JPH06175168A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPH06175168A
JPH06175168A JP32566892A JP32566892A JPH06175168A JP H06175168 A JPH06175168 A JP H06175168A JP 32566892 A JP32566892 A JP 32566892A JP 32566892 A JP32566892 A JP 32566892A JP H06175168 A JPH06175168 A JP H06175168A
Authority
JP
Japan
Prior art keywords
polysilane
optical switch
group
optical
fabry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32566892A
Other languages
Japanese (ja)
Inventor
Shinichi Kawasaki
真一 川崎
Hiroaki Murase
裕明 村瀬
Yoshiyuki Yamada
良行 山田
Koji Kawada
浩二 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP32566892A priority Critical patent/JPH06175168A/en
Publication of JPH06175168A publication Critical patent/JPH06175168A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an ultrafast switching element with higher performance index and low consumption of electric power by providing both sides of polysilane with a Fabry-Perot resonator. CONSTITUTION:This optical switch 10 as an optical bistable element has a Fabry-Perot resonator 14, 14 on both sides of methylphenylpolysilane 12. As for the polysilane, straight-chain polysilane and three-dimensionally crosslinkined polysilane are used. The straight-chain polysilane is expressed by formula I and the three-dimensionally crosslinked polysilane is expressed by formula II. In formulae I and II, R is a hydrogen atom, alkyl group of 1-14 carbon number, aryl group, alkoxy group of 1-10 carbon number, amino group, silyl group or its deriv., and n is 100 to about 10000. By using the polysilane as an optical bistable element of an optical switch, consumed electric power can be decreased to 1/400 compared to polydiacetylene.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光双安定素子である光
スイッチに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switch which is an optical bistable element.

【0002】[0002]

【従来の技術】光スイッチは、光路の切換えが目的であ
るから、ON時の挿入損が低く、OFF時の減衰量が大
きいことが必須となる。また、切換え電力、切換え時
間、切換え遅延時間も重用な評価項目である。特に、光
コンピュータのような超高速スイッチングデバイスにお
いては、その小型化はもちろんであるが、消費電力も非
常に重要となる。そして、切換え時間がピコ秒からフェ
ムト秒のスイッチング素子においては、有機材料がその
主役を担っている。
2. Description of the Related Art Since an optical switch is intended to switch the optical path, it is essential that the insertion loss when ON is low and the attenuation amount when OFF is large. Switching power, switching time, and switching delay time are also important evaluation items. In particular, in an ultra-high speed switching device such as an optical computer, not only downsizing but also power consumption is very important. In a switching element with a switching time of picoseconds to femtoseconds, the organic material plays the main role.

【0003】例えば、ポリジアセチレンを用いる方法が
提案されている(ChmicalPhysics Le
tters 133巻(1987年))。この場合に
は、材料の非線形屈折率nは、有機材料系の中では大
きな値を持つ。ところが、吸収係数αが大きいため、
消費電力からみた性能指数M(=n/α)は、約1
×10−10(cm/W)と悪いのが現状であって、
この消費電力(スイッチングエネルギー)は、半導体デ
バイスよりも大きい。
For example, a method using polydiacetylene has been proposed (Chemical Physics Le).
tters 133 (1987)). In this case, the nonlinear refractive index n 2 of the material has a large value in the organic material system. However, since the absorption coefficient α 0 is large,
The performance index M (= n 2 / α 0 ) from the viewpoint of power consumption is about 1
At present, it is bad as × 10 −10 (cm 3 / W),
This power consumption (switching energy) is larger than that of semiconductor devices.

【0004】そこで、本発明は、上記問題点に鑑み、半
導体デバイス並みのスイッチングエネルギーで、かつ、
超高速が実現できる光スイッチを提供するものである。
In view of the above problems, the present invention has switching energy equivalent to that of semiconductor devices, and
It is intended to provide an optical switch capable of achieving ultra-high speed.

【0005】[0005]

【課題を解決するための手段】本発明の光スイッチは、
光双安定素子であって、ポリシランの両側にファブリペ
ロー共振器を設けたものである。
The optical switch of the present invention comprises:
An optical bistable device in which Fabry-Perot resonators are provided on both sides of polysilane.

【0006】このポリシランとしては、直鎖状のポリシ
ランと三次元的に架橋した構造のポリシランとがあり、
直鎖状のポリシランとしては下記のようなものである。
As the polysilane, there are linear polysilane and polysilane having a three-dimensionally crosslinked structure.
The linear polysilane is as follows.

【0007】[0007]

【化1】 但し、式中のRは、水素原子、炭素数1〜14のアルキ
ル基、アリ―ル基、炭素数1〜10のアルコキシ基、ア
ミノ基、シリル基またはその誘導体を示し、nは、10
〜10000程度である。
[Chemical 1] However, R in the formula represents a hydrogen atom, an alkyl group having 1 to 14 carbon atoms, an aryl group, an alkoxy group having 1 to 10 carbon atoms, an amino group, a silyl group or a derivative thereof, and n is 10
It is about 10,000.

【0008】三次元的に架橋した構造のポリシランとし
ては下記のようなものがある。
The following are polysilanes having a three-dimensionally crosslinked structure.

【0009】[0009]

【化2】 但し、式中のRは、水素原子、炭素数1〜14のアルキ
ル基、アリ―ル基、炭素数1〜10のアルコキシ基、ア
ミノ基、シリル基またはその誘導体を示し、nは、10
〜10000程度である。
[Chemical 2] However, R in the formula represents a hydrogen atom, an alkyl group having 1 to 14 carbon atoms, an aryl group, an alkoxy group having 1 to 10 carbon atoms, an amino group, a silyl group or a derivative thereof, and n is 10
It is about 10,000.

【0010】または、Or

【化3】 但し、式中のRは、水素原子、炭素数1〜14のアルキ
ル基、アリール基、炭素数1〜10のアルコキシ基、ア
ミノ基、シリル基またはその誘導体を示し、X,Yおよ
びZはそれぞれ10〜10000程度であり、そして、
これらで示される構造単位を2以上を有したSi−Si
結合を骨格とする網目状ポリマーである。また、これら
ポリマーは、Siの全部または一部がGeであるポリマ
ーでもよい。なお、これらのポリマーは、公知であり、
それぞれの構造単位を有するモノマーを原料として、公
知の方法により製造される。より具体的には、アルカリ
金属の存在下にクロロシラン類を脱塩素重縮合させる方
法(キッピング法)、電極還元によりクロロシラン類を
脱塩素重縮合させる方法、金属触媒の存在下にヒドロシ
ラン類を脱水素重縮合させる方法、ビフェニルなどで架
橋されたジシレンのアニオン重合による方法、環状シラ
ン類の開環重合による方法などが例示される。
[Chemical 3] However, R in the formula represents a hydrogen atom, an alkyl group having 1 to 14 carbon atoms, an aryl group, an alkoxy group having 1 to 10 carbon atoms, an amino group, a silyl group or a derivative thereof, and X, Y and Z are respectively 10 to 10,000, and
Si-Si having two or more structural units shown by these
It is a network polymer having a bond as a skeleton. Further, these polymers may be polymers in which all or part of Si is Ge. Incidentally, these polymers are known,
It is produced by a known method using a monomer having each structural unit as a raw material. More specifically, a method of dechlorinating and polycondensing chlorosilanes in the presence of an alkali metal (kipping method), a method of dechlorinating and polycondensing chlorosilanes by electrode reduction, and a method of dehydrogenating hydrosilanes in the presence of a metal catalyst. Examples thereof include a method of polycondensation, a method of anionic polymerization of disylene cross-linked with biphenyl, and a method of ring-opening polymerization of cyclic silanes.

【0011】[0011]

【作 用】直鎖状のポリシランは、10−12(es
u)の3次の非線形光学定数を持ち、n=5×10
−14(cm/W)である。しかし、吸収係数α
10 (cm−1)であるため、 性能指数M=n/α=5×10−8(cm/W) となる。
[Operation] Linear polysilane is 10 -12 (es
u) has the third-order nonlinear optical constant, and n 2 = 5 × 10
It is −14 (cm 2 / W). However, the absorption coefficient α 0 =
10 - 6 for (cm -1) is, the figure of merit M = n 2 / α 0 = 5 × 10 -8 (cm 3 / W).

【0012】この性能指数Mは、前記ポリジアセチレン
よりも約400倍も優れている。
This figure of merit M is about 400 times better than that of the polydiacetylene.

【0013】そのため、ポリシランを光スイッチの光双
安定素子を用いた場合、ポリジアセチレンに比べて消費
電力が1/400に低減できる。
Therefore, when polysilane is used as an optical bistable element of an optical switch, power consumption can be reduced to 1/400 as compared with polydiacetylene.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0015】図1は、本発明の一実施例を示す光双安定
素子である光スイッチ10の縦断面図であって、メチル
フェニルポリシラン12の両側に、ファブリペロー共振
器14,14を設けたものである。このメチルフェニル
ポリシラン16は、下記のような構造を有している。
FIG. 1 is a vertical sectional view of an optical switch 10 which is an optical bistable element according to an embodiment of the present invention. Fabry-Perot resonators 14 and 14 are provided on both sides of a methylphenylpolysilane 12. It is a thing. This methylphenylpolysilane 16 has the following structure.

【0016】[0016]

【化4】 上記構成の光スイッチ10であると、YAGレーザから
波長1.06μmのレーザ光を照射すると、0.35μ
mの光が透過される。
[Chemical 4] With the optical switch 10 having the above configuration, when the YAG laser irradiates the laser light with the wavelength of 1.06 μm,
m light is transmitted.

【0017】図2は、直鎖状のポリシランのスイッチン
グ時間を示すものであり、10−1 (秒)程度であ
る。従って、光コンピュータなどのように超高速を必要
とするスイッチング素子としても充分使用できる。
[0017] FIG. 2 shows the switching times of the linear polysilane, a 10 -1 approximately 4 seconds. Therefore, it can be sufficiently used as a switching element requiring ultra-high speed such as an optical computer.

【0018】[0018]

【発明の効果】以上により、本発明の光スイッチである
と、性能指数が向上するため少ない消費電力で、超高速
のスイッチング素子が実現できる。
As described above, according to the optical switch of the present invention, the figure of merit is improved, so that an ultrahigh-speed switching element can be realized with low power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す光スイッチの縦断面図
である。
FIG. 1 is a vertical sectional view of an optical switch showing an embodiment of the present invention.

【図2】直鎖状のポリシランのスイッチング時間を示す
グラフである。
FIG. 2 is a graph showing the switching time of linear polysilane.

【符号の説明】[Explanation of symbols]

10……光スイッチ 12……直鎖状のポリシラン 14……ファブリペロー共振器 10 ... Optical switch 12 ... Linear polysilane 14 ... Fabry-Perot resonator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川田 浩二 京都市右京区太秦海正寺町3−2 西京都 マンション703 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Kawada 3-2 Uzumakai Shoji-cho, Ukyo-ku, Kyoto-shi Mansion 703, Kyoto

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ポリシランの両側にファブリペロー共振器
を設けたことを特徴とする光スイッチ。
1. An optical switch comprising Fabry-Perot resonators on both sides of polysilane.
JP32566892A 1992-12-04 1992-12-04 Optical switch Pending JPH06175168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32566892A JPH06175168A (en) 1992-12-04 1992-12-04 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32566892A JPH06175168A (en) 1992-12-04 1992-12-04 Optical switch

Publications (1)

Publication Number Publication Date
JPH06175168A true JPH06175168A (en) 1994-06-24

Family

ID=18179385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32566892A Pending JPH06175168A (en) 1992-12-04 1992-12-04 Optical switch

Country Status (1)

Country Link
JP (1) JPH06175168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407851B1 (en) * 2000-08-01 2002-06-18 Mohammed N. Islam Micromechanical optical switch
CN102169244A (en) * 2011-06-01 2011-08-31 中国工程物理研究院流体物理研究所 Low-voltage driven electro-optical switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407851B1 (en) * 2000-08-01 2002-06-18 Mohammed N. Islam Micromechanical optical switch
CN102169244A (en) * 2011-06-01 2011-08-31 中国工程物理研究院流体物理研究所 Low-voltage driven electro-optical switch

Similar Documents

Publication Publication Date Title
Nasu et al. Nonlinear optical properties of glasses and glass or gel-based composites
Yang et al. Ultrashort polarization splitter using two-mode interference in silicon photonic wires
ATE395747T1 (en) WIRELESS COMMUNICATION SYSTEM USING SECOND HARMONIC SURFACE WAVE TECHNIQUES
JP2004510184A (en) Artificially structured dielectric materials
JPH06175168A (en) Optical switch
Nakamura et al. Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect
Yoshino et al. Novel electrical and optical properties of poly (3-alkylthiophene) as function of alkyl chain length and their functional applications
CA2577717C (en) Photonic crystal, conjugated polymers suitable for photonic crystals, and a method for synthesizing conjugated polymers
Acharya et al. Photogeneration of Charge Carriers and Their Transport Properties in Poly [bis (p-n-butylphenyl) silane]
JP2004035838A (en) Optical element and composition for the same
Chandrasekhar et al. Third‐order nonlinear optical properties of poly (diphenyl amine) and poly (4‐amino biphenyl), novel processible conducting polymers
Bahadori et al. Low-power optical interconnects based on resonant silicon photonic devices: Recent advances and challenges
Qiu et al. Design and analysis of a novel graphene-assisted silica/polymer hybrid waveguide with thermal–optical phase modulation structure
Tian et al. All-optical dynamic modulation of spontaneous emission rate in hybrid optomechanical emitter-cavity systems
TWI250323B (en) Method and apparatus for modulating an optical beam in an optical device
JPH06222234A (en) Optical waveguide and its manufacture
Barley et al. Photoinduced reversible refractive-index changes in tailored siloxane-based polymers
Olsson et al. Spectral bistability in coupled cavity semiconductor lasers
US7071492B2 (en) Thermo-optical device
EP0964018A3 (en) Process for obtaining (Per)Fluoropolyethers substituted at one or at both end groups with a halogen atom
JP2003533737A (en) Add / Drop filter in optically tunable co-directional mode supported by grid
JPH06256523A (en) Polysiloxane containing transition metal element and optical wave guide produced by using the polymer
Wang et al. Metal-print-defining thermo-optic tunable chirped waveguide Bragg gratings using organic-inorganic hybrid PMMA materials
Watanabe et al. Vibrational Overtone Absorption of Side Chain in Silicone at 1.55 µm Wavelength Band
Utaka et al. Optical waveguides fabricated by using all-wet-photolithography technique with UV curable sol-gel materials