JPH06177007A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH06177007A
JPH06177007A JP4343540A JP34354092A JPH06177007A JP H06177007 A JPH06177007 A JP H06177007A JP 4343540 A JP4343540 A JP 4343540A JP 34354092 A JP34354092 A JP 34354092A JP H06177007 A JPH06177007 A JP H06177007A
Authority
JP
Japan
Prior art keywords
aperture
pupil filter
projection lens
limiting plate
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4343540A
Other languages
Japanese (ja)
Inventor
Toshiyuki Horiuchi
敏行 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4343540A priority Critical patent/JPH06177007A/en
Publication of JPH06177007A publication Critical patent/JPH06177007A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/7025Size or form of projection system aperture, e.g. aperture stops, diaphragms or pupil obscuration; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70308Optical correction elements, filters or phase plates for manipulating imaging light, e.g. intensity, wavelength, polarisation, phase or image shift

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To realize the long service-life of a blind filter and improve an exposing throughput when resolution or focusing depth is not necessitated by applying a master drawing substrate with obliquely incident illumination to expose it to a minimum as necessary with high resolution and large focusing depth while placing a pupil filter at a projection lens aperture diaphragm position and exposing it by replacing the pupil filter with only the aperture diaphragm when the resolution or focusing depth is not necessitated so much. CONSTITUTION:An aperture limiting plate having a specified optical thickness and light transmissivity for limiting the size of the aperture and a pupil filter 25, that is provided with a transmissivity adjusting thin film 28 and has the same optical thickness as that of the aperture limiting plate, are selectively fixed at the aperture diaphragm position of a projection lens 11 wile the lens 11 is still fitted in a projection aligner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原図基板上の半導体集
積回路等の微細パターンを、半導体等の被露光基板上に
投影露光して転写する投影露光装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus for projecting and transferring a fine pattern of a semiconductor integrated circuit or the like on an original substrate onto a substrate to be exposed such as a semiconductor.

【0002】[0002]

【従来の技術】半導体集積回路等の微細パターンを、半
導体ウエハ等の被露光基板上に、安易、高速、低価格で
形成するため、短波長可視光ないし遠紫外線を用いる投
影露光法が用いられている。図6は、株式会社電気書院
発行、「LSI設計製作技術」248頁に記載された従
来の投影露光装置の光学系を示す。これを同図に基づい
て概略説明すると、水銀ランプ1から出た光は、楕円凹
面鏡2、コリメータレンズ3によって集光されて、単色
化のためのフィルタ4を通ってフライアイレンズ5に入
る。水銀ランプ1とコリメータレンズ3との間にはラン
プからの光を光源光軸と略直交する方向に変換すると共
に、熱線を裏側へ透過させる第1反射鏡6が配設されて
いる。フライアイレンズ5は、多くの小口径レンズの集
合体からなり、その各レンズから出る光が第2反射鏡7
によって反射され集光レンズ8によって集光されること
により、それぞれ原図基板であるレチクル9を照明し、
これにより照明の均一性を上げることができる。前記水
銀ランプ1が元々の光源(1次光源)であるのに対し、
フライアイレンズ5の射出側は、レチクル9を照明する
光の実質的な射出源となるため、2次光源と呼ばれる。
第2反射鏡7は、再度光線の向きを変えるためのもので
ある。レチクル9は、半導体集積回路等の微細パターン
の図柄が形成されてレチクル保持台10上に設置されて
おり、集光レンズ系8を出た光により照明されると、前
記微細パターンは投影レンズ11を通して被露光基板で
あるレジストを塗布したウエハ12上に転写される。投
影レンズ11は、各種収差を消すため多くの枚数のレン
ズを組合わせて作られているが、基本的にはレチクル9
側とウエハ12側の2ブロックに分けられており、その
間に開口絞り13が設置されている。レチクル9上の任
意の一点から出た光は、レチクル9側のレンズ群を透過
した後、略平行となって開口絞り13を通過し、ウエハ
12側のレンズ群に入る。その後、ウエハ12側のレン
ズ群で集光され、ウエハ12の表面上のレジスト位置で
一点に集光、結像される。ウエハ12は、位置、および
投影レンズ11に対する高さを調整、決定するための、
X移動ステージ14、Y移動ステージ15、Z移動ステ
ージ16、回転ステージ17上に設置されている。ウエ
ハ12に転写されるパターンの解像性は、レチクル9上
に存在するパターンによる回折光が開口絞り13に取り
込めるかどうかで決まり、最高解像度は、レチクル9上
のパターンから出る0次回折光と1次回折光とが、開口
絞り13に取り込めるかどうかで概ね決まる。1次以上
の回折光が進む方向は、パターンの周期、パターンの細
かさによって決まり、細かいパターン程レチクル9の照
明光の進行方向に対して傾いた方向に出る。したがっ
て、レチクル9を垂直に照明した場合、細かいパターン
の時程投影レンズ11の外側方向へ1次以上の回折光が
進むことになる。このため、開口絞り13の開口が大き
い程細かいパターンからなる回折光まで取り込めること
になり、高解像となる。
2. Description of the Related Art A projection exposure method using short-wavelength visible light or far-ultraviolet rays is used for forming a fine pattern of a semiconductor integrated circuit or the like on a substrate to be exposed such as a semiconductor wafer easily, at high speed and at low cost. ing. FIG. 6 shows an optical system of a conventional projection exposure apparatus described in “LSI Design and Manufacturing Technology”, page 248, published by Denki Shoin Co., Ltd. This will be roughly described with reference to FIG. 1. Light emitted from the mercury lamp 1 is condensed by the elliptic concave mirror 2 and the collimator lens 3, passes through the filter 4 for monochromaticity, and enters the fly-eye lens 5. A first reflecting mirror 6 is provided between the mercury lamp 1 and the collimator lens 3 to convert light from the lamp into a direction substantially orthogonal to the light source optical axis and to transmit heat rays to the back side. The fly-eye lens 5 is composed of an assembly of many small-diameter lenses, and the light emitted from each lens is the second reflecting mirror 7.
Is reflected by the condenser lens 8 and is condensed by the condenser lens 8 to illuminate the reticle 9 which is the original drawing substrate.
This can improve the uniformity of illumination. Whereas the mercury lamp 1 is the original light source (primary light source),
The emission side of the fly-eye lens 5 serves as a substantial emission source of light that illuminates the reticle 9, and is called a secondary light source.
The second reflecting mirror 7 is for changing the direction of the light ray again. The reticle 9 is provided on a reticle holding table 10 on which a pattern of a fine pattern such as a semiconductor integrated circuit is formed, and when illuminated by the light emitted from the condenser lens system 8, the fine pattern is projected onto the projection lens 11. Is transferred onto the wafer 12, which is a substrate to be exposed, coated with a resist. The projection lens 11 is made by combining a large number of lenses to eliminate various aberrations, but basically, the reticle 9 is used.
Side and the wafer 12 side are divided into two blocks, and an aperture stop 13 is installed between them. Light emitted from an arbitrary point on the reticle 9 passes through the lens group on the reticle 9 side, then becomes substantially parallel, passes through the aperture stop 13, and enters the lens group on the wafer 12 side. Then, the light is focused by the lens group on the wafer 12 side, and focused and imaged at one point at the resist position on the surface of the wafer 12. The wafer 12 is for adjusting and determining the position and the height with respect to the projection lens 11,
It is installed on the X moving stage 14, the Y moving stage 15, the Z moving stage 16, and the rotating stage 17. The resolution of the pattern transferred onto the wafer 12 is determined by whether or not the diffracted light due to the pattern existing on the reticle 9 can be taken into the aperture stop 13, and the highest resolution is 0 order diffracted light and 1 It is largely determined whether the second-order diffracted light can be taken into the aperture stop 13. The direction in which the first-order and higher-order diffracted light travels is determined by the cycle of the pattern and the fineness of the pattern. Therefore, when the reticle 9 is illuminated vertically, the diffracted light of the first order or more advances toward the outer side of the projection lens 11 when the pattern is fine. Therefore, the larger the aperture of the aperture stop 13, the more diffracted light having a fine pattern can be captured, resulting in high resolution.

【0003】ところで、同一出願人によって既に出願さ
れた特願平3−99822号、特願平3−157401
号等には、レチクルを斜めに照明して、レチクル上に存
在するパターンの0次回折光が、斜め照明光進行方向の
開口絞り外周付近を通るようにし、片側の1次回折光が
開口絞りの反対側の外周付近を通るようにすれば、レチ
クルを垂直に照明してレチクル上に存在するパターンの
両側の1次回折光が開口絞りを通るようにした場合に比
べて、入射光の方向に対して約2倍の角度で外側に広が
る1次回折光迄取り込めるため、非常に高解像になるこ
とが開示されている。また、このようにレチクルを斜め
に照明する方式をとると、0次回折光と片側の1次回折
光だけで転写像が形成されるため、2光束だけの干渉と
なり、従来の0次回折光と両側の1次回折光の合計3光
束の場合より、微細パターン転写時の焦点深度が大幅に
改善される利点も生じる。レチクルを斜めに照明するに
は、特願平59−211269号に開示されているよう
に、フライアイレンズ5の射出側の中心部からの光をカ
ットして周辺部からの光で照明すればよい。すなわち、
円環状や多点状の2次光源により照明すればよい。しか
し、レチクル9を単に斜めに照明する場合、レチクル9
上に依存するパターンによる1次回折光は、片側分だけ
しか開口絞りに取り込めないのに対し、直進する0次回
折光が全て開口絞りを通過するため、1次回折光と0次
回折光とのバランスが崩れて0次回折光が多過ぎる状態
となり、レジスト位置にできる微細パターンの像のコン
トラストが低下してしまう。この欠点を補う目的で、特
願平3−135317号、特願平3−157401号等
には、斜め照明時に0次回折光の量を適切な量に調整す
るため、開口絞り13の位置に、「開口部周辺の透過率
を調整した投影レンズ開口を有する」ようにした投影露
光装置および方法が開示されている。
By the way, Japanese Patent Application Nos. 3-99822 and 3-157401 already filed by the same applicant.
For example, the reticle is obliquely illuminated so that the 0th-order diffracted light of the pattern existing on the reticle passes near the outer periphery of the aperture stop in the oblique illumination light traveling direction, and the 1st-order diffracted light on one side is opposite to the aperture stop. If the light passes through the outer periphery of the reticle, the reticle is illuminated vertically, and the first-order diffracted light on both sides of the pattern existing on the reticle passes through the aperture stop, compared to the direction of the incident light. It is disclosed that a very high resolution can be obtained because even the first-order diffracted light that spreads outward at an angle of about twice can be captured. In addition, when the method of illuminating the reticle obliquely is adopted as described above, a transfer image is formed only by the 0th-order diffracted light and the 1st-order diffracted light on one side. There is an advantage that the depth of focus at the time of transferring a fine pattern is significantly improved as compared with the case of a total of three light fluxes of the first-order diffracted light. In order to illuminate the reticle obliquely, as disclosed in Japanese Patent Application No. 59-212169, the light from the center of the fly-eye lens 5 on the exit side is cut off and the light from the periphery is illuminated. Good. That is,
Illumination may be performed by an annular or multipoint secondary light source. However, if the reticle 9 is simply illuminated at an angle, the reticle 9
The 1st-order diffracted light due to the pattern depending on the above can be taken into the aperture stop only for one side, whereas the 0-th order diffracted light that travels straight passes through the aperture stop. As a result, the 0th-order diffracted light becomes too much, and the contrast of the image of the fine pattern formed at the resist position decreases. For the purpose of compensating for this drawback, Japanese Patent Application Nos. 3-135317 and 3-157401, etc., adjust the amount of 0th-order diffracted light to an appropriate amount at the time of oblique illumination. Disclosed is a projection exposure apparatus and method having "a projection lens aperture whose transmittance is adjusted around the aperture".

【0004】[0004]

【発明が解決しようとする課題】ところが、開口絞り1
3の位置に、上記の「透過率を調整した投影レンズ開
口」である「瞳フィルタ」を設置する場合、高解像とな
って焦点深度も深くなるが、次のような問題を生じる。 瞳フィルタによって透過率を制限した分だけ投影レ
ンズを通過して被露光基板に到達する露光光線が減少す
る。したがって、その分露光時間が増加し、スループッ
トが減少する。 瞳フィルタによって制限されて開口絞り位置を通過
できない光は、瞳フィルタの種類にもよるが、瞳フィル
タに吸収されるか、もしくは瞳フィルタで反射される。
反射された光はいずれ投影レンズ内部のどこかで吸収さ
れるか、どこかで何度か反射した後再度投影レンズの開
口絞りを通り、被露光基板に到達する。瞳フィルタに吸
収された場合、吸収されたエネルギは熱に変換され、瞳
フィルタの温度上昇を引き起こす。投影レンズの内部の
どこかに吸収された場合もその部分の温度上昇を引き起
こす。瞳フィルタを含め、投影レンズのどこかに温度上
昇が生じると、投影レンズが歪んでレンズ寸法やレンズ
間寸法が変化するため、時間の経過によって転写パター
ンのでき方が変わり、解像度の劣化、パターン寸法の変
化、露光フィールド内均一性の劣化等を生じる。また、
瞳フィルタの入った投影レンズを長く使用すると、露光
光線の長時間照射によって、瞳フィルタを形成する薄膜
が劣化し、ついには剥離してフィルタ上下の投影レンズ
部材にその剥離片が付着する。これらの付着物は露光時
に転写欠陥を発生する原因となるので厳重に監視して付
着しないようにしなければならない。しかし、投影レン
ズ部材に一旦こうした剥離片が付着した場合、投影レン
ズを分解してオーバーホールしない限り除去することは
できない。一方、瞳フィルタ面で反射された場合、何度
かどこかで反射した後再び瞳フィルタ面に達して瞳フィ
ルタを透過し、被露光基板に到達する光は、パターンを
結像する光線にノイズ光として重畳するため、解像度の
劣化、露光コントラストの低下等を引き起こす。 開口絞りとして単なる穴明き板を入れるように設計
された投影レンズに透過率を制限する瞳フィルタとして
何らかの透光性を有するガラス材料を入れると、光路長
が変わるため、解像性が損なわれる。透過率を制限する
瞳フィルタとして何らかのガラス材料を入れる場合に
は、ガラス材料の存在を考慮してレンズ収差を補正、設
計した投影レンズを使用しなければならない。
However, the aperture stop 1
When the "pupil filter", which is the "projection lens aperture whose transmittance is adjusted", is installed at the position of 3, the resolution becomes high and the depth of focus becomes deep, but the following problems occur. The exposure light passing through the projection lens and reaching the substrate to be exposed is reduced by the amount that the transmittance is limited by the pupil filter. Therefore, the exposure time increases correspondingly, and the throughput decreases. The light that is limited by the pupil filter and cannot pass through the aperture stop position is either absorbed by the pupil filter or reflected by the pupil filter, depending on the type of the pupil filter.
The reflected light will eventually be absorbed somewhere inside the projection lens, or will be reflected several times somewhere and then will pass through the aperture stop of the projection lens again and reach the substrate to be exposed. When absorbed by the pupil filter, the absorbed energy is converted into heat, causing the temperature of the pupil filter to rise. If it is absorbed somewhere inside the projection lens, it causes a temperature rise in that part. If the temperature rises anywhere in the projection lens, including the pupil filter, the projection lens will be distorted and the lens dimensions and interlens dimensions will change. It causes dimensional changes and deterioration of uniformity in the exposure field. Also,
When a projection lens with a pupil filter is used for a long time, the thin film forming the pupil filter deteriorates due to long-time irradiation of exposure light rays, and eventually the film peels off and the peeling pieces adhere to the projection lens members above and below the filter. Since these deposits cause transfer defects during exposure, they must be carefully monitored to prevent them from depositing. However, once such peeling pieces adhere to the projection lens member, they cannot be removed unless the projection lens is disassembled and overhauled. On the other hand, when the light is reflected by the pupil filter surface, the light that reaches the pupil filter surface again after passing through the pupil filter surface after being reflected several times and then reaching the substrate to be exposed is noisy in the light rays forming the pattern. Since it is superposed as light, it causes deterioration of resolution, deterioration of exposure contrast, and the like. When a glass material with some translucency is used as a pupil filter for limiting the transmittance in a projection lens designed to be a simple aperture plate as an aperture stop, the optical path length is changed and the resolution is impaired. . When a certain glass material is used as a pupil filter for limiting the transmittance, a projection lens designed by correcting the lens aberration in consideration of the existence of the glass material must be used.

【0005】以上の3つの問題点に対処するためには、
に対応して、高解像性が要求されない大パターンを転
写する時には、開口絞り部の透過率を制限しないで露光
する。に対応して、透過率を制限する瞳フィルタの使
用頻度を下げる。また、瞳フィルタ膜が劣化して剥離す
る前に交換する。に対応して、予め透過率を制限する
瞳フィルタとして入れるガラス材料の存在を考慮してレ
ンズ収差を補正、設計した投影レンズを使用する。こと
が有効である。に対する手段として挙げた、高解像性
が要求されない大パターンを転写する時に開口絞り部の
透過率を制限しないで露光する方法は、結果的に透過率
を制限する瞳フィルタの使用頻度を下げることにもな
り、同時に問題点に対する対策にもなる。
In order to deal with the above three problems,
Accordingly, when transferring a large pattern for which high resolution is not required, exposure is performed without limiting the transmittance of the aperture stop. Accordingly, the frequency of use of the pupil filter that limits the transmittance is reduced. Also, the pupil filter film is replaced before it is deteriorated and peeled off. Corresponding to the above, a projection lens which is designed by correcting the lens aberration in consideration of the existence of a glass material to be inserted as a pupil filter for limiting the transmittance in advance is used. Is effective. The method of exposing without limiting the transmissivity of the aperture stop when transferring a large pattern that does not require high resolution, as a means to solve the problem, reduces the frequency of use of the pupil filter that restricts the transmissivity. At the same time, it becomes a countermeasure against the problem.

【0006】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、原図基板を斜め入射照明し、投影レンズ開口絞り
位置に瞳フィルタを置く、高解像、大焦点深度の露光を
必要最少限だけ行い、解像性や焦点深度の深さがあまり
要求されない時には瞳フィルタを単なる開口絞りに置き
換えて露光することにより、瞳フィルタの長寿命化を図
ると共に、解像性や焦点深度の深さが要求されない時の
露光スループットを向上させるようにした投影露光装置
を提供することにある。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to illuminate the original drawing substrate with oblique incidence and place a pupil filter at the projection lens aperture stop position. Extend the life of the pupil filter by performing exposure with high resolution and large depth of focus to the minimum required, and replacing the pupil filter with a simple aperture stop for exposure when resolution or depth of focus is not so required. It is an object of the present invention to provide a projection exposure apparatus capable of improving the exposure throughput when resolution and depth of focus are not required.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
本発明は、原図基板上のパターンを投影レンズを介して
被露光基板上に投影露光、転写する投影露光装置におい
て、所定の光学的な厚さと透光性を有する少なくとも1
つの開口制限板と、透過率調整用の薄膜が形成され前記
開口制限板と同じ光学的な厚さを有する少なくとも1つ
の瞳フィルタとを備え、これらの開口制限板と瞳フィル
タを、前記投影レンズを投影露光装置に設置したままの
状態で投影レンズの開口絞り位置に選択的に設置するよ
うにしたものである。
In order to achieve the above object, the present invention provides a projection exposure apparatus which projects and transfers a pattern on an original drawing substrate onto a substrate to be exposed through a projection lens. At least 1 having thickness and translucency
Two aperture limiting plates, and at least one pupil filter having a transmittance adjusting thin film formed thereon and having the same optical thickness as the aperture limiting plate. The aperture limiting plate and the pupil filter are connected to the projection lens. Is selectively installed at the aperture stop position of the projection lens while being installed in the projection exposure apparatus.

【0008】[0008]

【作用】本発明において、透光性を有する開口制限板は
開口絞り部の透過率を制限せず、高解像性が要求されな
い大パターンを転写する時に用いられ、透過率を制限す
る瞳フィルタの使用頻度を下げる。瞳フィルタは、高解
像、大焦点深度の露光を行う場合に使用される。
In the present invention, the translucent aperture limiting plate does not limit the transmissivity of the aperture stop and is used when transferring a large pattern that does not require high resolution, and a pupil filter that limits the transmissivity. Use less frequently. The pupil filter is used when performing exposure with high resolution and large depth of focus.

【0009】[0009]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。図1は投影レンズと瞳フィルタの斜視
図、図2は要部断面図、図3(a)、(b)は透過率を
制限しないで開口の大きさのみを制限する開口制限板
と、透過率を制限する瞳フィルタの斜視図である。な
お、図中図6に示した従来装置の構成部材と同一のもの
に対しては同一符号をもって示す。これらの図におい
て、レチクルと被露光基板であるウエハとの間に配設さ
れレチクルの微細パターンをウエハ上に結像させる投影
レンズ11は、レチクル側レンズ群21a(図6)と、
ウエハ側レンズ群21b(図6)とを同軸に内蔵する筒
体22を備えている。筒体22の一部周面で、前記レチ
クル側レンズ群21aと、ウエハ側レンズ群21bとの
間に対応する部分、すなわち開口絞りが設置される位置
には、周方向に長い長孔23が形成されており、この長
孔23より透光性を有し透過率を制限しないで開口の大
きさのみを制限する開口制限板24と、この開口制限板
24と同一の光学的厚さを有し透過率を制限する瞳フィ
ルタ25とを選択的に挿入し得るようにしたものであ
る。この場合、開口制限板24は、高解像性が要求され
ない大パターンを転写する時に用いられ、瞳フィルタ2
5は、高解像、大焦点深度の露光を行う場合に使用され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. FIG. 1 is a perspective view of a projection lens and a pupil filter, FIG. 2 is a cross-sectional view of a main part, and FIGS. 3A and 3B are aperture limiting plates that limit only the size of the aperture without limiting the transmittance, and It is a perspective view of the pupil filter which limits a ratio. In the figure, the same components as those of the conventional device shown in FIG. 6 are designated by the same reference numerals. In these figures, a projection lens 11 arranged between a reticle and a wafer which is a substrate to be exposed to form a fine pattern of the reticle on the wafer includes a reticle side lens group 21a (FIG. 6),
It is provided with a cylindrical body 22 coaxially with the wafer side lens group 21b (FIG. 6). A long hole 23 that is long in the circumferential direction is formed on a part of the peripheral surface of the cylindrical body 22 at a portion corresponding to the reticle side lens group 21a and the wafer side lens group 21b, that is, a position where an aperture stop is installed. The aperture limiting plate 24 is formed so as to transmit light from the elongated hole 23 and limits only the size of the aperture without limiting the transmittance, and has the same optical thickness as the aperture limiting plate 24. The pupil filter 25 for limiting the transmittance can be selectively inserted. In this case, the aperture limiting plate 24 is used when transferring a large pattern for which high resolution is not required, and the pupil filter 2
5 is used when exposure with high resolution and large depth of focus is performed.

【0010】開口制限板24としては、合成石英、溶融
石英、合成蛍石、溶融蛍石等の透光性を有するガラス材
料で形成されており、その表面で開口部24a以外の表
面は図2、図3(a)に示すように遮光膜26によって
覆われている。遮光膜26としては、露光光線を遮光す
るものであれば任意の材料でよいことは言うまでもな
い。
The aperture limiting plate 24 is made of a transparent glass material such as synthetic quartz, fused quartz, synthetic fluorite, and fused fluorite, and the surface other than the opening 24a is shown in FIG. , Covered with a light shielding film 26 as shown in FIG. It goes without saying that the light shielding film 26 may be made of any material as long as it shields the exposure light beam.

【0011】瞳フィルタ25は、前記開口制限板24と
同様なガラス材料からなり透光性を有する平面板27
と、この平面板27上に形成された遮光膜26および透
過率調整用の透過膜28とで構成されている。透過膜2
8は、開口部25aの中に円環状に形成されており、露
光光線に対して所定の透過率を付与できる材料であれば
任意であり、例えば、クロムの薄膜、酸化クロムの薄
膜、フッ化マグネシウムと硫化亜鉛の多層薄膜等とす
る。
The pupil filter 25 is made of a glass material similar to the aperture limiting plate 24 and has a light-transmitting plane plate 27.
And a light-shielding film 26 and a transmissive film 28 for adjusting the transmittance, which are formed on the flat plate 27. Permeable membrane 2
No. 8 is a ring-shaped material formed in the opening 25a and can be any material as long as it can impart a predetermined transmittance to the exposure light beam. For example, a thin film of chromium, a thin film of chromium oxide, or a fluoride film. It is a multilayer thin film of magnesium and zinc sulfide, etc.

【0012】ここで、開口制限板24と、瞳フィルタ2
5の光学的厚さとは、これらの単純な厚さの絶対値では
なく、開口制限板24と平面板27の屈折率を考慮した
厚さの意味である。付着膜を含めた全厚さを波長λの光
線が透過する間に変化する全位相角Φ(ラジアン)を2
πで除し、波長λを乗じた値をここでいう光学的な厚さ
t(=Φ・λ/2π)とする。また、上記の説明に「透
過率を制限しない」という表現を使ったが、どんなガラ
ス材料からなるどんな開口制限板24、平面板27でも
僅かな透過量の減衰は避けられないものであり、意識的
に透過率を落としていないという意味である。以下の説
明においても同様である。
Here, the aperture limiting plate 24 and the pupil filter 2
The optical thickness of 5 does not mean the absolute value of these simple thicknesses, but means the thickness considering the refractive indexes of the aperture limiting plate 24 and the plane plate 27. The total phase angle Φ (radian) that changes while the light beam of wavelength λ passes through the entire thickness including the adhesion film is 2
The value obtained by dividing by π and multiplying by the wavelength λ is the optical thickness t (= Φ · λ / 2π) here. Although the expression "the transmittance is not limited" is used in the above description, a slight attenuation of the transmission amount cannot be avoided by any aperture limiting plate 24 and flat plate 27 made of any glass material. It means that the transmittance is not lowered. The same applies to the following description.

【0013】図2において、前記筒体22の内部で開口
絞り位置には真空吸着孔(または真空吸着溝)30を有
する真空吸着板31が配設されており、この吸着板31
上に前記長孔23から選択的に挿入される開口制限板2
4または瞳フィルタ25が設置され、真空吸着されるよ
うに構成されている。このため、前記真空吸着孔30は
チューブ33を介して不図示の真空ポンプに接続されて
いる。なお、34はチューブ33を真空吸着板31に接
続するための配管部品で、この配管部品34はパッキン
35を介して真空吸着板31にねじ込まれている。36
は真空吸着孔30の下端開口部を気密に閉鎖する蓋部
材、37は開口制限板24または瞳フィルタ25を挿入
する際、挿入奥行き方向の位置を決めるためのストッパ
である。真空吸着板31は、図では単純な平行平板とし
たが、投影レンズ11内の隣接するレンズを保持する機
能を兼ねた部品であっても勿論よく、形状は任意であ
る。真空吸着した時、開口制限板24の遮光膜26が付
いた面、または瞳フィルタ25の透過膜28が付いた面
が本来の開口絞り位置に来るようにする。真空吸着板3
1の材料としては任意であるが、真空吸着面製造時に突
起を生じ難いセラミックのような材料が好適である。
In FIG. 2, a vacuum suction plate 31 having a vacuum suction hole (or vacuum suction groove) 30 is disposed inside the cylindrical body 22 at the aperture stop position.
An aperture limiting plate 2 which is selectively inserted from above the long hole 23.
4 or pupil filter 25 is installed and configured to be vacuum-adsorbed. Therefore, the vacuum suction hole 30 is connected to a vacuum pump (not shown) via the tube 33. Incidentally, 34 is a piping component for connecting the tube 33 to the vacuum suction plate 31, and this piping component 34 is screwed into the vacuum suction plate 31 via a packing 35. 36
Is a lid member for airtightly closing the lower end opening of the vacuum suction hole 30, and 37 is a stopper for determining the position in the insertion depth direction when the aperture limiting plate 24 or the pupil filter 25 is inserted. Although the vacuum suction plate 31 is a simple parallel plate in the drawing, it may be a component that also has a function of holding the adjacent lenses in the projection lens 11, and the shape is arbitrary. When vacuum suction is performed, the surface of the aperture limiting plate 24 with the light shielding film 26 or the surface of the pupil filter 25 with the transmission film 28 is positioned at the original aperture stop position. Vacuum suction plate 3
Although the material of No. 1 is arbitrary, a material such as ceramic, which is unlikely to cause protrusion during the production of the vacuum suction surface, is suitable.

【0014】筒体22の内部に真空吸着板31を取り付
ける方法は任意であるが、取付面を組立基準面としてお
き、真空吸着板31を、上面と下面が平行で平面度の確
保された所定の厚さの板としておけば、開口制限板24
または瞳フィルタ25を所定の光軸方向の位置に任意に
交換設置することができる。
Although the method of attaching the vacuum suction plate 31 to the inside of the cylindrical body 22 is arbitrary, the attachment surface is used as an assembly reference plane, and the vacuum suction plate 31 has a predetermined upper surface and lower surface which are parallel to each other and have a certain flatness. Opening limit plate 24
Alternatively, the pupil filter 25 can be arbitrarily replaced and installed at a position in the predetermined optical axis direction.

【0015】図2では筒体22内に直接真空吸着板31
を組み込んだ場合を示したが、長い筒体の内部に真空吸
着板31の精度のよい取付面を設けることは、必ずしも
容易ではない。筒体22の内部に各個のレンズを保持す
るための部品やレンズ間のスペーサとする部品等に真空
吸着板31の取付面を設けてもよい。逆に、精度のよい
加工さえ可能であれば真空吸着板31を別に設けずに、
筒体22に直接真空吸着孔30または真空吸着溝を設け
てもよいことは明かである。
In FIG. 2, the vacuum suction plate 31 is directly provided in the cylindrical body 22.
However, it is not always easy to provide a highly accurate mounting surface for the vacuum suction plate 31 inside a long cylindrical body. The mounting surface of the vacuum suction plate 31 may be provided on a component for holding each lens, a component serving as a spacer between the lenses, and the like inside the cylindrical body 22. On the contrary, if it is possible to perform accurate processing, without providing the vacuum suction plate 31 separately,
It is obvious that the vacuum suction hole 30 or the vacuum suction groove may be directly provided in the cylindrical body 22.

【0016】なお、瞳フィルタ25の透過膜28は厚さ
を有するため、膜厚による光学的光路長が投影レンズ1
1の収差を考える上で問題になる場合がある。その場合
には、透過膜のついていない開口の大きさのみを制限す
る開口制限板24の光学的な厚さが、透過膜28を付け
た平面板27と同じ光学的厚さになるように、開口制限
板24の厚さを決めておく。開口の大きさのみを制限す
る開口制限板24に、瞳フィルタ25の透過膜28と光
学的光路長が同じになる透過膜を付加することによっ
て、瞳フィルタ25と、開口制限板24との光学的厚さ
を揃えてもよい。何れにしても、図1、図2に示すよう
に、瞳フィルタ25または開口制限板24を、投影レン
ズ11の筒体22内部の真空吸着板31上に吸着設置し
た状態で、投影レンズ11が初期のレンズ機能を発揮で
きるようにする。
Since the transmission film 28 of the pupil filter 25 has a thickness, the optical optical path length depending on the film thickness is the projection lens 1.
There may be a problem in considering the aberration of 1. In that case, the optical thickness of the aperture limiting plate 24 that limits only the size of the opening without the transmission film is the same as that of the flat plate 27 with the transmission film 28. The thickness of the aperture limiting plate 24 is determined in advance. By adding a transmissive film having the same optical optical path length as that of the transmissive film 28 of the pupil filter 25 to the aperture restricting plate 24 that restricts only the size of the aperture, the pupil filter 25 and the aperture restricting plate 24 are optically coupled. The target thicknesses may be the same. In any case, as shown in FIGS. 1 and 2, when the pupil filter 25 or the aperture limiting plate 24 is attached to the vacuum suction plate 31 inside the cylindrical body 22 of the projection lens 11 by suction, To be able to exert the initial lens function.

【0017】投影レンズ11に挿入される開口制限板2
4または瞳フィルタ25の面に平行な方向の位置は、ガ
イドを設けるかストッパ37に押し当てて位置決めす
る。また、ばねで一方向に押し付けてもよい。図2で
は、挿入奥行き方向のみの位置決めを行うストッパ37
を示したが、挿入方向に直交する方向にも同様なストッ
パを設けておけば、位置を一義的に決定することができ
る。
Aperture limiting plate 2 inserted in the projection lens 11
4 or a position in a direction parallel to the surface of the pupil filter 25 is positioned by providing a guide or pressing against a stopper 37. Moreover, you may press in one direction with a spring. In FIG. 2, the stopper 37 that positions only in the insertion depth direction.
However, if a similar stopper is provided in the direction orthogonal to the insertion direction, the position can be uniquely determined.

【0018】図4(a)〜(h)はそれぞれ透過率を制
限する瞳フィルタの他の実施例を示す斜視図である。
(a)図は開口部25aの中に多点状の透過膜28を設
けた例、(b)図は開口部25aの中に異なった透過率
1 ,T2 の透過膜28a,28bを同心円状に設けた
例、(c)図は開口部25aの中に透過率T1 の透過膜
28aを多点状に設け、さらにその外側にも透過率T2
の透過膜28bを円環状に設けた例、(d)図は開口部
25aの中に多点状の透過膜28a(透過率T1)を設
け、さらにその外側にも透過膜28b(透過率T2 )を
設けた例、(e)図は(b)図の中心部にも透過率T3
を有する透過膜28cを設けた例、(f)図は(c)図
の中心部にも透過率T3 を有する透過膜28cを設けた
例、(g)図は(d)の中心部にも透過率T3 を有する
透過膜28cを設けた例、(h)図は図に示すように透
過率Tが任意に連続的に変化するようにした透過膜28
を設けた例である。なお、図中、遮光膜26の付いてい
る部分をハッチング、透過膜28(28a〜28c)の
付いている部分、すなわち、意図的に透過率を低下させ
ている部分をハッチングまたはクロスハッチングで示し
た。
FIGS. 4A to 4H are perspective views showing other embodiments of the pupil filter for limiting the transmittance.
(A) is an example in which a multi-point transmissive film 28 is provided in the opening 25a, and (b) is a transmissive film 28a, 28b having different transmittances T 1 , T 2 in the opening 25a. An example of concentric circles, (c) in the figure, the transmissive film 28a having the transmissivity T 1 is provided in a multipoint manner in the opening 25a, and the transmissivity T 2 is also provided outside thereof.
An example in which the permeable membrane 28b is provided in an annular shape, (d) is a multi-point permeable membrane 28a (transmittance T 1 ) provided in the opening 25a, and the permeable membrane 28b (transmittance) is also provided outside thereof. T 2 ) is provided, the transmittance T 3 is also shown in the center of FIG.
An example in which a permeable film 28c having a transmittance of T 3 is provided in the central portion of FIG. 6C, and an example in which a transparent film 28c having a transmittance T 3 is provided in the central portion of FIG. Also, an example in which a transmissive film 28c having a transmissivity T 3 is provided, and (h) is a transmissive film 28 in which the transmissivity T is continuously changed as shown in the figure.
Is an example in which is provided. In the figure, the portion with the light shielding film 26 is shown by hatching, and the portion with the transmission film 28 (28a to 28c), that is, the portion where the transmittance is intentionally lowered is shown by hatching or cross hatching. It was

【0019】透過膜28の形状は、フライアイレンズ射
出口の形状、すなわち2次光源の形状に合わせて決め
る。フライアイレンズ射出口は、投影レンズ11の開口
絞り位置に像を結ぶように投影光学系は構成されてい
る。したがって、フライアイレンズ射出口が円環状の場
合には、図3(b)の円環状の透過率調整部(28)
は、フライアイレンズ射出口の円環状の像の大きさに大
略合わせる。また、図4(b)、(e)の場合には、透
過率T1 の部分の形状をフライアイレンズ射出口の円環
状の像の大きさに大略合わせる。勿論、完全に合致させ
てもよいことは言うまでもない。フライアイレンズ射出
口の形状が多点状の場合も、その像の点の数と大きさと
位置に合わせて透過膜を設けた瞳フィルタを用いればよ
い。すなわち、図4(a)の多点状の透過膜28は、フ
ライアイレンズ射出口の多点状の像の数と大きさと位置
に大略または完全に合わせる。また、図4(c)、
(d)、(f)、(g)の場合にも、透過率T1 の部分
の形状をフライアイレンズ射出口の多点状の像の大きさ
に大略または完全に合わせる。フライアイレンズ射出口
の形状が多点状の場合に、開口絞り位置にできる多点状
の像を包絡するような円環状の透過膜を持つ図3
(b)、図4(b)、(e)のような瞳フィルタを用い
てもよい。透過膜28の透過率は任意であり、特別の場
合として、T1 =T2 、T2 =T3 、T1 =T3 、T1
=T2 =T3 等の条件の瞳フィルタも適用することが
できる。
The shape of the transparent film 28 is determined according to the shape of the exit of the fly-eye lens, that is, the shape of the secondary light source. The projection optical system is configured so that the fly-eye lens exit port forms an image at the aperture stop position of the projection lens 11. Therefore, when the fly-eye lens exit is annular, the annular transmittance adjuster (28) of FIG.
Is roughly matched to the size of the annular image at the exit of the fly-eye lens. Further, in the case of FIGS. 4B and 4E, the shape of the portion having the transmittance T 1 is roughly matched with the size of the annular image at the exit of the fly-eye lens. Of course, it goes without saying that they may be perfectly matched. Even when the fly-eye lens exit has a multipoint shape, a pupil filter provided with a transmission film may be used according to the number, size, and position of the image points. That is, the multi-point transmissive film 28 of FIG. 4A is roughly or completely adjusted to the number, size, and position of multi-point images of the fly-eye lens exit. In addition, FIG.
Also in the cases of (d), (f) and (g), the shape of the portion having the transmittance T 1 is roughly or completely matched with the size of the multi-point image at the exit of the fly-eye lens. When the fly-eye lens exit has a multi-point shape, it has a ring-shaped transparent film that envelops a multi-point image formed at the aperture stop position.
You may use the pupil filter like (b), FIG.4 (b), (e). The transmittance of the permeable film 28 is arbitrary, and as a special case, T 1 = T 2 , T 2 = T 3 , T 1 = T 3 , T 1
A pupil filter under the condition of = T 2 = T 3 can also be applied.

【0020】以上の説明図(図3、図4)では、表記上
見易いように、瞳フィルタ25の透過膜28または透過
率を制限しないで開口(24a,25a)の大きさのみ
を制限する遮光膜26が、開口制限板24,平面板27
の上面に存在するように描いた。しかし、開口制限板2
4,平面板27の下面であってもよい。また、遮光膜2
6や透過膜28が2枚の透光板の間にサンドイッチ状に
挟まれた構造としてもよい。要は、本来の開口絞り位置
付近に透過膜28または単に開口の大きさのみを制限す
る遮光膜26が来る時、投影レンズ11が正常なレンズ
機能を発揮すればよい。投影レンズ11が正常なレンズ
機能を発揮するため、開口の大きさのみを制限する開口
制限板24または瞳フィルタ25の光学的厚さと投影レ
ンズ光軸に対する傾きは非常に正確に設定する必要があ
るが、遮光膜26や透過膜28の位置は、おおよそ本来
の開口絞り位置にあればよい。勿論、遮光膜26や透過
膜28の位置が丁度本来の開口絞り位置になるように考
慮すればなおよいことは言うまでもない。
In the above-mentioned explanatory views (FIGS. 3 and 4), for the sake of clarity, the light-shielding film which limits only the size of the apertures (24a, 25a) without limiting the transmission film 28 or the transmittance of the pupil filter 25. The film 26 includes the aperture limiting plate 24 and the flat plate 27.
It was drawn to exist on the upper surface of. However, the aperture limiting plate 2
4, it may be the lower surface of the plane plate 27. In addition, the light shielding film 2
It is also possible to adopt a structure in which 6 and the transmissive film 28 are sandwiched between two translucent plates. In short, it is sufficient that the projection lens 11 exerts a normal lens function when the transmission film 28 or the light-shielding film 26 that limits only the size of the aperture comes near the original aperture stop position. Since the projection lens 11 exerts a normal lens function, it is necessary to set the optical thickness of the aperture limiting plate 24 or the pupil filter 25 that limits only the size of the aperture and the inclination with respect to the optical axis of the projection lens very accurately. However, the positions of the light-shielding film 26 and the transmission film 28 may be approximately at the original aperture stop positions. Needless to say, it is better to consider that the positions of the light-shielding film 26 and the transmission film 28 are exactly the original aperture stop positions.

【0021】図3および図4に示した開口制限板24お
よび瞳フィルタ25は、投影露光装置が取り得る光源の
形状に応じて、任意の種類を任意の数だけ用意すればよ
い。同一の種類で、瞳フィルタ各部の寸法や透過率を変
えたものを複数枚用意してもよく、単に開口を制限する
開口寸法だけを変えた開口制限板24を複数枚用意して
もよい。また開口制限板24および瞳フィルタ25の形
状、寸法は任意であり、図1〜図4に示したような長方
形である必要はない。開口絞りの大きさや開口絞り位置
への取付の便、遮光膜26や透過膜28の製作の便、等
を総合的に勘案して形状、寸法を決めればよい。
The aperture limiting plate 24 and the pupil filter 25 shown in FIGS. 3 and 4 may be prepared in arbitrary types and in arbitrary numbers according to the shape of the light source that the projection exposure apparatus can take. It is also possible to prepare a plurality of sheets of the same type in which the dimensions and transmittance of each part of the pupil filter are changed, or a plurality of aperture limiting plates 24 in which only the aperture size for simply limiting the aperture is changed. Further, the shape and dimensions of the aperture limiting plate 24 and the pupil filter 25 are arbitrary, and they do not have to be rectangular as shown in FIGS. The shape and size may be determined by comprehensively considering the size of the aperture stop, the convenience of attachment to the aperture stop position, the convenience of manufacturing the light shielding film 26 and the transmission film 28, and the like.

【0022】ところで、投影レンズ11は投影露光装置
の中央部に位置しており、かつ投影露光装置は精度を保
持するため、精密に空調を行ったチャンバ内に置かれる
ことが多い。したがって、前述の開口制限板24および
瞳フィルタ25の交換は手動操作により行うことも勿論
可能であるが、むしろ遠隔操作によって自動的に行われ
ることが望ましい。
By the way, the projection lens 11 is located in the central portion of the projection exposure apparatus, and the projection exposure apparatus is often placed in a chamber that is precisely air-conditioned in order to maintain accuracy. Therefore, it is of course possible to replace the aperture limiting plate 24 and the pupil filter 25 by manual operation, but it is preferable that the replacement is automatically performed by remote operation.

【0023】図5は遠隔操作による開口制限板24およ
び瞳フィルタ25の自動交換機構を示す図である。各種
の開口制限板24および瞳フィルタ25はストッカ40
内に格納されており、パソコン等の制御装置41のキー
ボードから必要な開口制限板24または瞳フィルタ25
の名称や番号、またはストッカ40内の格納場所の名称
や番号をキー入力することにより、搬送用のハンドリン
グ機構制御部42に命令を与え、ストッカ40から所定
の開口制限板24または瞳フィルタ25をフォーク43
が把持して取り出し、投影レンズ11内に挿入し真空吸
着板31上に設置するように構成されている。フォーク
43は、吸着部を有してロッド44の下端に取付けられ
ており、ロッド44はガイド46に沿って移動自在なキ
ャリア47に設けられた昇降スライダ48に昇降自在に
取付けられている。ストッカ40の搬出入口の方向、フ
ォーク44の動く経路や方向は任意であり、図5の矢印
a、b、c方向や経路による必要がないことは明かであ
る。投影露光装置の空いているスペースにストッカ40
を設置し、このストッカ40と投影レンズ11の筒体2
2に開設した長孔23との間に、適宜任意の経路でフォ
ーク44のガイド46を設ければよい。この際、ハンド
リング機構により開口制限板24または瞳フィルタ25
を、これらの面の方向に必要な精度の範囲で位置決めす
れば、図2に示した挿入方向の位置決めのためのストッ
パ37および挿入方向に直交する方向のストッパは不要
となる。また、投影レンズ11の開口絞り位置に瞳フィ
ルタ25を挿入配置すると有効なのは、原図基板を斜め
入射照明する場合である。したがって、投影レンズ11
の開口絞り位置に開口制限板24または瞳フィルタ25
を入れる動作を、原図基板照明を直入射照明と斜め入射
照明とに切り替えるのに連動させればなおよい。投影露
光装置の2次光源となるフライアイレンズの射出口に、
円状、円環状、多点状等の透過部または穴を有する板を
任意に挿入したり、複数の形状の射出口を有する板をス
ライドまたは回転する等して、照明光源の形状を可変と
なす。そして、この照明光源の形状を自動的に検知する
か、もしくは図5に示したパソコン等の制御装置41の
キーボードから照明光源の形状に関する情報を入力する
時、照明光源の形状に対応して用意された投影レンズの
開口絞り位置に入れる開口制限板24または瞳フィルタ
25の種類が、制御装置41に画像表示されるようにす
る。このようにすれば、表示された開口制限板24また
は瞳フィルタ25のうち任意のものを操作者が選択、指
示することにより、該当する開口制限板24もしくは瞳
フィルタ25を開口絞り位置に装着することができる。
照明光源の形状と投影レンズ11の開口絞り位置に装着
する平面板または瞳フィルタ25を1対1に対応させて
おき、照明光源の形状を自動検知またはキー入力すれ
ば、自動的に対応する開口制限板24または瞳フィルタ
25が開口絞り位置に装着されるようにしてもよい。あ
るいは、実際に有効な照明光源の形状、寸法と、投影レ
ンズ11の開口絞り位置に装着する開口制限板24また
は瞳フィルタ25との組み合わせが制御装置41の画面
上に表示されるようにし、それらの組み合わせを操作者
が選択、指示することにより、当該照明光源の形状、寸
法と、投影レンズ11の開口絞り位置に装着する開口制
限板24または瞳フィルタ25との組み合わせが自動的
に実現するようにしてもよい。
FIG. 5 is a view showing a mechanism for automatically changing the aperture limiting plate 24 and the pupil filter 25 by remote control. The various aperture limiting plates 24 and the pupil filter 25 are connected to the stocker 40.
The aperture limiting plate 24 or the pupil filter 25, which is stored in the computer and is required from the keyboard of the control device 41 such as a personal computer.
By keying in the name or number of the stocker or the name or number of the storage location in the stocker 40, a command is given to the handling mechanism control unit 42 for transportation, and the stocker 40 opens the predetermined aperture limiting plate 24 or pupil filter 25. Fork 43
Is grasped and taken out, inserted into the projection lens 11, and installed on the vacuum suction plate 31. The fork 43 has a suction part and is attached to the lower end of a rod 44, and the rod 44 is attached to an elevating slider 48 provided on a carrier 47 that is movable along a guide 46 so as to be able to move up and down. It is clear that the direction of the loading / unloading port of the stocker 40 and the path and direction of movement of the fork 44 are arbitrary, and there is no need for the directions and paths of arrows a, b, and c in FIG. Stocker 40 in the empty space of the projection exposure apparatus
The stocker 40 and the cylindrical body 2 of the projection lens 11 are installed.
The guide 46 of the fork 44 may be provided between the elongated hole 23 formed in 2 and an appropriate path. At this time, the aperture limiting plate 24 or the pupil filter 25 is handled by the handling mechanism.
2 is positioned in the direction of these surfaces within the required accuracy range, the stopper 37 for positioning in the insertion direction and the stopper in the direction orthogonal to the insertion direction shown in FIG. 2 are unnecessary. Further, it is effective to insert the pupil filter 25 at the aperture stop position of the projection lens 11 in the case of obliquely illuminating the original drawing substrate. Therefore, the projection lens 11
Aperture limiting plate 24 or pupil filter 25 at the aperture stop position of
It is more preferable to interlock the operation of turning on the illumination of the original drawing substrate for switching between the direct incidence illumination and the oblique incidence illumination. At the exit of the fly-eye lens, which is the secondary light source of the projection exposure apparatus,
The shape of the illumination light source can be changed by arbitrarily inserting a plate having a transparent portion or hole such as a circular shape, an annular shape, or a multipoint shape, or sliding or rotating a plate having a plurality of emission ports. Eggplant Then, when the information on the shape of the illumination light source is automatically detected or the information on the shape of the illumination light source is input from the keyboard of the control device 41 such as a personal computer shown in FIG. 5, it is prepared corresponding to the shape of the illumination light source. The type of the aperture limiting plate 24 or the pupil filter 25 placed in the aperture stop position of the projection lens thus selected is displayed on the control device 41 as an image. By doing so, the operator selects and instructs any one of the displayed aperture limiting plate 24 or the pupil filter 25, so that the corresponding aperture limiting plate 24 or the pupil filter 25 is mounted at the aperture stop position. be able to.
If the shape of the illumination light source and the flat plate or pupil filter 25 attached to the aperture stop position of the projection lens 11 are made to correspond one-to-one, and the shape of the illumination light source is automatically detected or key-inputted, the corresponding aperture is automatically obtained. The limiting plate 24 or the pupil filter 25 may be mounted at the aperture stop position. Alternatively, a combination of the actually effective shape and size of the illumination light source and the aperture limiting plate 24 or the pupil filter 25 mounted at the aperture stop position of the projection lens 11 is displayed on the screen of the control device 41. A combination of the shape and size of the illumination light source and the aperture limiting plate 24 or the pupil filter 25 mounted at the aperture stop position of the projection lens 11 is automatically realized by the operator selecting and instructing the combination. You may

【0024】[0024]

【発明の効果】以上説明したように本発明に係る投影露
光装置によれば、所定の光学的な厚さと透光性を有し開
口の大きさのみを制限する開口制限板と、透過率調整用
の薄膜が形成され前記開口制限板と同じ光学的な厚さを
有する瞳フィルタとを備え、これらの開口制限板と瞳フ
ィルタを、前記投影レンズを投影露光装置に設置したま
まの状態で投影レンズの開口絞り位置に選択的に設置す
るようにしたので、高解像性が要求されない大パターン
を転写する場合には開口制限板を使用して、高解像、大
焦点深度の露光を行う場合に用いられる瞳フィルタの使
用頻度を少なくすることができる。このため、解像性や
焦点深度の深さが要求されない時の露光スループットを
著しく向上させることができる。また、瞳フィルタの使
用頻度が減少する分だけ、瞳フィルタの透過膜の寿命を
延伸することができる。さらに、瞳フィルタが万一劣化
しても、投影レンズを投影露光装置に付けたままで容易
に、劣化した瞳フィルタを交換することができる。従来
の装置では、瞳フィルタが劣化すると、投影レンズの取
外しが必要であり、場合によっては、投影レンズの取り
替えも必要となる。したがって、投影露光装置全体の分
解、再組立、再調整を要し、大変な時間、労力、経費を
必要とした。本発明によれば、こうした問題が一挙に解
決できる。また、本発明は水銀ランプを光源とする投影
露光装置のほか、エキシマレーザ等の任意の光源を露光
光源とする投影露光装置に適用可能である。エキシマレ
ーザを光源とする場合、パルス的に露光エネルギが印加
されるため、瞳フィルタには、一瞬に大エネルギが加わ
る動作が繰り返され、瞳フィルタの劣化が、水銀ランプ
を光源とする投影露光装置の場合より早い。このため、
本発明が特に有効である。
As described above, according to the projection exposure apparatus of the present invention, an aperture limiting plate that has a predetermined optical thickness and a light transmitting property and limits only the size of the aperture, and the transmittance adjustment. And a pupil filter having the same optical thickness as the aperture limiting plate, and projecting the aperture limiting plate and the pupil filter with the projection lens installed in the projection exposure apparatus. Since the lens is selectively installed at the aperture stop position of the lens, when transferring a large pattern that does not require high resolution, an aperture limiting plate is used to perform exposure with high resolution and large depth of focus. It is possible to reduce the frequency of use of the pupil filter used in some cases. Therefore, the exposure throughput can be remarkably improved when the resolution and the depth of focus are not required. Further, the life of the transmission film of the pupil filter can be extended by the amount that the frequency of use of the pupil filter is reduced. Further, even if the pupil filter deteriorates, the deteriorated pupil filter can be easily replaced with the projection lens attached to the projection exposure apparatus. In the conventional device, when the pupil filter deteriorates, the projection lens needs to be removed, and in some cases, the projection lens needs to be replaced. Therefore, disassembly, reassembly, and readjustment of the entire projection exposure apparatus are required, which requires a great deal of time, labor, and cost. According to the present invention, these problems can be solved at once. Further, the present invention can be applied to a projection exposure apparatus using a mercury lamp as a light source and a projection exposure apparatus using an arbitrary light source such as an excimer laser as an exposure light source. When an excimer laser is used as a light source, exposure energy is applied in a pulsed manner, so that the pupil filter is repeatedly subjected to a large amount of energy, and deterioration of the pupil filter causes a projection exposure apparatus using a mercury lamp as a light source. Faster than. For this reason,
The present invention is particularly effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】投影レンズと瞳フィルタの斜視図である。FIG. 1 is a perspective view of a projection lens and a pupil filter.

【図2】投影レンズの要部断面図である。FIG. 2 is a sectional view of a main part of a projection lens.

【図3】(a),(b)はそれぞれ開口の大きさのみを
制限する開口制限板と、瞳フィルタの斜視図である。
3A and 3B are perspective views of an aperture limiting plate that limits only the size of an aperture and a pupil filter, respectively.

【図4】(a)〜(h)はそれぞれ瞳フィルタの他の実
施例を示す斜視図である。
FIGS. 4A to 4H are perspective views showing other embodiments of the pupil filter.

【図5】自動搬送機構の概略構成図である。FIG. 5 is a schematic configuration diagram of an automatic transport mechanism.

【図6】従来の一般的な投影露光装置の光学系を示す図
である。
FIG. 6 is a diagram showing an optical system of a conventional general projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1 水銀ランプ 9 レチクル 11 投影レンズ 12 ウエハ 13 開口絞り 24 開口制限板 25 瞳フィルタ 26 遮光膜 28 透過膜 DESCRIPTION OF SYMBOLS 1 Mercury lamp 9 Reticle 11 Projection lens 12 Wafer 13 Aperture stop 24 Aperture limiting plate 25 Pupil filter 26 Light-shielding film 28 Transmission film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/20 521 9122−2H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03F 7/20 521 9122-2H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原図基板上のパターンを投影レンズを介
して被露光基板上に投影露光、転写する投影露光装置に
おいて、所定の光学的な厚さと透光性を有する少なくと
も1つの開口制限板と、透過率調整用の薄膜が形成され
前記開口制限板と同じ光学的な厚さを有する少なくとも
1つの瞳フィルタとを備え、これらの開口制限板と瞳フ
ィルタを、前記投影レンズを投影露光装置に設置したま
まの状態で投影レンズの開口絞り位置に選択的に設置す
るようにしたことを特徴とする投影露光装置。
1. A projection exposure apparatus for projecting and transferring a pattern on an original substrate onto a substrate to be exposed through a projection lens, and at least one aperture limiting plate having a predetermined optical thickness and translucency. A thin film for adjusting the transmittance is formed, and at least one pupil filter having the same optical thickness as the aperture limiting plate. The aperture limiting plate and the pupil filter are used as a projection exposure apparatus for the projection lens. A projection exposure apparatus, wherein the projection exposure apparatus is selectively installed at an aperture stop position of a projection lens in an installed state.
JP4343540A 1992-12-01 1992-12-01 Projection aligner Pending JPH06177007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4343540A JPH06177007A (en) 1992-12-01 1992-12-01 Projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4343540A JPH06177007A (en) 1992-12-01 1992-12-01 Projection aligner

Publications (1)

Publication Number Publication Date
JPH06177007A true JPH06177007A (en) 1994-06-24

Family

ID=18362313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4343540A Pending JPH06177007A (en) 1992-12-01 1992-12-01 Projection aligner

Country Status (1)

Country Link
JP (1) JPH06177007A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009064A1 (en) * 2004-07-16 2006-01-26 Nikon Corporation Support method and support structure for optical member, optical apparatus, exposure apparatus, and device production method
JP2006148137A (en) * 2004-11-24 2006-06-08 Asml Netherlands Bv Lithography apparatus and method for manufacturing device
JP2006148138A (en) * 2004-11-24 2006-06-08 Asml Netherlands Bv Lithography apparatus and method of manufacturing device
JP2007088456A (en) * 2005-09-19 2007-04-05 Asml Netherlands Bv Lithography equipment and mechanism
JP2007515797A (en) * 2003-12-23 2007-06-14 カール・ツァイス・エスエムティー・アーゲー Exchange device for optical elements
EP1813989A1 (en) * 2006-01-30 2007-08-01 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7859756B2 (en) 2006-02-06 2010-12-28 Asml Holding N.V. Optical system for transforming numerical aperture
JP2011013394A (en) * 2009-07-01 2011-01-20 Nikon Corp Correction unit, projection optical system, exposure apparatus and method for producing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
JP4750043B2 (en) * 2003-12-23 2011-08-17 カール・ツァイス・エスエムティー・ゲーエムベーハー Exchange device for optical elements
JP2007515797A (en) * 2003-12-23 2007-06-14 カール・ツァイス・エスエムティー・アーゲー Exchange device for optical elements
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2006009064A1 (en) * 2004-07-16 2006-01-26 Nikon Corporation Support method and support structure for optical member, optical apparatus, exposure apparatus, and device production method
JPWO2006009064A1 (en) * 2004-07-16 2008-05-01 株式会社ニコン Support method and support structure for optical member, optical apparatus, exposure apparatus, and device manufacturing method
JP4532395B2 (en) * 2004-11-24 2010-08-25 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2006148138A (en) * 2004-11-24 2006-06-08 Asml Netherlands Bv Lithography apparatus and method of manufacturing device
JP2006148137A (en) * 2004-11-24 2006-06-08 Asml Netherlands Bv Lithography apparatus and method for manufacturing device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2007088456A (en) * 2005-09-19 2007-04-05 Asml Netherlands Bv Lithography equipment and mechanism
KR100894887B1 (en) * 2006-01-30 2009-04-30 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus, device manufacturing method and exchangeable optical element
US20160026094A1 (en) * 2006-01-30 2016-01-28 Carl Zeiss Smt Gmbh Method and device for the correction of imaging defects
US7724351B2 (en) 2006-01-30 2010-05-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and exchangeable optical element
JP2007208257A (en) * 2006-01-30 2007-08-16 Asml Netherlands Bv Lithography apparatus, method of manufacturing device, and exchangeable optical element
EP1813989A1 (en) * 2006-01-30 2007-08-01 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US10620543B2 (en) 2006-01-30 2020-04-14 Carl Zeiss Smt Gmbh Method and device for the correction of imaging defects
US11003088B2 (en) 2006-01-30 2021-05-11 Carl Zeiss Smt Gmbh Method and device for the correction of imaging defects
US7859756B2 (en) 2006-02-06 2010-12-28 Asml Holding N.V. Optical system for transforming numerical aperture
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2011013394A (en) * 2009-07-01 2011-01-20 Nikon Corp Correction unit, projection optical system, exposure apparatus and method for producing device

Similar Documents

Publication Publication Date Title
JPH06177007A (en) Projection aligner
US3748975A (en) Apparatus for and method of correcting a defective photomask
US4131363A (en) Pellicle cover for projection printing system
US7812926B2 (en) Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US20040239904A1 (en) Exposure apparatus and exposure method capable of controlling illumination distribution
US7489386B2 (en) System and method for projecting a pattern from a mask onto a substrate
JPH0555120A (en) Reflection-type mask and manufacture and correction thereof
WO2003065427A1 (en) Exposure device and exposure method
JP4356695B2 (en) Illumination optical system, projection exposure apparatus, and microdevice manufacturing method
KR20080094582A (en) Exposure apparatus and device fabrication method
US6295118B1 (en) Optical arrangement for exposure apparatus
US3984186A (en) Projection masking system
JP3743576B2 (en) Projection exposure apparatus and method for manufacturing semiconductor element or liquid crystal display element using the same
US5592259A (en) Photomask, an exposure method and a projection exposure apparatus
JPH06177008A (en) Projection aligner
EP1760528A2 (en) Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
JP3180133B2 (en) Projection exposure equipment
JP2785757B2 (en) Photo mask
US5274420A (en) Beamsplitter type lens elements with pupil-plane stops for lithographic systems
JPH088157A (en) Projector and exposer
US20160299437A1 (en) Illumination optical apparatus and device manufacturing method
JP3180134B2 (en) Projection exposure equipment
JP2006261334A (en) Exposure apparatus
KR100304499B1 (en) Reflective mask for etching photograph and method for pattern-exposing semiconductor using the same
TW417164B (en) Transfer method and aligner