JPH06174655A - Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance - Google Patents

Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance

Info

Publication number
JPH06174655A
JPH06174655A JP35173592A JP35173592A JPH06174655A JP H06174655 A JPH06174655 A JP H06174655A JP 35173592 A JP35173592 A JP 35173592A JP 35173592 A JP35173592 A JP 35173592A JP H06174655 A JPH06174655 A JP H06174655A
Authority
JP
Japan
Prior art keywords
angle
detection signal
low
foreign matter
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35173592A
Other languages
Japanese (ja)
Inventor
Shigeharu Iizuka
繁晴 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP35173592A priority Critical patent/JPH06174655A/en
Publication of JPH06174655A publication Critical patent/JPH06174655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To furnish a method which is applied to a filmed wafer having an aluminum thin film evaporated and wherein grains of the thin film are removed as much as possible and a sticking foreign substance is detected, and an inspection apparatus of the foreign substance to which this method is applied. CONSTITUTION:This apparatus comprises a rotating-moving mechanism 3 for a filmed wafer 1', a light-projecting system 4 which projects a laser beam onto the surface of the filmed wafer 1' at a small angle of 15 deg. to 20 deg. and bundles 511 and 512 of optical fibers and photomultiplier tubes 521 and 522 being in a plurality respectively. The apparatus is equipped with a large-angle light sensing system 5A and a small-angle light sensing system 5B which sense scattered lights from an aluminum thin film and a foreign substance sticking thereto, in the range of a large angle of about 45 deg. or above and in the range of a small angle of about 45 deg. or below and in radial directions in a plurality, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、膜付きウエハに付着
した異物の検出方法と、該付着異物の検査装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting foreign matter adhered to a film-coated wafer and an inspection apparatus for the adhered foreign matter.

【0002】[0002]

【従来の技術】半導体のICの素材に使用されるシリコ
ンウエハには、各処理工程やその間の搬送中に異物が付
着すると品質が劣化するので、異物に対する表面検査が
適時になされている。図5において、ウエハ1は表面が
平滑な鏡面(サブストレート)の段階で、欠陥や付着異
物が検査され、ついで検査結果が良好なウエハ1の全面
に対してアルミニュームの薄膜2を蒸着して膜付きウエ
ハ1′が形成され、これに対して異物検査がなされる。
図6は、サブストレートのウエハ1に対する検査装置の
基本構成を示す。被検査のウエハ1は、回転移動機構3
のスピンドル32にチャックされてモータ31により回転
し、移動部33により半径方向に移動する。これに対して
投光系4が設けられ、レーザ光源41よりのレーザビーム
は投光レンズ42により適当な直径の平行ビームとされ、
ミラー43を経て集束レンズ44により集束され、ウエハ1
の表面に対して垂直にレーザスポットが投射される。ウ
エハ1は回転移動機構3により回転しながら半径方向に
移動しているので、レーザスポットは表面をスパイラル
状に走査する。表面に欠陥や付着異物が存在するとき
は、これらによりレーザスポットが散乱光を散乱し、散
乱光は受光系5の光ファイバーのバンドル(束)51に受
光されて光電子増倍管52に入力して受光信号が出力され
る。受光信号は信号処理部6により適当な閾値でノイズ
が除去されて欠陥または付着異物が検出され、検出信号
はデータ処理部7によりマップ表示データに編集され
て、プリンタ8に欠陥と付着異物がマップ表示される。
なおウエハ1の欠陥には、擦りキズやピット、凹凸また
はヘイズとよばれる曇りなどのさまざまなものがあり、
これらの各欠陥を可及的に区別して検出するために、上
記の図6の基本構成の投光系4と受光系5を改良した装
置が使用されている。
2. Description of the Related Art The quality of a silicon wafer used as a material for semiconductor ICs deteriorates when foreign matter adheres during each processing step and during transportation, and therefore the surface inspection of the foreign matter is performed in a timely manner. In FIG. 5, the wafer 1 is inspected for defects and adhering foreign substances at the stage of a mirror surface (substrate) having a smooth surface, and then an aluminum thin film 2 is deposited on the entire surface of the wafer 1 having a good inspection result. A film-coated wafer 1'is formed, and a foreign matter inspection is performed on it.
FIG. 6 shows a basic configuration of an inspection apparatus for the wafer 1 on the substrate. The wafer 1 to be inspected has a rotational movement mechanism 3
It is chucked by the spindle 32 and is rotated by the motor 31, and is moved in the radial direction by the moving unit 33. On the other hand, the light projecting system 4 is provided, and the laser beam from the laser light source 41 is converted into a parallel beam having an appropriate diameter by the light projecting lens 42.
The wafer 1 is focused by the focusing lens 44 via the mirror 43.
A laser spot is projected perpendicularly to the surface of the. Since the wafer 1 is moving in the radial direction while being rotated by the rotation moving mechanism 3, the laser spot scans the surface in a spiral shape. When there are defects or foreign substances on the surface, the laser spot scatters the scattered light by these, and the scattered light is received by the optical fiber bundle (bundle) 51 of the light receiving system 5 and is input to the photomultiplier tube 52. A light receiving signal is output. The signal processing unit 6 removes noise with an appropriate threshold value to detect defects or adhering foreign matter, and the data processing unit 7 edits the detection signal into map display data to map the defect and adhering foreign matter to the printer 8. Is displayed.
There are various defects on the wafer 1, such as scratches, pits, unevenness, and haze called haze.
In order to detect each of these defects as distinctively as possible, an apparatus in which the light projecting system 4 and the light receiving system 5 of the basic configuration of FIG. 6 described above are improved is used.

【0003】[0003]

【発明が解決しようとする課題】さて、ウエハ1の全面
に蒸着されたアルミニューム薄膜2に対する異物検査
を、上記の検査装置により検査すると、薄膜2の表面に
はアルミニュームの微小な分子の団塊(グレイン、以下
Gで示す)があるため、これによりレーザスポットが散
乱し、付着異物とともに検出される。図7は、アルミニ
ューム薄膜2のグレインGの検出に対する実験結果の一
例を示す。実験においては、(a) のように全面にアルミ
ニューム薄膜2が蒸着された膜付きウエハ1′をとり、
左半分をそのままとし、右半分の表面に適当な粒径(こ
の場合0.5μm)の標準粒子PT を吹き付けてテスト
ウエハとする。(b) はテストウエハの検査によりえられ
たマップ表示を示し、左半分には検出された多数のグレ
インGが表示されており、右半分には検出された標準粒
子PT に対してグレインGが付加されて総数が増加して
いる。(c) は(b) のマップ表示に対する、標準粒子PT
とグレインGの個数分布曲線を示し、グレインGが検出
されないとすると、標準粒子PT の粒径0.5μmをピ
ークとする点線となる筈であるが、実際には実線のよう
に、0.5μmより小さい粒径の点でグレインGに対す
るピークが現れている。なお、実線は粒径dの大きい方
に個数が分布しているが、これは標準粒子PT に粒径の
大きいグレインGが重なったものである。付着異物を検
査するためには、当然グレインGを除去して付着異物の
みをマップ表示することが必要である。この場合、前記
により図6の検査装置を改良した各装置は欠陥の区別を
目的としているため、付着異物とグレインGの区別に対
して無力である。従って、グレインGを除去するために
は、投光系4と受光系5を別途に改良するとともに、デ
ータ処理部6に所要の処理手段を加えることが必要であ
る。この発明は上記に鑑みてなされたもので、アルミニ
ューム薄膜が蒸着された膜付きウエハを対象とし、薄膜
のグレインを可及的に除去して付着異物を検出する方法
と、この方法を適用した異物検査装置を提供することを
目的とする。
Now, when the foreign matter inspection on the aluminum thin film 2 deposited on the entire surface of the wafer 1 is inspected by the above-mentioned inspection apparatus, the surface of the thin film 2 has a nodule of minute aluminum molecules. Due to the presence of grains (hereinafter referred to as “G”), the laser spot is scattered and detected together with the adhered foreign matter. FIG. 7 shows an example of an experimental result for detecting the grain G of the aluminum thin film 2. In the experiment, as shown in (a), a film-coated wafer 1'having an aluminum thin film 2 deposited on the entire surface is taken,
The left half is left as it is, and standard particles P T having an appropriate particle size (0.5 μm in this case) are sprayed onto the surface of the right half to obtain a test wafer. (b) shows a map display obtained by inspection of the test wafer, in which a large number of detected grains G are displayed in the left half, and in the right half, the grains G with respect to the detected standard particles P T are displayed. Has been added to increase the total number. (c) is the standard particle P T for the map display of (b)
And the number distribution curve of the grain G is shown, and if the grain G is not detected, it should be a dotted line having a peak at the particle size of the standard particles P T of 0.5 μm, but in reality, as shown by the solid line, 0. A peak for grain G appears at a particle size smaller than 5 μm. The solid line shows that the number is distributed to the larger particle size d, which is the standard particle P T superposed with the large particle G. In order to inspect the adhered foreign matter, it is naturally necessary to remove the grain G and display only the adhered foreign matter on the map. In this case, since the respective devices obtained by improving the inspection device of FIG. 6 for the purpose of distinguishing defects are ineffective in distinguishing the adhered foreign matter from the grains G. Therefore, in order to remove the grain G, it is necessary to separately improve the light projecting system 4 and the light receiving system 5, and to add required processing means to the data processing unit 6. The present invention has been made in view of the above, and is directed to a film-coated wafer on which an aluminum thin film is vapor-deposited. An object is to provide a foreign matter inspection device.

【0004】[0004]

【課題を解決するための手段】この発明は、膜付きウエ
ハの異物検出方法および異物検査装置である。異物検出
方法は、アルミニューム薄膜が蒸着された膜付きウエハ
の表面に対して、15°〜20°の低角度でレーザビー
ムを投射してスパイラル走査し、アルミニューム薄膜と
該薄膜の付着異物の散乱光を、ほぼ45°以上の高角度
範囲と、ほぼ45°以下の低角度範囲で、それぞれ複数
のラジアル方向で受光し、高角度範囲と低角度範囲で受
光された各受光信号を適当な閾値によりノイズを除去し
て高角度検出信号と低角度検出信号を検出する。同一時
点で検出された高角度検出信号と低角度検出信号を比較
し、高角度検出信号が低角度検出信号より小さいとき、
この両検出信号をアルミニューム薄膜によるものと判定
し、高角度検出信号が低角度検出信号より大きいとき、
この両検出信号を付着異物によるものと判定して異物デ
ータを出力するものである。異物検査装置は、膜付きウ
エハを装着して回転し、半径方向に移動する回転移動機
構と、膜付きウエハのアルミニューム薄膜の表面に対し
て15°〜20°の低角度でレーザビームを投射して走
査する投光系と、それぞれ複数の光ファイバーのバンド
ルと光電子増倍管よりなり、アルミニューム薄膜とその
付着異物の散乱光を、ほぼ45°以上の高角度範囲と、
ほぼ45°以下の低角度範囲で、それぞれ複数のラジア
ル方向で受光する高角度受光系および低角度受光系を具
備する。上記の走査により、高角度受光系と低角度受光
系の各光電子増倍管よりそれぞれ出力される各受光信号
を適当な閾値でノイズを除去し、高角度検出信号と低角
度検出信号を検出する信号処理部と、信号処理部により
同一時点で検出された高角度検出信号と低角度検出信号
とを比較し、前者が後者より小さいとき、この両検出信
号をアルミニューム薄膜によるものと判定してデータを
カットし、前者が後者より大きいとき、この両検出信号
を付着異物によるものと判定し、付着異物のマップデー
タを出力するデータ処理部、およびマップデータをマッ
プ表示するプリンタとにより構成される。上記におい
て、適当な直径の中空の金属半球を設け、金属半球に投
光系よりの低角度のレーザビームが通過する投射孔を穿
孔し、また、金属半球の高角度と低角度の円周上に、金
属半球の中心方向をなし、光ファイバーのバンドルに対
する挿入孔をラジアル方向に等間隔に穿孔し、各挿入孔
に高角度受光系と低角度受光系の複数の光ファイバーの
バンドルを挿入して保持する。
The present invention is a foreign matter detection method and foreign matter inspection apparatus for a film-coated wafer. The foreign matter detection method is such that a laser beam is projected at a low angle of 15 ° to 20 ° on the surface of a film-coated wafer on which an aluminum thin film is vapor-deposited to perform a spiral scan, and the aluminum thin film and foreign matter attached to the thin film are detected. The scattered light is received in a plurality of radial directions in a high angle range of approximately 45 ° or more and a low angle range of approximately 45 ° or less, and each received light signal received in the high angle range and the low angle range is appropriately received. Noise is removed by a threshold value to detect a high angle detection signal and a low angle detection signal. The high angle detection signal and the low angle detection signal detected at the same time are compared, and when the high angle detection signal is smaller than the low angle detection signal,
It is determined that both detection signals are due to the aluminum thin film, and when the high angle detection signal is larger than the low angle detection signal,
The both detection signals are determined to be due to the adhered foreign matter, and the foreign matter data is output. The foreign matter inspection apparatus mounts a film-coated wafer, rotates, and rotates a radial movement mechanism, and projects a laser beam at a low angle of 15 ° to 20 ° to the surface of the aluminum thin film of the film-coated wafer. And a scanning light projection system, a plurality of optical fiber bundles, and a photomultiplier tube, respectively, for scattering the scattered light of the aluminum thin film and its adhered foreign matter in a high angle range of approximately 45 ° or more,
It has a high-angle light receiving system and a low-angle light receiving system that receive light in a plurality of radial directions in a low angle range of approximately 45 ° or less. By the above scanning, noise is removed from each photodetection signal output from each photomultiplier tube of the high-angle photodetection system and the low-angle photodetection system with an appropriate threshold value, and the high-angle detection signal and the low-angle detection signal are detected. The signal processing unit and the high angle detection signal and the low angle detection signal detected at the same time by the signal processing unit are compared, and when the former is smaller than the latter, it is determined that both detection signals are due to the aluminum thin film. When the data is cut and the former is larger than the latter, both detection signals are determined to be due to adhered foreign matter, and a data processing unit that outputs map data of the adhered foreign matter and a printer that displays the map data as a map are configured. . In the above, a hollow metal hemisphere with an appropriate diameter is provided, and a projection hole through which a laser beam at a low angle from the light projecting system passes is punched in the metal hemisphere. In the center direction of the metal hemisphere, the insertion holes for the optical fiber bundle are drilled at equal intervals in the radial direction, and multiple optical fiber bundles of the high-angle light receiving system and the low-angle light receiving system are inserted and held in each insertion hole. To do.

【0005】[0005]

【作用】一般に、低角度でレーザビームを投射したとき
は、付着異物の散乱光の指向性は高角度方向が低角度方
向より強く、一方、アルミニュームなどの粗面による散
乱光の指向性は、逆に高角度方向が低角度方向より弱い
という特性がある。すなわち、アルミニュームの分子の
グレインGの粒径はかなり小さくてその凹凸は緩やかで
あるため、低角度で投射されたレーザビームは、主とし
て低角度の正反射の方向に散乱する。このことはアルミ
ニューム面の反射光を目視観察して知ることができる。
一方、付着異物は薄膜の表面より突出しているため、レ
ーザビームは各方向に散乱し、その指向特性は異物pの
形状により様々に変化する。しかし、付着異物のレーザ
ビームの投射側と反対側の前方散乱光はかなり弱く、側
方散乱光(この場合高角度方向)がかなり強いことが、
微粒子の散乱特性の理論解析により判明している。異物
検出方法は上記の指向特性を利用したもので、膜付きウ
エハのアルミニューム薄膜の表面に対して、レーザビー
ムを15°〜20°の低角度で投射してスパイラル走査
し、アルミニューム薄膜と該薄膜の付着異物の散乱光
を、ほぼ45°以上の高角度範囲と、ほぼ45°以下の
低角度範囲で、それぞれ複数のラジアル方向で効率的に
受光する。それぞれの受光信号は適当な閾値によりノイ
ズが除去され、高角度検出信号と低角度検出信号が検出
される。同一時点で検出された両検出信号を比較し、高
角度検出信号(0の場合を含む)が低角度検出信号より
小さいとき、これらの検出信号をアルミニューム薄膜に
よるものと判定してデータがカットされる。これに対し
て、高角度検出信号が低角度検出信号(0の場合を含
む)より大きいとき、これらの検出信号を付着異物によ
るものと判定し、異物データが出力される。異物検査装
置は上記の検出方法を具体化したもので、膜付きウエハ
のアルミニューム薄膜の表面に対して、投光系よりレー
ザビームが15°〜20°の低角度で投射され、ウエハ
の回転移動によりスパイラル状に走査される。このスパ
イラル走査により、アルミニューム薄膜とその付着異物
が散乱する散乱光は、ほぼ45°以上の高角度範囲に対
する高角度受光系と、ほぼ45°以下の低角度範囲に対
する低角度受光系の、複数の光ファイバーのバンドルに
より、それぞれ複数のラジアル方向で効率的に受光さ
れ、各受光系の光電子増倍管より受光信号が出力され、
さらに信号処理部により各受光信号を適当な閾値により
ノイズが除去されて、高角度検出信号と低角度検出信号
が検出される。データ処理部においては、信号処理部に
より同一時点で検出された高角度検出信号と低角度検出
信号を比較し、前者(0の場合を含む)が後者より小さ
いとき、これらの検出信号をアルミニューム薄膜による
ものと判定してデータをカットする。これに対して前者
が後者(0の場合を含む)より大きいとき、この検出信
号を付着異物によるものと判定し、付着異物のマップデ
ータが出力され、これがプリンタに入力してマップ表示
される。上記において、投光系よりの低角度のレーザビ
ームは、金属半球に穿孔された投射孔を通過して膜付き
ウエハの表面に投射される。また、金属半球の高角度と
低角度の円周上に、その中心方向をなしてラジアル方向
に等間隔に穿孔された各挿入孔に対して、高角度受光系
と低角度受光系の複数の光ファイバーのバンドルが挿入
されて正確に保持され、散乱光に対する受光が安定化さ
れている。
In general, when the laser beam is projected at a low angle, the directivity of the scattered light of the adhering foreign matter is stronger in the high angle direction than in the low angle direction, while the directivity of the scattered light by the rough surface such as aluminum is On the contrary, there is a characteristic that the high angle direction is weaker than the low angle direction. That is, since the grain size of the grain G of the aluminum molecule is considerably small and the irregularities thereof are gentle, the laser beam projected at a low angle mainly scatters in the direction of regular reflection at a low angle. This can be known by visually observing the reflected light on the aluminum surface.
On the other hand, since the adhered foreign matter is projected from the surface of the thin film, the laser beam is scattered in each direction, and its directional characteristics are variously changed depending on the shape of the foreign matter p. However, the forward scattered light on the side opposite to the laser beam projection side of the adhering foreign matter is considerably weak, and the side scattered light (in this case, the high angle direction) is quite strong.
It has been found by theoretical analysis of the scattering characteristics of fine particles. The foreign matter detection method utilizes the above-mentioned directional characteristics, and a laser beam is projected onto the surface of the aluminum thin film of the film-coated wafer at a low angle of 15 ° to 20 ° and spirally scanned to form an aluminum thin film. The scattered light of the foreign matter attached to the thin film is efficiently received in a plurality of radial directions in a high angle range of approximately 45 ° or more and a low angle range of approximately 45 ° or less. Noise is removed from each received light signal by an appropriate threshold value, and a high angle detection signal and a low angle detection signal are detected. Both detection signals detected at the same time are compared, and when the high angle detection signal (including 0) is smaller than the low angle detection signal, it is determined that these detection signals are due to the aluminum thin film, and the data is cut. To be done. On the other hand, when the high angle detection signal is larger than the low angle detection signal (including the case of 0), it is determined that these detection signals are due to the adhered foreign matter, and the foreign matter data is output. The foreign matter inspection apparatus embodies the above-mentioned detection method. A laser beam is projected from the projection system at a low angle of 15 ° to 20 ° onto the surface of the aluminum thin film of the film-coated wafer to rotate the wafer. The movement causes a spiral scan. Due to this spiral scanning, the scattered light scattered by the aluminum thin film and the adhered foreign matter is generated by a plurality of light beams of a high angle light receiving system for a high angle range of approximately 45 ° or more and a low angle light receiving system for a low angle range of approximately 45 ° or less. By the optical fiber bundle of, the light is efficiently received in a plurality of radial directions, and the light receiving signal is output from the photomultiplier tube of each light receiving system,
Furthermore, the signal processing unit removes noise from each received light signal by an appropriate threshold value, and a high angle detection signal and a low angle detection signal are detected. The data processing unit compares the high angle detection signal and the low angle detection signal detected at the same time by the signal processing unit, and when the former (including 0) is smaller than the latter, these detection signals are Cut the data by judging that it is due to the thin film. On the other hand, when the former is larger than the latter (including the case of 0), it is determined that this detection signal is caused by the adhered foreign matter, map data of the adhered foreign matter is output, and this map data is input to the printer and displayed on the map. In the above, the laser beam at a low angle from the light projecting system passes through the projection hole formed in the metal hemisphere and is projected on the surface of the film-coated wafer. Also, on each of the high-angle and low-angle circumferences of the metal hemisphere, a plurality of high-angle light-receiving systems and low-angle light-receiving systems are provided for each insertion hole formed in the center direction and drilled at equal intervals in the radial direction. An optical fiber bundle is inserted and held accurately to stabilize the reception of scattered light.

【0006】[0006]

【実施例】図1により、付着異物pとアルミニューム薄
膜2のグレインGによる散乱光の指向特性を説明する。
図1において、全面にアルミニューム薄膜2が蒸着され
た膜付きウエハ1′に対して、15°〜20°の低角度
θT でレーザビームLT を投射する。前記した理由によ
り、薄膜2のグレインGによる散乱光のうち、低角度方
向のLRLは高角度方向のLRHより指向性が強い。一方、
付着異物pの散乱光のうち、高角度方向のLRHが低角度
方向のLRLより概して強いことが了解される。
EXAMPLE The directional characteristics of scattered light due to the adhered foreign matter p and the grain G of the aluminum thin film 2 will be described with reference to FIG.
In FIG. 1, a laser beam L T is projected at a low angle θ T of 15 ° to 20 ° onto a film-coated wafer 1 ′ on which an aluminum thin film 2 is vapor-deposited. For the reason described above, of the scattered light due to the grains G of the thin film 2, L RL in the low angle direction has stronger directivity than L RH in the high angle direction. on the other hand,
It is understood that among scattered light of the adhered foreign matter p, L RH in the high angle direction is generally stronger than L RL in the low angle direction.

【0007】図2はこの発明の異物検査装置の一実施例
を示し、被検査の膜付きウエハ1′は回転移動機構3の
スピンドル32にチャックされてモータ31により回転し、
移動部33により半径方向に移動する。これに対して投光
系4が設けられ、レーザ光源41よりのレーザビームは投
光レンズ42により適当な直径の平行ビームに変換され、
ミラー43を経て集束レンズ44により集束され、さらにミ
ラー45により反射されて、アルミニューム薄膜2の表面
に対して15°〜20°の低角度θT で楕円形のレーザ
スポットが投射される。ウエハ1′の回転と半径方向の
移動により、レーザスポットは表面をスパイラル状に走
査し、薄膜2のグレインGと付着異物pにより、レーザ
スポットが散乱光を散乱する。これに対して高角度範囲
に配設された複数の光ファイバーのバンドル511 と、こ
れらが一括して接続された光電子増倍管521 よりなる高
角度受光系5A、および低角度範囲に配設された複数の
光ファイバーのパンドル512 と、これらが一括して接続
された光電子増倍管522 よりなる低角度受光系5Bを設
ける。複数のバンドル511 と512 により高角度の散乱光
RHと、低角度の散乱光LRLをそれぞれ受光し、両光電
子増倍管521,522 より受光信号が出力される。両光電子
増倍管521,522 が出力する各受光信号は、信号処理部6
に入力して適当な閾値によりノイズが除去され、高角度
検出信号と低角度検出信号がそれぞれ検出され、両検出
信号はデータ処理部7に入力する。データ処理部7にお
いては、同一時点で検出された高角度検出信号と低角度
検出信号を比較し、前者(0の場合を含む)より後者が
大きいときは、これらの検出信号はグレインGによるも
のと判定してデータをカットする。これに対して、前者
が後者(0の場合を含む)より大きいときは、この検出
信号は付着異物pによるものと判定し、そのマップデー
タを作成する。マップデータはプリンタ8に入力して付
着異物pのマップ表示がプリントされる。なお、両検出
信号の比較処理方法は通常のデータ処理技術により容易
になされ、マップ表示方法もすでに公知されているの
で、詳細説明は省略する。
FIG. 2 shows an embodiment of the foreign matter inspection apparatus of the present invention. The film-coated wafer 1'to be inspected is chucked by the spindle 32 of the rotary moving mechanism 3 and rotated by the motor 31.
The moving unit 33 moves in the radial direction. On the other hand, the light projecting system 4 is provided, and the laser beam from the laser light source 41 is converted into a parallel beam having an appropriate diameter by the light projecting lens 42.
After passing through the mirror 43, the light is focused by the focusing lens 44, further reflected by the mirror 45, and an elliptical laser spot is projected onto the surface of the aluminum thin film 2 at a low angle θ T of 15 ° to 20 °. The laser spot scans the surface in a spiral shape by the rotation and the radial movement of the wafer 1 ′, and the grains G of the thin film 2 and the adhering foreign matter p scatter the scattered light. On the other hand, a plurality of optical fiber bundles 511 arranged in a high angle range, a high angle light receiving system 5A including a photomultiplier tube 521 in which these are collectively connected, and a low angle range are arranged. A low-angle light receiving system 5B including a plurality of optical fiber pandas 512 and a photomultiplier tube 522 connected together is provided. The plurality of bundles 511 and 512 receive the scattered light L RH with a high angle and the scattered light L RL with a low angle, respectively, and the photodetection signals are output from both photomultiplier tubes 521 and 522. The received light signals output from the photomultiplier tubes 521 and 522 are output to the signal processing unit 6
Noise is removed by an appropriate threshold value, the high angle detection signal and the low angle detection signal are respectively detected, and both detection signals are input to the data processing unit 7. In the data processing unit 7, the high angle detection signal and the low angle detection signal detected at the same time are compared, and when the latter is larger than the former (including the case of 0), these detection signals are due to the grain G. And cut the data. On the other hand, when the former is larger than the latter (including the case of 0), it is determined that this detection signal is due to the adhered foreign matter p, and the map data thereof is created. The map data is input to the printer 8 and a map display of the adhered foreign matter p is printed. Note that the comparison processing method of both detection signals is easily performed by a normal data processing technique, and the map display method is already known, so detailed description will be omitted.

【0008】図3は、前記した図7のテストウエハに対
して、上記の検査装置によりえられた、標準粒子PT
グレインGの粒径dに対する個数分布曲線の一例を示
す。標準粒子PT は0.5μmをピークとして明確に検
出され、グレインGは粒径dが小さいものはほぼ除去さ
れ、0.5μmに近いものが検出され、その総数が大幅
に減少していることが了解される。このように、グレイ
ンGは完全に除去されていないが、検出されたグレイン
Gの大きさを判断して薄膜2の表面状態が管理できるの
で、利用価値が十分あるものとされる。
FIG. 3 shows an example of the number distribution curve with respect to the particle diameter d of the standard particles P T and the grains G obtained by the above-mentioned inspection apparatus for the test wafer of FIG. The standard particles P T are clearly detected with a peak at 0.5 μm, the particles G having a small particle size d are almost removed, and the particles having particle sizes close to 0.5 μm are detected, and the total number thereof is greatly reduced. Is understood. In this way, although the grains G are not completely removed, the surface state of the thin film 2 can be controlled by judging the size of the detected grains G, so that it is considered to have a sufficient utility value.

【0009】図4は、上記の複数の光ファイバーのバン
ドル511,512 を保持する金属半球9を示し、(a) は外観
図、(b),(c) は中心における断面図を示す。金属半球9
の下部の両面の対称的な位置に、低角度のレーザビーム
T と、その正反射光LT ′に対する通過孔911,912 を
穿孔する。また、高角度と低角度の円周上に、金属半球
9の中心Oの方向をなし、それぞれ2段の角度φ1
2 、およびφ34 で、円周(ラジアル)方向に等間隔
の複数の挿入孔92を穿孔し、各挿入孔92に高角度受光系
と低角度受光系の複数のバンドル511,512 をそれぞれ挿
入して保持する。なお、角度φ1234 は例え
ば、65°、50°、35°および20°とし、各バン
ドルには15°程度の受光範囲があるので、高角度受光
系はほぼ45°〜72°の範囲を、低角度受光系は45
°〜12°の範囲をそれぞれ漏れなく安定に受光するこ
とができる。
FIG. 4 shows a metal hemisphere 9 for holding the above-mentioned plurality of optical fiber bundles 511 and 512, in which (a) is an external view and (b) and (c) are sectional views at the center. Metal hemisphere 9
Passage holes 911 and 912 for the low-angle laser beam L T and its specularly reflected light L T ′ are drilled at symmetrical positions on both lower surfaces of the laser beam. Further, the directions of the center O of the metal hemisphere 9 are formed on the circumferences of the high angle and the low angle, and the two angles φ 1 and φ are respectively formed.
2 and φ 3 and φ 4 form a plurality of insertion holes 92 at equal intervals in the circumferential (radial) direction, and a plurality of bundles 511 and 512 of a high-angle light receiving system and a low-angle light receiving system are provided in each insertion hole 92, respectively. Insert and hold. The angles φ 1 , φ 2 , φ 3 , and φ 4 are, for example, 65 °, 50 °, 35 °, and 20 °, and each bundle has a light receiving range of about 15 °, so that the high-angle light receiving system is almost the same. The range of 45 ° to 72 ° is 45
It is possible to stably receive light in the range of 12 ° to 12 ° without leakage.

【0010】[0010]

【発明の効果】以上の説明のとおり、この発明による異
物検出方法においては、アルミニューム薄膜が全面に蒸
着された膜付きウエハを対象とし、その表面に低角度で
レーザビームを投射したときは、付着異物の散乱光の指
向性は高角度方向が低角度方向より強く、一方、アルミ
ニューム薄膜の散乱光の指向性は、逆に高角度方向が低
角度方向より弱いという特性を利用し、薄膜のグレイン
を可及的に除去し、付着異物を効率的に検出するもので
あり、異物検査装置はこの異物検出方法を具体化し、低
角度投光系と、高角度受光系、低角度受光系、およびデ
ータ処理手段とを設けて付着異物を効率的に検出するも
ので、アルミニューム薄膜が蒸着された膜付きウエハの
異物検査に寄与することころには、大きいものがある。
As described above, in the foreign matter detecting method according to the present invention, the wafer with a film on which the aluminum thin film is vapor-deposited is targeted, and when the laser beam is projected on the surface at a low angle, The directivity of scattered light from adhering foreign matter is stronger in the high-angle direction than in the low-angle direction, while the directivity of scattered light in the aluminum thin film is conversely weaker in the high-angle direction than in the low-angle direction. The foreign matter inspecting device embodies this foreign matter detecting method, and the low-angle light-projecting system, the high-angle light-receiving system, and the low-angle light-receiving system are removed. , And a data processing means are provided to efficiently detect the adhering foreign matter, and there is a great contribution to the foreign matter inspection of the film-coated wafer on which the aluminum thin film is vapor-deposited.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の基礎となる、付着異物pとアルミ
ニューム薄膜2のグレインGによる散乱光の指向特性の
説明図である。
FIG. 1 is an explanatory diagram of a directivity characteristic of scattered light due to a deposited foreign matter p and a grain G of an aluminum thin film 2, which is a basis of the present invention.

【図2】 この発明の一実施例における異物検査装置の
構成図である。
FIG. 2 is a configuration diagram of a foreign matter inspection device according to an embodiment of the present invention.

【図3】 図2の検査装置によるテストウエハの検査デ
ータの一例を示す。
3 shows an example of inspection data of a test wafer by the inspection device of FIG.

【図4】 図2の実施例における各光ファイバーのバン
ドル511,512 を保持する金属半球9を示し、(a) は外観
図、(b),(c) は断面図である。
4 shows a metal hemisphere 9 holding bundles 511, 512 of optical fibers in the embodiment of FIG. 2, (a) is an external view and (b), (c) are sectional views.

【図5】 膜付きウエハ1′の説明図である。FIG. 5 is an explanatory diagram of a film-coated wafer 1 ′.

【図6】 サブストレートのウエハ1に対する欠陥と付
着異物の検査装置の構成図を示す。
FIG. 6 is a block diagram of an inspection apparatus for inspecting defects and adhering foreign matter on the wafer 1 of the substrate.

【図7】 図6の検査装置によるテストウエハの検査結
果に対する説明図である。
FIG. 7 is an explanatory diagram for an inspection result of a test wafer by the inspection device of FIG.

【符号の説明】[Explanation of symbols]

1…サブストレートのウエハ、1′…膜付きウエハ、2
…アルミニューム薄膜、3…回転移動機構、4…投光
系、41…レーザ光源、42…投光レンズ、43…ミラー、44
…集束レンズ45…ミラー、5…受光系、5A…高角度受
光系、5B…低角度受光系、51,511,512…光ファイバー
のバンドル、52,521,522…光電子増倍管、6…信号処理
部、7…データ処理部、8…プリンタ、9…金属半球、
911 …通過孔、92…挿入孔、LT …投射レーザビーム、
T ′…正反射レーザビーム、LRH…高角度散乱光、L
RL…低角度散乱光、PT …標準粒子、p…付着異物、G
…アルミニュームのグレイン、θT …レーザビームの投
射角度、θR1〜θR4…バンドルの挿入角度。
1 ... Substrate wafer, 1 '... Film-coated wafer, 2
... Aluminum thin film, 3 ... Rotary movement mechanism, 4 ... Emitting system, 41 ... Laser light source, 42 ... Emitting lens, 43 ... Mirror, 44
Focusing lens 45 ... Mirror, 5 ... Light receiving system, 5A ... High angle receiving system, 5B ... Low angle receiving system, 51,511, 512 ... Optical fiber bundle, 52, 521, 522 ... Photomultiplier tube, 6 ... Signal processing unit, 7 ... Data processing unit , 8 ... printer, 9 ... metal hemisphere,
911 ... passage hole, 92 ... insertion holes, L T ... projected laser beam,
L T ′ ... Regular reflection laser beam, L RH ... High angle scattered light, L
RL ... Low angle scattered light, P T ... Standard particles, p ... Adhering foreign matter, G
… Aluminum grain, θ T … Laser beam projection angle, θ R1 to θ R4 … Bundle insertion angle.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミニューム薄膜が蒸着された膜付き
ウエハの表面に対して、15°〜20°の低角度でレー
ザビームを投射してスパイラル走査し、前記アルミニュ
ーム薄膜と該薄膜の付着異物の散乱光を、ほぼ45°以
上の高角度範囲と、ほぼ45°以下の低角度範囲で、そ
れぞれ複数のラジアル方向で受光し、該高角度範囲と低
角度範囲で受光された各受光信号を、適当な閾値により
ノイズを除去して高角度検出信号と低角度検出信号を検
出し、同一時点における該高角度検出信号と低角度検出
信号を比較し、該高角度検出信号が低角度検出信号より
小さいとき、該両検出信号を前記アルミニューム薄膜に
よるものと判定し、該高角度検出信号が低角度検出信号
より大きいとき、該両検出信号を前記付着異物によるも
のと判定して異物データを出力することを特徴とする、
膜付きウエハの異物検出方法。
1. A surface of a film-coated wafer on which an aluminum thin film has been vapor-deposited is projected by a laser beam at a low angle of 15 ° to 20 ° to perform spiral scanning, and the aluminum thin film and foreign matter attached to the thin film. Scattered light is received in a plurality of radial directions in a high angle range of approximately 45 ° or more and a low angle range of approximately 45 ° or less, and each received light signal received in the high angle range and the low angle range is received. , The high angle detection signal and the low angle detection signal are detected by removing noise with an appropriate threshold value, the high angle detection signal and the low angle detection signal are compared at the same time point, and the high angle detection signal is the low angle detection signal. When it is smaller, it is determined that both detection signals are due to the aluminum thin film, and when the high angle detection signal is larger than the low angle detection signal, both detection signals are determined as due to the adhering foreign matter and the foreign matter data is detected. And outputting a
Foreign matter detection method for film-coated wafer.
【請求項2】 膜付きウエハを装着して回転し、半径方
向に移動する回転移動機構と、該膜付きウエハのアルミ
ニューム薄膜の表面に対して15°〜20°の低角度で
レーザビームを投射して走査する投光系と、それぞれ複
数の光ファイバーのバンドルと光電子増倍管よりなり、
前記アルミニューム薄膜と該薄膜の付着異物の散乱光
を、ほぼ45°以上の高角度範囲と、ほぼ45°以下の
低角度範囲で、それぞれ複数のラジアル方向で受光する
高角度受光系および低角度受光系を具備し、前記走査に
より、該高角度受光系と低角度受光系の各光電子増倍管
よりそれぞれ出力される各受光信号を適当な閾値でノイ
ズを除去し、高角度検出信号と低角度検出信号を検出す
る信号処理部と、該信号処理部により同一時点で検出さ
れた高角度検出信号と低角度検出信号とを比較し、該高
角度検出信号が低角度検出信号より小さいとき、該両検
出信号を前記アルミニューム薄膜によるものと判定して
データをカットし、該高角度検出信号が低角度検出信号
より大きいとき、該両検出信号を前記付着異物によるも
のと判定し、付着異物のマップデータを出力するデータ
処理部、および該マップデータをマップ表示するプリン
タとにより構成されたことを特徴とする、膜付きウエハ
の異物検査装置。
2. A rotation moving mechanism for mounting and rotating a film-coated wafer to move in a radial direction, and a laser beam at a low angle of 15 ° to 20 ° with respect to the surface of an aluminum thin film of the film-coated wafer. A projecting system that projects and scans, each consisting of multiple optical fiber bundles and photomultiplier tubes,
A high-angle light-receiving system and a low-angle light-receiving system that receive scattered light of the aluminum thin film and foreign matter attached to the thin film in a plurality of radial directions in a high angle range of approximately 45 ° or more and a low angle range of approximately 45 ° or less, respectively. A photoreception system is provided, and noise is removed from each photoreception signal output from each photomultiplier tube of the high-angle photoreception system and the low-angle photoreception system by an appropriate threshold by scanning, and a high-angle detection signal and a low-angle detection signal are detected. A signal processing unit that detects an angle detection signal and a high angle detection signal and a low angle detection signal detected at the same time by the signal processing unit are compared, and when the high angle detection signal is smaller than the low angle detection signal, When both the detection signals are determined to be due to the aluminum thin film and the data is cut, and when the high angle detection signal is larger than the low angle detection signal, it is determined that the detection signals are due to the adhered foreign matter and the adhered foreign matter is detected. Foreign matter inspection apparatus for a film-coated wafer, comprising: a data processing unit that outputs the map data of 1. and a printer that displays the map data as a map.
【請求項3】 適当な直径の中空の金属半球を設け、該
金属半球に前記投光系よりの低角度のレーザビームが通
過する投射孔を穿孔し、かつ、該金属半球の高角度と低
角度の円周上に、該金属半球の中心方向をなし、光ファ
イバーのバンドルに対する挿入孔をラジアル方向に等間
隔に穿孔し、該各挿入孔に前記高角度受光系と低角度受
光系の複数の光ファイバーのバンドルを挿入して保持す
ることを特徴とする、請求項2記載の膜付きウエハの異
物検査装置。
3. A hollow metal hemisphere having an appropriate diameter is provided, and a projection hole through which a laser beam at a low angle from the light projecting system passes is provided in the metal hemisphere, and the metal hemisphere has a high angle and a low angle. On the circumference of an angle, the center direction of the metal hemisphere is formed, and insertion holes for the bundle of optical fibers are bored at equal intervals in the radial direction, and a plurality of the high-angle light receiving system and the low-angle light receiving system are formed in each insertion hole. The foreign matter inspection apparatus for a film-coated wafer according to claim 2, wherein a bundle of optical fibers is inserted and held.
JP35173592A 1992-12-08 1992-12-08 Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance Pending JPH06174655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35173592A JPH06174655A (en) 1992-12-08 1992-12-08 Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35173592A JPH06174655A (en) 1992-12-08 1992-12-08 Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance

Publications (1)

Publication Number Publication Date
JPH06174655A true JPH06174655A (en) 1994-06-24

Family

ID=18419254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35173592A Pending JPH06174655A (en) 1992-12-08 1992-12-08 Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance

Country Status (1)

Country Link
JP (1) JPH06174655A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118525A (en) * 1995-03-06 2000-09-12 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
JP2002296197A (en) * 2001-03-30 2002-10-09 Hitachi Electronics Eng Co Ltd Surface inspection instrument
US6636302B2 (en) 1994-12-08 2003-10-21 Kla-Tencor Corporation Scanning system for inspecting anamolies on surfaces
JP2011215150A (en) * 2002-09-13 2011-10-27 Kla-Tencor Corp Improved inspection system for integrated application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636302B2 (en) 1994-12-08 2003-10-21 Kla-Tencor Corporation Scanning system for inspecting anamolies on surfaces
US6118525A (en) * 1995-03-06 2000-09-12 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
US6292259B1 (en) 1995-03-06 2001-09-18 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
US6509965B2 (en) 1995-03-06 2003-01-21 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
JP2002296197A (en) * 2001-03-30 2002-10-09 Hitachi Electronics Eng Co Ltd Surface inspection instrument
JP4490598B2 (en) * 2001-03-30 2010-06-30 株式会社日立ハイテクノロジーズ Surface inspection device
JP2011215150A (en) * 2002-09-13 2011-10-27 Kla-Tencor Corp Improved inspection system for integrated application

Similar Documents

Publication Publication Date Title
JP3801635B2 (en) Product surface inspection system and method
JP5714645B2 (en) Improvement of defect detection system
US4772126A (en) Particle detection method and apparatus
US6956644B2 (en) Systems and methods for a wafer inspection system using multiple angles and multiple wavelength illumination
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
JP2000162141A (en) Defect inspecting device and method
US5719840A (en) Optical sensor with an elliptical illumination spot
CN107153065B (en) A kind of wafer particle detection system and method
JPS63143831A (en) Optical apparatus for detecting defect on face plate
JPH06174655A (en) Detecting method of foreign substance of filmed wafer and inspection apparatus of foreign substance
US20020196433A1 (en) System and methods for inspection of transparent mask substrates
JPS5973710A (en) Surface defect inspecting device for transparent disk
JP2002116155A (en) Apparatus and method for inspecting foreign matter and defect
JP3432273B2 (en) Foreign matter inspection device and foreign matter inspection method
JPH0254494B2 (en)
JPH0495861A (en) Detector of defect of transparent circular work
JPH11258157A (en) Foreign matter-inspecting apparatus
JP2003050209A (en) Defect detection optical system, and effect inspection method and device using it
JPH10227744A (en) Optically inspecting method for storage disk
JPH08110516A (en) Defect inspection apparatus for glass substrate
JPH06258246A (en) Inspection of disk surface by multimode laser
JPH0545303A (en) Defect inspecting apparatus
TW202246761A (en) Apparatus and method for performing internal defects inspection of an electronic component
JPH09159619A (en) Defect inspection device of substrate surface
JPH03273141A (en) Defect detecting method for magnetic disk magnetic film and detection optical system