to easily determine in which range the value is 700, 700 Oe or more. Further, if a pair of a magnet and a differential type magnetoresistive element is added and the horizontal axis is finely divided, the range of finer coercive force value can be limited.

【0035】このようにして、本発明の方法によれば、
検知前の残留磁化状態の影響を受けることなく磁気質を
検知することが可能である。
Thus, according to the method of the present invention,
It is possible to detect magnetic properties without being affected by the residual magnetization state before detection.

【0036】また磁気パターンと磁気質とにより識別が
なされるため、高度の真偽判定を行うことができる。ま
た各部品が小さいため、小型・薄型化が容易である。
Further, since the magnetic pattern and the magnetic quality are used for discrimination, a high degree of authenticity determination can be performed. Also, since each part is small, it is easy to make it small and thin.

【0037】さらに帳票類の磁気インクや磁気トナーだ
けでなく、磁気カードや磁性をもつ板材・棒材等にも適
用可能である。
Further, the present invention can be applied not only to magnetic ink and magnetic toner for forms, but also to magnetic cards and magnetic plate materials and bar materials.

【0038】実施例2 次に、本発明の第2の実施例について説明する。Second Embodiment Next, a second embodiment of the present invention will be described.

【0039】この方法でも、図1の前記第1の実施例で
示した装置と同様の装置を用いる。ここでは第2および
第3の磁石の磁界強度を検知したい特性に応じて設定す
るようにすればよい。図6は被検体の磁化曲線を示す図
である。
Also in this method, an apparatus similar to the apparatus shown in the first embodiment of FIG. 1 is used. Here, the magnetic field strengths of the second and third magnets may be set according to the characteristics to be detected. FIG. 6 is a diagram showing a magnetization curve of the subject.

【0040】例えばBおよびCで得られた出力がそれぞ
れ(a) および(b) に示すようになった場合、ピーク高さ
の比によって点A−B間の疑似的な傾きがわかる。
For example, when the outputs obtained at B and C are as shown in (a) and (b), respectively, a pseudo slope between points A and B can be found from the ratio of peak heights.

【0041】また(b) および(c) のように反転していれ
ば、磁界CとDとの間に保磁力をもつ被検体であること
がわかる。またそのピーク高さの比によってCまたはD
のどちらによっているかがわかる。
Further, if they are reversed as shown in (b) and (c), it is understood that the object has a coercive force between the magnetic fields C and D. C or D depending on the peak height ratio
You can tell which one is.

【0042】また、さらに1組以上の差動型磁気抵抗素
子とバイアス磁石の組を加え、計3組以上を具備し、磁
性体の磁化曲線上での測定点を増し、その曲線の特徴、
すなわち保持力の他に角形性等の固有の特性を検知する
ようにすればさらに詳しい値を得ることができる。
Further, by further adding one or more sets of differential type magnetoresistive elements and bias magnets, a total of three or more sets are provided, the number of measurement points on the magnetization curve of the magnetic body is increased, and the characteristics of the curves are
That is, more detailed values can be obtained by detecting the characteristic such as the squareness in addition to the holding force.

【0043】なお、バイアス磁石としては、永久磁石を
用いたが、第2および第3の磁石は電磁石で構成し、検
出する磁性体を変えるときはコイル電流を変更すること
によりバイアス磁界の強度を調節すればよい。
Although a permanent magnet was used as the bias magnet, the second and third magnets are composed of electromagnets, and when changing the magnetic substance to be detected, the coil current is changed to change the strength of the bias magnetic field. Adjust it.

【0044】また、第1の磁石とこの第1の磁石によっ
て磁化されるヨークとで構成し、ヨークを必要に応じて
取り替えるようにしてもよい。また磁石は1個でその着
磁強度や面積、極数を工夫するようにしてもよい。また
磁気抵抗素子も1チップ化したり、さらに磁気抵抗素子
チップに信号処理回路を搭載するなどの方法をとるよう
にしてもよい。これにより小形化および組み立ての簡略
化をはかることができる。また、一度飽和磁化させたも
のは飽和磁化曲線に沿った磁気質検知のみならず、マイ
ナーループに沿って検知を行うようにしてもよい。
Further, the first magnet and the yoke magnetized by the first magnet may be used, and the yoke may be replaced if necessary. Moreover, the magnetizing strength, the area, and the number of poles may be devised with one magnet. Further, the magnetoresistive element may be integrated into one chip, or a signal processing circuit may be mounted on the magnetoresistive element chip. This makes it possible to reduce the size and simplify the assembly. Further, once saturated magnetization is performed, not only magnetic property detection along the saturation magnetization curve but also detection along a minor loop may be performed.

【0045】さらに、第1〜第3の磁石ともに永久磁石
を用いるが、第2および第3の磁石に位置調整手段をと
りつけ、高さを調整することにより、バイアス磁界を変
化するようにしてもよい。
Further, although permanent magnets are used as the first to third magnets, the bias magnetic field can be changed by attaching position adjusting means to the second and third magnets and adjusting the height. Good.

【0046】この方法は未知の磁性体の保磁力の値の範
囲を簡便に検知する装置、磁気カードに用いられている
磁性体の保磁力を変化させても容易に検知することがで
きるため、磁気カードの読取り装置、磁気カードやフロ
ッピーディスクなどの書こうラインにおける磁気質判別
用インラインセンサなどに適用可能である。
This method is a device for simply detecting the range of the coercive force value of an unknown magnetic substance, and can be easily detected even if the coercive force of the magnetic substance used in the magnetic card is changed. It can be applied to magnetic card readers, in-line sensors for magnetic quality discrimination in writing lines such as magnetic cards and floppy disks.

【0047】[0047]

【発明の効果】以上説明してきたように、本発明によれ
ば、未知の磁気質の範囲の判別を容易に行うことが可能
となる。
As described above, according to the present invention, it is possible to easily determine the range of unknown magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の磁気質検知装置を示す図FIG. 1 is a diagram showing a magnetic substance detection device according to an embodiment of the present invention.

【図2】同装置における磁性体の飽和磁化曲線を示す図FIG. 2 is a diagram showing a saturation magnetization curve of a magnetic body in the device.

【図3】同装置における信号処理回路を示す図FIG. 3 is a diagram showing a signal processing circuit in the device.

【図4】本発明実施例の方法における各磁性体の飽和磁
化曲線を示す図
FIG. 4 is a diagram showing a saturation magnetization curve of each magnetic material in the method of the example of the present invention.

【図5】同方法における出力を示す図FIG. 5 is a diagram showing output in the same method.

【図6】本発明の第2の実施例の方法を示す図FIG. 6 is a diagram showing a method of a second embodiment of the present invention.

【図7】本発明の原理説明図FIG. 7 is an explanatory diagram of the principle of the present invention.

【図8】本発明の原理説明図FIG. 8 is an explanatory diagram of the principle of the present invention.

【図9】本発明の原理説明図FIG. 9 is an explanatory diagram of the principle of the present invention.

【図10】本発明の原理説明図FIG. 10 is an explanatory diagram of the principle of the present invention.

【符号の説明】[Explanation of symbols]

10 第1の磁石 20 第1の差動型磁気抵抗素子 30 第2の磁石 40 第2の差動型磁気抵抗素子 50 第3の磁石 60 基板 10 First Magnet 20 First Differential Magnetoresistive Element 30 Second Magnet 40 Second Differential Magnetoresistive Element 50 Third Magnet 60 Substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 検出しようとする磁性体が飽和するのに
必要な第1の磁界を、被検出体に印加する飽和磁界印加
工程と、 前記検出しようとする磁性体の磁気質に応じて設定さ
れ、前記第1の磁界とは反対極性の第2の磁界を、バイ
アス磁界として、磁気センサに印加した状態で、前記第
1の磁界を印加された被検出体を通過せしめ、磁気セン
サの出力変化を検出する第1の検出工程と、 前記出力変化に基づいて、前記被検出体の保磁力が前記
第2の磁界よりも大であるか否かを判断する判断工程
と、 前記判断工程の判断結果に基づいて被検出体の保磁力に
より近い第3の磁界を、バイアス磁界として、磁気セン
サに印加した状態で、前記被検出体を通過せしめ、磁気
センサの出力変化を検出する第2の検出工程と、 を含み、被検出体がいかなる磁気質をもつ磁性体である
かを検知する磁気質検知方法。
1. A saturation magnetic field applying step of applying a first magnetic field required for saturating a magnetic substance to be detected to a detection target, and setting according to the magnetic quality of the magnetic substance to be detected. The second magnetic field having a polarity opposite to that of the first magnetic field is applied as a bias magnetic field to the magnetic sensor, and the object to which the first magnetic field is applied is passed through the magnetic sensor to output the magnetic field. A first detecting step of detecting a change; a determining step of determining whether or not a coercive force of the detected object is larger than the second magnetic field based on the output change; A second magnetic field that detects a change in the output of the magnetic sensor while allowing the third magnetic field, which is closer to the coercive force of the detected object, to be applied to the magnetic sensor as a bias magnetic field based on the determination result Including the detection step, Magnetic substance detecting method for detecting whether a magnetic substance having a magnetic substance that.
【請求項2】 検出しようとする磁性体が飽和するのに
必要な第1の磁界を、被検出体に印加する飽和磁界印加
工程と、 前記検出しようとする磁性体の磁気質に応じて設定さ
れ、前記第1の磁界とは反対極性の第2の磁界を、バイ
アス磁界として、磁気センサに印加した状態で、前記第
1の磁界を印加された被検出体を通過せしめ、磁気セン
サの出力変化を検出する第1の検出工程と、 前記第2の磁界とは異なる第3の磁界を、バイアス磁界
として、磁気センサに印加した状態で、前記被検出体を
通過せしめ、磁気センサの出力変化を検出する第2の検
出工程と、 前記第1および第2の検出工程の検出結果に基づいて、
前記被検出体の保磁力が前記第2および第3の磁界より
も大であるか否かを判断する判断工程と、 を含み、被検出体がいかなる磁気質をもつ磁性体である
かを検知する磁気質検知方法。
2. A saturation magnetic field applying step of applying a first magnetic field necessary for saturating a magnetic substance to be detected to a detection target, and setting according to the magnetic quality of the magnetic substance to be detected. The second magnetic field having a polarity opposite to that of the first magnetic field is applied to the magnetic sensor as a bias magnetic field, and the object to which the first magnetic field is applied is passed through the magnetic field to output the magnetic sensor. A first detection step of detecting a change, and a third magnetic field different from the second magnetic field as a bias magnetic field are applied to the magnetic sensor to allow the detected object to pass therethrough, thereby changing the output of the magnetic sensor. Based on the detection results of the second detection step of detecting
A determination step of determining whether or not the coercive force of the object to be detected is larger than the second and third magnetic fields, and detecting what magnetic substance the object to be detected has Magnetic quality detection method.
JP33184492A 1992-12-11 1992-12-11 Magnetic material detection method Expired - Fee Related JP3283930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33184492A JP3283930B2 (en) 1992-12-11 1992-12-11 Magnetic material detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33184492A JP3283930B2 (en) 1992-12-11 1992-12-11 Magnetic material detection method

Publications (2)

Publication Number Publication Date
JPH06180304A true JPH06180304A (en) 1994-06-28
JP3283930B2 JP3283930B2 (en) 2002-05-20

Family

ID=18248290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33184492A Expired - Fee Related JP3283930B2 (en) 1992-12-11 1992-12-11 Magnetic material detection method

Country Status (1)

Country Link
JP (1) JP3283930B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035701A (en) * 2001-05-16 2003-02-07 Matsushita Electric Ind Co Ltd Magnetic sensor and paper money discrimination apparatus using the same
WO2013111468A1 (en) * 2012-01-26 2013-08-01 Tdk株式会社 Magnetic measurement device
JP2014524572A (en) * 2011-08-15 2014-09-22 メアス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Measuring device for measuring the magnetic properties of its surroundings
WO2014168180A1 (en) * 2013-04-09 2014-10-16 グローリー株式会社 Magnetic property determination device and magnetic property determination method
JP2014203396A (en) * 2013-04-09 2014-10-27 グローリー株式会社 Magnetic quality discrimination apparatus, and magnetic quality discrimination method
WO2015156241A1 (en) * 2014-04-09 2015-10-15 グローリー株式会社 Magnetic property determination device and magnetic property determination method
US9595152B2 (en) 2013-03-22 2017-03-14 Glory Ltd. Magnetic property detection apparatus

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035701A (en) * 2001-05-16 2003-02-07 Matsushita Electric Ind Co Ltd Magnetic sensor and paper money discrimination apparatus using the same
JP2014524572A (en) * 2011-08-15 2014-09-22 メアス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Measuring device for measuring the magnetic properties of its surroundings
US10109131B2 (en) 2011-08-15 2018-10-23 TE Connectivity Sensors Germany GmbH Sensor device including magnetoresistive sensor element and pre-magnetization device
US9482725B2 (en) 2011-08-15 2016-11-01 Meas Deutschland Gmbh Sensor device including magnetoresistive sensor element and pre-magnetization device
US9354285B2 (en) 2012-01-26 2016-05-31 Tdk Corporation Magnetic measurement device
WO2013111468A1 (en) * 2012-01-26 2013-08-01 Tdk株式会社 Magnetic measurement device
CN104081218A (en) * 2012-01-26 2014-10-01 Tdk株式会社 Magnetic measurement device
JP5641157B2 (en) * 2012-01-26 2014-12-17 Tdk株式会社 Magnetic measuring device
US9702945B2 (en) 2012-01-26 2017-07-11 Tdk Corporation Magnetic measurement device
EP2808691A4 (en) * 2012-01-26 2016-01-27 Tdk Corp Magnetic measurement device
US9595152B2 (en) 2013-03-22 2017-03-14 Glory Ltd. Magnetic property detection apparatus
JP2014203396A (en) * 2013-04-09 2014-10-27 グローリー株式会社 Magnetic quality discrimination apparatus, and magnetic quality discrimination method
JP6049864B2 (en) * 2013-04-09 2016-12-21 グローリー株式会社 Magnetic quality discrimination device and magnetic quality discrimination method
JPWO2014168180A1 (en) * 2013-04-09 2017-02-16 グローリー株式会社 Magnetic quality discrimination device and magnetic quality discrimination method
CN105051561A (en) * 2013-04-09 2015-11-11 光荣株式会社 Magnetic property determination device and magnetic property determination method
RU2623813C2 (en) * 2013-04-09 2017-06-29 Глори Лтд. Device for determination of magnetic properties and method of determination of magnetic properties
US9886808B2 (en) 2013-04-09 2018-02-06 Glory Ltd. Magnetic property determination apparatus and magnetic property determination method
WO2014168180A1 (en) * 2013-04-09 2014-10-16 グローリー株式会社 Magnetic property determination device and magnetic property determination method
JP2015201083A (en) * 2014-04-09 2015-11-12 グローリー株式会社 Magnetic characteristics determination apparatus and magnetic characteristics determination method
CN106104639A (en) * 2014-04-09 2016-11-09 光荣株式会社 Magnetic substance discriminating gear and magnetic substance method of discrimination
WO2015156241A1 (en) * 2014-04-09 2015-10-15 グローリー株式会社 Magnetic property determination device and magnetic property determination method
EP3131069A4 (en) * 2014-04-09 2017-12-06 Glory Ltd. Magnetic property determination device and magnetic property determination method
US10001533B2 (en) 2014-04-09 2018-06-19 Glory Ltd. Magnetic property determination apparatus and magnetic property determination method

Also Published As

Publication number Publication date
JP3283930B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
US8581578B2 (en) Magnetic pattern detection device
JP3283931B2 (en) Magnetic quality detector
US8387879B2 (en) Magnetic sensor for checking value document
EP0640841A1 (en) Apparatus and method for federal reserve note authentication
US5705924A (en) Hall effect sensor for detecting an induced image magnet in a smooth material
US20160055358A1 (en) Check of a Security Element Furnished with Magnetic Materials
JP2011163831A (en) Magnetic sensor device
EP1770657B1 (en) Method and apparatus for detecting a magnetic feature on an article
JP3028380B2 (en) Magnetic quality detection method and magnetic quality detection device using the same
JP3283930B2 (en) Magnetic material detection method
GB2130414A (en) Security documents and verification thereof
JPH0474667B2 (en)
JP2016503891A (en) Measuring device for measuring the magnetic properties of its surroundings
WO2016170887A1 (en) Magnetic sensor device
JP2006293574A (en) Paper sheet discrimination device and magnetic characteristic detection device
JP3799448B2 (en) Printed matter, authenticity determination method thereof, and authenticity determination device
JP3814692B2 (en) Printed matter, authenticity determination method thereof, and authenticity determination device
JP4104923B2 (en) Magnetic body detection device
JPH1196430A (en) Magnetic detecting device
JP3512250B2 (en) Magnetic image detection device and detection method
JPH0815227A (en) Magnetizing device for steel plate
US11955278B2 (en) Magnetizing device with reduced stray field
JP2014203396A (en) Magnetic quality discrimination apparatus, and magnetic quality discrimination method
CN112700583A (en) Magnetic identification device, method and system and measured object with magnetic code
JP2019179435A (en) Magnetic identification sensor and magnetic identification device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090301

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100301

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110301

LAPS Cancellation because of no payment of annual fees