JPH06164178A - Cooling apparatus - Google Patents

Cooling apparatus

Info

Publication number
JPH06164178A
JPH06164178A JP31852492A JP31852492A JPH06164178A JP H06164178 A JPH06164178 A JP H06164178A JP 31852492 A JP31852492 A JP 31852492A JP 31852492 A JP31852492 A JP 31852492A JP H06164178 A JPH06164178 A JP H06164178A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat exchanger
cooled
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31852492A
Other languages
Japanese (ja)
Inventor
Masahiro Takahashi
政広 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31852492A priority Critical patent/JPH06164178A/en
Publication of JPH06164178A publication Critical patent/JPH06164178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Control Of Temperature (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To provide a cooling apparatus for circulatingly supplying a liquid coolant to an electric apparatus defined as a cooling object mounting heat generating circuit elements with a high packing density and particularly provide a cooling apparatus for controlling an injection temperature of the liquid coolant depending on the environmental conditions of the cooling object. CONSTITUTION:Generation of dew within a cooling object 1 and in a coolant circulating pipe, etc., by detecting temperature and humidity environment of an arranging section 14 of the cooling object with sensors 16, 17, calculating the lower limit value of liquid coolant supply temperature which can prevent generation of dew in the periphery of the liquid coolant circulating system and controlling the liquid coolant supply temperature through adjustment of an opening angle of a control valve 6 of the secondary side piping system with a control circuit 13 depending on the calculated value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発熱する回路素子を高
密度実装した電子機器を被冷却体として、液体冷媒を循
環供給する冷却装置に関し、特に被冷却体の環境条件に
応じて液体冷媒の吐出温度を制御する冷却装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device which circulates a liquid refrigerant by using as an object to be cooled an electronic device on which heat-generating circuit elements are mounted, and more particularly to a liquid refrigerant depending on environmental conditions of the object to be cooled. The present invention relates to a cooling device that controls the discharge temperature of

【0002】[0002]

【従来の技術】図4は従来の冷却装置の構成例を示す図
である。図において、1は被冷却体、2は2次側吐出配
管系、3は2次側戻り配管系、4は冷却装置内2次側配
管系、5はポンプ、6は2次側コントロールバルブ、7
は熱交換器、8は冷却装置内1次側配管系、9は1次側
供給配管、10は1次側戻り配管、11は2次側冷媒吐
出温度センサ、12は2次側冷媒戻り温度センサ、13
は制御回路、14は被冷却体配置区画、15は冷却装置
である。
2. Description of the Related Art FIG. 4 is a diagram showing a configuration example of a conventional cooling device. In the figure, 1 is an object to be cooled, 2 is a secondary discharge piping system, 3 is a secondary return piping system, 4 is a cooling device secondary piping system, 5 is a pump, 6 is a secondary control valve, 7
Is a heat exchanger, 8 is a primary side piping system in a cooling device, 9 is a primary side supply piping, 10 is a primary side return piping, 11 is a secondary side refrigerant discharge temperature sensor, 12 is a secondary side refrigerant return temperature Sensor, 13
Is a control circuit, 14 is a section to be cooled, and 15 is a cooling device.

【0003】従来の冷却装置15は上記のように構成さ
れており、2次側冷媒はポンプ5によって2次側吐出配
管系2を経て被冷却体1に供給された後2次側戻り配管
系3を経て冷却装置15に回収される。回収された2次
側冷媒は、熱交換器7において1次側冷媒との熱交換に
より冷却されるが、冷却装置15内部において、被冷却
体1の発熱状態は2次側吐出温度センサ11及び戻り温
度センサ10により冷媒温度の変化として検出され、検
出した発熱負荷の増減に応じて制御回路13から2次側
コントロールバルブ6の開度を信号制御することによ
り、熱交換器7への冷媒流量を増減させて熱交換能力を
コントロールし、2次側冷媒吐出温度を一定に制御して
いた。
The conventional cooling device 15 is constructed as described above, and the secondary side refrigerant is supplied to the object to be cooled 1 through the secondary side discharge piping system 2 by the pump 5 and then the secondary side return piping system. It is recovered by the cooling device 15 via 3. The recovered secondary-side refrigerant is cooled by heat exchange with the primary-side refrigerant in the heat exchanger 7, but inside the cooling device 15, the heat generation state of the cooled object 1 is the secondary-side discharge temperature sensor 11 and The return temperature sensor 10 detects a change in the refrigerant temperature, and the control circuit 13 performs signal control of the opening degree of the secondary side control valve 6 according to the detected increase / decrease in the heat generation load, whereby the refrigerant flow rate to the heat exchanger 7 is increased. Was controlled to control the heat exchange capacity, and the secondary side refrigerant discharge temperature was controlled to be constant.

【0004】[0004]

【発明が解決しようとする課題】従来の冷却装置におい
ては、例えば被冷却体配置区画の温湿度が変化した場
合、液体冷媒を通す配管や被冷却体内部に実装される回
路素子周辺に結露が発生しやすく、これが例えば部品の
劣化やコネクタの接触不良の原因となっていた。このた
め、上記従来の冷却方式では、上記結露を防止するため
被冷却体の温湿度環境を液体冷媒供給温度に対する露点
以下に常時管理する手段、または液体冷媒供給温度を例
えば30℃といった比較的高温に設定する手段により結
露防止が試みられてきた。しかし、前者の環境温湿度管
理については一般の空調管理レベルより厳しいため、特
に被冷却体を配置する区画専用の空調施設が必要となる
等の難点があり、また後者については被冷却体の内部に
多数個使用されている回路素子の信頼性が温度に依存す
るため、高温になる程信頼性が低下するといった問題点
があった。
In the conventional cooling device, for example, when the temperature and humidity of the section where the object to be cooled is changed, dew condensation is formed around the pipe through which the liquid refrigerant is passed and the circuit elements mounted inside the object to be cooled. It is liable to occur, which has been a cause of deterioration of parts and contact failure of connectors, for example. Therefore, in the above conventional cooling method, in order to prevent the above-mentioned dew condensation, the temperature and humidity environment of the object to be cooled is constantly controlled below the dew point with respect to the liquid refrigerant supply temperature, or the liquid refrigerant supply temperature is relatively high such as 30 ° C. Attempts have been made to prevent dew condensation by means of setting. However, the former environment temperature and humidity control is stricter than general air-conditioning management level, so there is a drawback that an air-conditioning facility dedicated to the section in which the object to be cooled is placed is necessary, and the latter is inside the object to be cooled. Since the reliability of a large number of circuit elements used depends on the temperature, there is a problem that the reliability decreases as the temperature increases.

【0005】本発明においては、かかる問題を解決し、
被冷却体配置区画の温湿度環境を検知する手段を有し、
その変化状況に応じて液体冷媒の吐出温度を結露防止上
許容される範囲での最低温度に制御する冷却装置を提供
するものである。
In the present invention, such a problem is solved,
It has a means for detecting the temperature and humidity environment of the cooled object arrangement section,
The present invention provides a cooling device that controls the discharge temperature of a liquid refrigerant to a minimum temperature within a range allowable for dew condensation prevention in accordance with the change state.

【0006】[0006]

【課題を解決するための手段】本発明による冷却装置に
おいては、被冷却体配置区画に区画内空気温度及び相対
湿度を検出するセンサを設置し、冷却装置内の演算回路
において予め記憶されている空気の飽和蒸気圧曲線か
ら、結露を防止できる冷媒供給温度下限値を計算し、こ
れを信号として受けた制御回路が2次側コントロールバ
ルブの開度をコントロールして熱交換能力を制御するこ
とにより液冷媒吐出温度を演算回路にて計算した下限値
に制御するものである。ここで、 T: 温度センサで検知される被冷却体配置区画の環境
温度 t: 被冷却体への液冷媒供給温度(℃) HR: 湿度センサで検知される被冷却体配置区画の環境
相対湿度(%) PS(t): 温度tにおける空気の飽和蒸気圧を示す関
数(mmHg) P: 被冷却体配置区画の蒸気分(mmHg) とすれば、温度tで被冷却体に液冷媒を供給した場合
に、冷媒循環部周辺に結露が発生しない条件は、 PS(t)>P=PS(T)XHR したがって、t=P-1 S{PS(T)XHR}+a (但
し a:計測誤差及び冷媒温度制御精度を配慮した余裕
値)によって定義される温度tを演算回路で計算し、制
御回路に信号として送信すればいい(図3参照)。
In the cooling device according to the present invention, a sensor for detecting the air temperature and relative humidity in the compartment is installed in the object to be cooled arrangement and is stored in advance in the arithmetic circuit in the cooling device. By calculating the refrigerant supply temperature lower limit value that can prevent dew condensation from the saturated vapor pressure curve of air, and receiving the signal as a signal, the control circuit controls the opening of the secondary side control valve to control the heat exchange capacity. The liquid refrigerant discharge temperature is controlled to the lower limit value calculated by the arithmetic circuit. Here, T: ambient temperature t of the object to be cooled disposed compartment detected by the temperature sensor: the liquid coolant supply temperature (° C.) H R to the object to be cooled: environment relative to the object to be cooled arranged compartments detected by the humidity sensor Humidity (%) P S (t): Function indicating the saturated vapor pressure of air at temperature t (mmHg) P: If it is the vapor content (mmHg) of the cooling target arrangement section, the liquid refrigerant will flow to the cooling target at temperature t The condition that does not cause dew condensation around the refrigerant circulation part when P is supplied is P S (t)> P = P S (T) XH R Therefore, t = P −1 S {P S (T) XH R } The temperature t defined by + a (where a is a margin value in consideration of measurement error and refrigerant temperature control accuracy) may be calculated by the arithmetic circuit and transmitted as a signal to the control circuit (see FIG. 3).

【0007】また、コントロールバルブ及び定発熱ヒー
タを1次側冷媒配管系に設け、コントロールバルブの開
度をコントロールすることにより、熱交換器に流入する
1次側冷媒流量を調節して、熱交換能力を制御すると同
時に、熱交換器に流入する1次側冷媒流量を調節する効
果として、ヒータによる1次側冷媒の温度上昇を調節す
ることにもなり、熱交換器に流入する1次側冷媒の温度
をも制御可能とし、熱交換能力及び温度の2つのパラメ
ータ制御により、被冷却体の発熱条件及び被冷却体環境
条件の変化に対して幅広く対応可能な制御系を実現する
ものである。
Further, a control valve and a constant heating heater are provided in the primary side refrigerant piping system, and the opening of the control valve is controlled to adjust the flow rate of the primary side refrigerant flowing into the heat exchanger to perform heat exchange. As a result of controlling the capacity and adjusting the flow rate of the primary side refrigerant flowing into the heat exchanger, the temperature rise of the primary side refrigerant by the heater is also adjusted, and the primary side refrigerant flowing into the heat exchanger is also adjusted. Is also controllable, and a two-parameter control of heat exchange capacity and temperature realizes a control system capable of widely responding to changes in heat generation conditions of the object to be cooled and environmental conditions of the object to be cooled.

【0008】[0008]

【作用】本発明による冷却装置においては、被冷却体配
置区画の温湿度環境をセンサで検出し、この情報から演
算回路にて液冷媒循環系周辺での結露を防止できる液冷
媒供給温度下限値を6項に示す手法にて計算し、この計
算値に従って制御回路により2次側配管系のコントロー
ルバルブ開度を調節して液冷媒供給温度を制御し、被冷
却体内部及び冷媒循環配管等での結露発生を防止するこ
とが可能となる。また、液冷媒供給温度を必要最低温度
に設定することにより被冷却体である電子機器の信頼性
を十分に確保することが可能となる。
In the cooling device according to the present invention, the temperature and humidity environment of the section to be cooled is detected by the sensor, and from this information, the lower limit value of the liquid refrigerant supply temperature that can prevent dew condensation around the liquid refrigerant circulation system in the arithmetic circuit. Is calculated by the method shown in Section 6, and the control circuit adjusts the control valve opening of the secondary side piping system according to the calculated value to control the liquid refrigerant supply temperature, and It becomes possible to prevent the occurrence of dew condensation. Further, by setting the liquid refrigerant supply temperature to the required minimum temperature, it becomes possible to sufficiently secure the reliability of the electronic device which is the object to be cooled.

【0009】コントロールバルブ及び定発熱ヒータを1
次側冷媒配管系に設け、コントロールバルブの開度をコ
ントロールすることにより、熱交換器に流入する1次側
冷媒流量を調節して、熱交換能力を制御する。更に、熱
交換器に流入する1次側冷媒流量の調節効果としてヒー
タによる1次側冷媒の温度上昇を調節可能となり、した
がって熱交換器における熱交換能力と熱交換器への1次
側冷媒供給温度の2つのパラメータを制御可能となり、
被冷却体の発熱条件及び被冷却体環境条件の激しい変化
に対しても幅広く対応可能な制御系を実現できる。
One control valve and one constant heating heater
The heat exchange capacity is controlled by adjusting the flow rate of the primary side refrigerant flowing into the heat exchanger by controlling the opening of the control valve provided in the secondary side refrigerant piping system. Further, as the effect of adjusting the flow rate of the primary side refrigerant flowing into the heat exchanger, the temperature rise of the primary side refrigerant by the heater can be adjusted, and therefore the heat exchange capacity of the heat exchanger and the supply of the primary side refrigerant to the heat exchanger. Two parameters of temperature can be controlled,
It is possible to realize a control system capable of widely responding to a drastic change in the heat generation condition of the cooled object and the environmental condition of the cooled object.

【0010】[0010]

【実施例】実施例1.図1は本発明による冷却装置の一
実施例を示す図である。図において、1は被冷却体、2
は2次側吐出配管系、3は2次側戻り配管系、4は冷却
装置内2次側配管系、5はポンプ、6は2次側コントロ
ールバルブ、7は熱交換器、8は冷却装置内1次側配管
系、9は1次側供給配管、10は1次側戻り配管、11
は2次側冷媒吐出温度センサ、12は2次側冷媒戻り温
度センサ、13は制御回路、14は被冷却体配置区画、
15は冷却装置、16は湿度センサ、17は温度セン
サ、18は演算回路である。
EXAMPLES Example 1. FIG. 1 is a diagram showing an embodiment of a cooling device according to the present invention. In the figure, 1 is an object to be cooled, 2
Is a secondary discharge pipe system, 3 is a secondary return pipe system, 4 is a cooling device secondary pipe system, 5 is a pump, 6 is a secondary control valve, 7 is a heat exchanger, and 8 is a cooling device. Inside primary side piping system, 9 is primary side supply piping, 10 is primary side return piping, 11
Is a secondary side refrigerant discharge temperature sensor, 12 is a secondary side refrigerant return temperature sensor, 13 is a control circuit, 14 is a section to be cooled, and
Reference numeral 15 is a cooling device, 16 is a humidity sensor, 17 is a temperature sensor, and 18 is an arithmetic circuit.

【0011】上記のように構成された冷却装置15にお
いては、被冷却体1の配置区画14の温湿度環境をセン
サ16及び17で検出し、この情報から演算回路18に
て液冷媒循環系周辺での結露を防止できる液冷媒供給温
度下限値を計算する。図3において、PS(t)は空気
の飽和蒸気圧曲線であり、t(℃)において飽和状態に
ある空気の含有蒸気分圧を示す。したがって、結露の発
生を防ぐためには、空気の状態を常に飽和蒸気圧曲線の
下領域に維持する必要がある。特に、冷媒配管の周辺空
気温度は局部的に冷媒温度と等しくなるため、空気の蒸
気分圧Pを常に冷媒供給温度T(℃)における飽和蒸気
圧以下に維持しなければならない。逆に空気の温湿度環
境が検出された場合、冷媒温度(冷媒配管周辺空気温
度)は飽和蒸気圧がその空気の蒸気分圧より高い値とな
る温度以上に維持されなければならない。この条件を式
として示したのが図3に示す結露防止条件式である。な
お、空気の相対湿度とは、ある状態の空気の蒸気分圧と
その温度における飽和蒸気圧の比を(%)で示した値で
ある。演算回路18においてこの結露防止条件式により
求められる冷媒吐出温度を制御回路13に信号として送
信すると、制御回路13では冷媒温度センサ11、12
で検出される冷媒温度状況と演算回路18からの指示信
号値を比較して、フィードバック制御信号を2次側配管
系のコントロールバルブ6に送信し冷媒吐出温度が演算
回路18計算値になるようその開度を調節して被冷却体
1への液冷媒供給温度を制御する。その結果、被冷却体
1の内部及び冷媒循環配管等での結露発生を防止するこ
とが可能となる。また、液冷媒供給温度を状況に応じて
必要最低温度に設定できるため、電子機器である被冷却
体1の信頼性を十分に確保することが可能となる。
In the cooling device 15 configured as described above, the temperature and humidity environment of the arrangement section 14 of the object to be cooled 1 is detected by the sensors 16 and 17, and from this information, the arithmetic circuit 18 is used to detect the periphery of the liquid refrigerant circulation system. Calculate the lower limit value of the liquid refrigerant supply temperature that can prevent dew condensation in. In FIG. 3, P S (t) is a saturated vapor pressure curve of air, and shows a partial vapor pressure of contained air in a saturated state at t (° C.). Therefore, in order to prevent the occurrence of dew condensation, it is necessary to always maintain the state of air in the lower region of the saturated vapor pressure curve. In particular, since the temperature of the air around the refrigerant pipe locally becomes equal to the temperature of the refrigerant, the vapor partial pressure P of the air must always be kept below the saturated vapor pressure at the refrigerant supply temperature T (° C). Conversely, when the temperature and humidity environment of air is detected, the refrigerant temperature (air temperature around the refrigerant pipe) must be maintained at a temperature at which the saturated vapor pressure is higher than the vapor partial pressure of the air. This condition is shown as a formula in the dew condensation preventing condition formula shown in FIG. The relative humidity of air is a ratio of the partial vapor pressure of air in a certain state to the saturated vapor pressure at that temperature expressed in (%). When the refrigerant discharge temperature obtained by the dew condensation preventing conditional expression in the arithmetic circuit 18 is transmitted to the control circuit 13 as a signal, the control circuit 13 causes the refrigerant temperature sensors 11 and 12 to operate.
The refrigerant temperature condition detected by the above is compared with the instruction signal value from the arithmetic circuit 18, and a feedback control signal is transmitted to the control valve 6 of the secondary side piping system so that the refrigerant discharge temperature becomes the arithmetic circuit 18 calculated value. The opening degree is adjusted to control the liquid refrigerant supply temperature to the object to be cooled 1. As a result, it becomes possible to prevent the occurrence of dew condensation inside the object to be cooled 1, the refrigerant circulation pipe, and the like. Further, since the liquid refrigerant supply temperature can be set to the required minimum temperature according to the situation, it becomes possible to sufficiently secure the reliability of the cooled object 1 which is an electronic device.

【0012】実施例2.図2は本発明による冷却装置に
おいて、液冷媒吐出温度制御方法の第2実施例を示す冷
却装置の内部構成図である。図において、2は2次側吐
出配管系、3は2次側戻り配管系、4は冷却装置内2次
側配管系、5はポンプ、7は熱交換器、8は冷却装置内
1次側配管系、9は1次側供給配管、10は1次側戻り
配管、11は2次側冷媒吐出温度センサ、12は2次側
冷媒戻り温度センサ、13は制御回路、15は冷却装
置、18は演算回路、19は1次側コントロールバル
ブ、20はヒータである。
Example 2. FIG. 2 is an internal configuration diagram of a cooling device showing a second embodiment of the liquid refrigerant discharge temperature control method in the cooling device according to the present invention. In the figure, 2 is a secondary side discharge piping system, 3 is a secondary side return piping system, 4 is a cooling system secondary side piping system, 5 is a pump, 7 is a heat exchanger, 8 is a cooling system primary side. Piping system, 9 is a primary supply pipe, 10 is a primary return pipe, 11 is a secondary refrigerant discharge temperature sensor, 12 is a secondary refrigerant return temperature sensor, 13 is a control circuit, 15 is a cooling device, 18 Is an arithmetic circuit, 19 is a primary side control valve, and 20 is a heater.

【0013】上記のように構成された冷却装置15にお
いては、コントロールバルブ19及び定発熱ヒータ20
を1次側冷媒配管系8に設け、コントロールバルブ19
の開度をコントロールすることにより、熱交換器7に流
入する1次側冷媒流量を調節し、熱交換器7での熱交換
能力を制御することで冷媒吐出温度をコントロールでき
る。更にコントロールバルブ19の開度コントロールに
よる1次側冷媒流量の調節効果として、流量の増減に合
わせてヒータ20による一次側冷媒の温度上昇が変動
し、つまり熱交換器7に流入する1次側冷媒温度を制御
することが可能となり、1次側冷媒温度の変動により直
接2次側冷媒温度の温度制御効果が得られるため、結果
的に熱交換器7における熱交換能力と熱交換器7への1
次側冷媒供給温度の2つのパラメータ制御効果から、被
冷却体1の発熱条件及び被冷却体環境条件の激しい変化
に対しても双方の効果により幅広く対応可能な制御系を
実現できる。
In the cooling device 15 constructed as described above, the control valve 19 and the constant heating heater 20 are provided.
Is provided in the primary side refrigerant piping system 8, and the control valve 19
The refrigerant discharge temperature can be controlled by adjusting the flow rate of the primary-side refrigerant flowing into the heat exchanger 7 by controlling the opening degree of, and controlling the heat exchange capacity of the heat exchanger 7. Further, as an effect of adjusting the flow rate of the primary side refrigerant by controlling the opening degree of the control valve 19, the temperature rise of the primary side refrigerant by the heater 20 fluctuates as the flow rate increases or decreases, that is, the primary side refrigerant flowing into the heat exchanger 7. Since the temperature can be controlled and the temperature control effect of the secondary side refrigerant temperature can be directly obtained by the fluctuation of the primary side refrigerant temperature, as a result, the heat exchange capacity of the heat exchanger 7 and the heat exchanger 7 1
From the two-parameter control effect of the secondary-side refrigerant supply temperature, it is possible to realize a control system capable of widely responding to both the heat generation condition of the object to be cooled 1 and the drastic change of the environmental condition of the object to be cooled.

【0014】[0014]

【発明の効果】以上述べたとおり、本発明による冷却装
置においては、被冷却体配置区画の温湿度環境をセンサ
で検出し、この情報から演算回路にて液冷媒循環系周辺
での結露を防止できる液冷媒供給温度下限値を計算し、
この計算値に従って制御回路により2次側配管系のコン
トロールバルブ開度を調節して液冷媒供給温度を制御す
ることにより、被冷却体内部及び冷媒循環配管等での結
露発生を防止することが可能となる。また、液冷媒供給
温度を結露防止可能な最低温度に設定することにより被
冷却体である電子機器の信頼性を十分に確保することが
可能となる。
As described above, in the cooling device according to the present invention, the temperature and humidity environment of the section to be cooled is detected by the sensor, and the information is used to prevent the dew condensation around the liquid refrigerant circulation system in the arithmetic circuit. Calculate the lower limit of liquid refrigerant supply temperature that can be
By controlling the liquid refrigerant supply temperature by adjusting the control valve opening of the secondary side piping system by the control circuit according to this calculated value, it is possible to prevent the occurrence of dew condensation inside the object to be cooled and the refrigerant circulation piping. Becomes Further, by setting the liquid refrigerant supply temperature to the minimum temperature at which dew condensation can be prevented, it becomes possible to sufficiently secure the reliability of the electronic device which is the object to be cooled.

【0015】コントロールバルブ及び定発熱ヒータを1
次側冷媒配管系に設け、コントロールバルブの開度をコ
ントロールすることにより、熱交換器に流入する1次側
冷媒流量を調節して、熱交換能力を制御する。更に、熱
交換器に流入する1次側冷媒流量の調節効果としてヒー
タによる1次側冷媒の温度上昇を調節可能となり、した
がって熱交換器における熱交換能力と熱交換器への1次
側冷媒供給温度の2つのパラメータを制御可能となり、
被冷却体の発熱条件及び被冷却体環境条件の激しい変化
に対しても幅広く対応可能な制御系を実現できる。
One control valve and one constant heating heater
The heat exchange capacity is controlled by adjusting the flow rate of the primary side refrigerant flowing into the heat exchanger by controlling the opening of the control valve provided in the secondary side refrigerant piping system. Further, as the effect of adjusting the flow rate of the primary side refrigerant flowing into the heat exchanger, the temperature rise of the primary side refrigerant by the heater can be adjusted, and therefore the heat exchange capacity of the heat exchanger and the supply of the primary side refrigerant to the heat exchanger. Two parameters of temperature can be controlled,
It is possible to realize a control system capable of widely responding to a drastic change in the heat generation condition of the cooled object and the environmental condition of the cooled object.

【0016】コントロールバルブ及び定発熱ヒータを1
次側冷媒配管系に設け、コントロールバルブの開度をコ
ントロールすることにより、熱交換器に流入する1次側
冷媒流量を調節して、熱交換能力を制御する。さらに、
熱交換器に流入する1次側冷媒流量の調節効果としてヒ
ータによる一次側冷媒の温度上昇を調節可能となり、し
たがって熱交換器における熱交換能力と熱交換器への1
次側冷媒供給温度の2つのパラメータを制御可能とな
り、被冷却体の発熱条件及び被冷却体環境条件の激しい
変化に対しても幅広く対応可能な制御系を実現てきる。
One control valve and one constant heating heater
The heat exchange capacity is controlled by adjusting the flow rate of the primary side refrigerant flowing into the heat exchanger by controlling the opening of the control valve provided in the secondary side refrigerant piping system. further,
As a result of adjusting the flow rate of the primary-side refrigerant flowing into the heat exchanger, the temperature rise of the primary-side refrigerant by the heater can be adjusted, so that the heat exchange capacity of the heat exchanger and
It becomes possible to control two parameters of the secondary side refrigerant supply temperature, and it is possible to realize a control system capable of widely responding to a drastic change in the heat generation condition of the cooled object and the environmental condition of the cooled object.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を示す図である。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】本発明の実施例2を示す冷却装置内部構成図で
ある。
FIG. 2 is an internal configuration diagram of a cooling device showing a second embodiment of the present invention.

【図3】本発明の演算回路において計算される液冷媒供
給温度許容下限値の求めかたを示す図である。
FIG. 3 is a diagram showing how to obtain a liquid refrigerant supply temperature allowable lower limit value calculated in an arithmetic circuit of the present invention.

【図4】従来の構成例を示す図である。FIG. 4 is a diagram showing a conventional configuration example.

【符号の説明】[Explanation of symbols]

1 被冷却体 2 2次側吐出配管系 3 3次側戻り配管系 4 冷却装置内2次側配管系 5 ポンプ 6 2次側コントロールバルブ 7 熱交換器 8 冷却装置内1次側配管系 9 1次側供給配管系 10 1次側戻り配管系 11 2次側冷媒吐出温度センサ 12 2次側冷媒戻り温度センサ 13 制御回路 14 被冷却体配置区画 15 冷却装置 16 湿度センサ 17 温度センサ 18 演算回路 19 1次側コントロールバルブ 20 ヒータ 1 Cooled Body 2 Secondary Side Discharge Piping System 3 3rd Side Return Piping System 4 Cooling Device Secondary Side Piping System 5 Pump 6 Secondary Side Control Valve 7 Heat Exchanger 8 Cooling Device Primary Side Piping System 9 1 Secondary supply piping system 10 Primary return piping system 11 Secondary refrigerant discharge temperature sensor 12 Secondary refrigerant return temperature sensor 13 Control circuit 14 Cooled object arrangement section 15 Cooling device 16 Humidity sensor 17 Temperature sensor 18 Arithmetic circuit 19 Primary side control valve 20 Heater

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 23/473 Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 23/473

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷媒循環用ポンプと、1次側と2次側冷
媒の熱交換を行う熱交換器と、この熱交換器に流入する
冷媒流量を制御するコントロールバルブとを有し、2次
側冷媒として電子機器である被冷却体に液体冷媒を循環
供給する冷却装置において、上記被冷却体の雰囲気温度
及び雰囲気相対湿度を検出する検出手段と、上記各検出
手段によるデータから被冷却体に結露を発生させない液
体冷媒の許容吐出下限温度を求める演算回路と、液体冷
媒の吐出/戻り口に設置された温度センサと、上記温度
センサが検知した温度と上記演算回路の演算値とが合致
するように上記熱交換器の2次冷媒側コントロールバル
ブ開度を可変し、液体冷媒吐出温度を制御する制御回路
とを具備したことを特徴とする冷却装置。
1. A refrigerant circulation pump, a heat exchanger for exchanging heat between the primary and secondary refrigerants, and a control valve for controlling the flow rate of the refrigerant flowing into the heat exchanger. In a cooling device that circulates a liquid refrigerant as a side refrigerant to an object to be cooled, which is an electronic device, a detection unit that detects the ambient temperature and the relative atmospheric humidity of the object to be cooled, and the data from each of the detection units to the object to be cooled. An arithmetic circuit that obtains the allowable discharge lower limit temperature of the liquid refrigerant that does not cause dew condensation, a temperature sensor installed at the liquid refrigerant discharge / return port, the temperature detected by the temperature sensor, and the calculated value of the arithmetic circuit match. Thus, the cooling device is provided with a control circuit that controls the opening degree of the secondary refrigerant side control valve of the heat exchanger and controls the liquid refrigerant discharge temperature.
【請求項2】 冷媒循環用ポンプと、1次側と2次側冷
媒の熱交換を行う熱交換器と、この熱交換器に流入する
冷媒流量を制御するコントロールバルブとを有し、2次
側冷媒として電子機器である被冷却体に液体冷媒を循環
供給する冷却装置において、上記被冷却体の雰囲気温度
及び雰囲気相対湿度を検出する検出手段と、上記各検出
手段によるデータから被冷却体に結露を発生させない液
体冷媒の許容吐出下限温度を求める演算回路と、液体冷
媒の吐出/戻り口に設置された温度センサと、上記熱交
換器の1次冷媒側に設けられたコントロールバルブ及び
ビータと、上記温度センサが検知した温度と上記演算回
路の演算値とが合致するように上記熱交換器の1次冷媒
側のコントロールバルブの開度を可変して上記熱交換器
能力及び熱交換器への1次冷媒供給温度を制御する制御
回路とを具備したことを特徴とする冷却装置。
2. A secondary circulation system having a refrigerant circulation pump, a heat exchanger for exchanging heat between the primary side and the secondary side refrigerant, and a control valve for controlling the flow rate of the refrigerant flowing into the heat exchanger. In a cooling device that circulates a liquid refrigerant as a side refrigerant to an object to be cooled, which is an electronic device, a detection unit that detects the ambient temperature and the relative atmospheric humidity of the object to be cooled, and the data from each of the detection units to the object to be cooled. An arithmetic circuit for obtaining an allowable lower limit discharge temperature of the liquid refrigerant that does not cause dew condensation, a temperature sensor installed at a discharge / return port of the liquid refrigerant, a control valve and a beater provided on the primary refrigerant side of the heat exchanger. , The opening of the control valve on the primary refrigerant side of the heat exchanger is varied so that the temperature detected by the temperature sensor and the calculated value of the calculation circuit match, and the heat exchanger capacity and the heat exchanger are changed. And a control circuit for controlling the primary refrigerant supply temperature of 1.
JP31852492A 1992-11-27 1992-11-27 Cooling apparatus Pending JPH06164178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31852492A JPH06164178A (en) 1992-11-27 1992-11-27 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31852492A JPH06164178A (en) 1992-11-27 1992-11-27 Cooling apparatus

Publications (1)

Publication Number Publication Date
JPH06164178A true JPH06164178A (en) 1994-06-10

Family

ID=18100078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31852492A Pending JPH06164178A (en) 1992-11-27 1992-11-27 Cooling apparatus

Country Status (1)

Country Link
JP (1) JPH06164178A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298377A (en) * 1996-05-08 1997-11-18 Nec Corp System for cooling electronic device
EP0971573A2 (en) * 1998-07-09 2000-01-12 ABB Daimler-Benz Transportation (Technology) GmbH Cooling means temperature control for electrically driven vehicle inverter
KR100359828B1 (en) * 2000-12-01 2002-11-07 엘지전자 주식회사 Refrigerated cooling system for electronics
US6711017B2 (en) 2001-07-17 2004-03-23 Hitachi Kokusai Electric Inc. Cooling apparatus for electronic unit
EP1645822A2 (en) * 2004-09-27 2006-04-12 KERMI GmbH Method and interface for supplying and evacuating a coolant to and from a consumer unit
JP2006232211A (en) * 2005-02-28 2006-09-07 East Japan Railway Co Train length calculating method, and train controlling system
EP1788328A2 (en) * 2005-11-17 2007-05-23 KERMI GmbH Method of supplying and discharging a coolant to and from a waste heat creating consumer unit
JP2008234428A (en) * 2007-03-22 2008-10-02 Fujitsu Ltd Cooling system for information apparatus
JP2008236956A (en) * 2007-03-22 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Inverter cooler
JP2009217500A (en) * 2008-03-10 2009-09-24 Hitachi Plant Technologies Ltd Cooling system and method of cooling electronic appliance
JP2009238645A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Power-supply device for vehicles
CN102449407A (en) * 2009-04-03 2012-05-09 易通-威廉姆斯集团有限公司 Cooling unit
CN102607131A (en) * 2011-01-21 2012-07-25 际高建业有限公司 Control linkage method of air-conditioning system capable of independently adjusting temperature and humidity
JP2012216587A (en) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp Water-cooled electric apparatus
WO2013186904A1 (en) * 2012-06-14 2013-12-19 富士通株式会社 Dew condensation detection device, cooling system, and method for controlling cooling medium flow rate
WO2016038947A1 (en) * 2014-09-11 2016-03-17 株式会社東芝 Radio transmission system
JP6064083B1 (en) * 2015-08-31 2017-01-18 株式会社ExaScaler Electronic equipment cooling system
JP2017050548A (en) * 2016-10-13 2017-03-09 株式会社ExaScaler Cooling system for electronic apparatus
JP2018181923A (en) * 2017-04-05 2018-11-15 富士通株式会社 Cooling system, cooling device, and electronic system
JP2019021766A (en) * 2017-07-18 2019-02-07 富士通株式会社 Immersion cooling device, immersion cooling system and immersion cooling method
JP2021039974A (en) * 2019-08-30 2021-03-11 東芝三菱電機産業システム株式会社 Cooling water temperature control system and cooling water temperature control arrangement

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298377A (en) * 1996-05-08 1997-11-18 Nec Corp System for cooling electronic device
EP0971573A2 (en) * 1998-07-09 2000-01-12 ABB Daimler-Benz Transportation (Technology) GmbH Cooling means temperature control for electrically driven vehicle inverter
EP0971573A3 (en) * 1998-07-09 2000-10-11 DaimlerChrysler AG Cooling means temperature control for electrically driven vehicle inverter
KR100359828B1 (en) * 2000-12-01 2002-11-07 엘지전자 주식회사 Refrigerated cooling system for electronics
US6711017B2 (en) 2001-07-17 2004-03-23 Hitachi Kokusai Electric Inc. Cooling apparatus for electronic unit
EP1645822A2 (en) * 2004-09-27 2006-04-12 KERMI GmbH Method and interface for supplying and evacuating a coolant to and from a consumer unit
EP1645822A3 (en) * 2004-09-27 2007-09-05 KERMI GmbH Method and interface for supplying and evacuating a coolant to and from a consumer unit
JP4575807B2 (en) * 2005-02-28 2010-11-04 東日本旅客鉄道株式会社 Train length calculation method and train control system
JP2006232211A (en) * 2005-02-28 2006-09-07 East Japan Railway Co Train length calculating method, and train controlling system
EP1788328A2 (en) * 2005-11-17 2007-05-23 KERMI GmbH Method of supplying and discharging a coolant to and from a waste heat creating consumer unit
EP1788328A3 (en) * 2005-11-17 2008-05-21 KERMI GmbH Method of supplying and discharging a coolant to and from a waste heat creating consumer unit
US8611087B2 (en) 2007-03-22 2013-12-17 Fujitsu Limited Cooling system for information device
JP2008236956A (en) * 2007-03-22 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Inverter cooler
JP2008234428A (en) * 2007-03-22 2008-10-02 Fujitsu Ltd Cooling system for information apparatus
JP2009217500A (en) * 2008-03-10 2009-09-24 Hitachi Plant Technologies Ltd Cooling system and method of cooling electronic appliance
JP2009238645A (en) * 2008-03-27 2009-10-15 Sanyo Electric Co Ltd Power-supply device for vehicles
CN102449407A (en) * 2009-04-03 2012-05-09 易通-威廉姆斯集团有限公司 Cooling unit
JP2012522958A (en) * 2009-04-03 2012-09-27 イートン ウィリアムズ グループ リミテッド Cooling unit
CN102607131A (en) * 2011-01-21 2012-07-25 际高建业有限公司 Control linkage method of air-conditioning system capable of independently adjusting temperature and humidity
JP2012216587A (en) * 2011-03-31 2012-11-08 Mitsubishi Electric Corp Water-cooled electric apparatus
WO2013186904A1 (en) * 2012-06-14 2013-12-19 富士通株式会社 Dew condensation detection device, cooling system, and method for controlling cooling medium flow rate
JPWO2013186904A1 (en) * 2012-06-14 2016-02-01 富士通株式会社 Condensation detection device, cooling system, and cooling medium flow rate control method
WO2016038947A1 (en) * 2014-09-11 2016-03-17 株式会社東芝 Radio transmission system
JP6064083B1 (en) * 2015-08-31 2017-01-18 株式会社ExaScaler Electronic equipment cooling system
JP2017050548A (en) * 2016-10-13 2017-03-09 株式会社ExaScaler Cooling system for electronic apparatus
JP2018181923A (en) * 2017-04-05 2018-11-15 富士通株式会社 Cooling system, cooling device, and electronic system
JP2019021766A (en) * 2017-07-18 2019-02-07 富士通株式会社 Immersion cooling device, immersion cooling system and immersion cooling method
JP2021039974A (en) * 2019-08-30 2021-03-11 東芝三菱電機産業システム株式会社 Cooling water temperature control system and cooling water temperature control arrangement

Similar Documents

Publication Publication Date Title
JPH06164178A (en) Cooling apparatus
EP1988760B1 (en) Temperature control device, management device, system and method
EP0524757B1 (en) Liquid coolant circulating system
US20080105412A1 (en) Continuous cooling capacity regulation using supplemental heating
US4549403A (en) Method and control system for protecting an evaporator in a refrigeration system against freezeups
US20080304236A1 (en) Maintaining cooling system air above condensation point
US11226130B2 (en) Valve control device, cooling device, and valve control method
US9801311B2 (en) Cooling device and electronic device system
JPS6021582A (en) Device for laser temperature adjustment
US9091471B2 (en) Air conditioning apparatus with temperature responsive correction of upper limit rotational speed for a compressor
KR102158043B1 (en) Cooling system and its controlling method that can restrain the formation of condensed water in active phased array radar antenna
JPS62163815A (en) Heating facility for car
JPH07218075A (en) Computer cooler
TWM530513U (en) Heat dissipation system with gas detector
EP0421743B1 (en) Coolant supply apparatus for liquid-cooled electronic device
JPH0735940B2 (en) Cooling system
JPS62142932A (en) Heating apparatus
CN116142100A (en) Domain controller with condensation prevention structure
US5355846A (en) Cooling device for use in engine
JP2894817B2 (en) Cooling device for electronic equipment
JP2007085712A (en) Air conditioner
JPH0521975A (en) Cooler
JPH02120690A (en) Cooling apparatus of electronic apparatus
JPH0575284A (en) Cooling device
JPH0452624B2 (en)