JPH061606Y2 - Underground heat exchanger - Google Patents

Underground heat exchanger

Info

Publication number
JPH061606Y2
JPH061606Y2 JP1987030895U JP3089587U JPH061606Y2 JP H061606 Y2 JPH061606 Y2 JP H061606Y2 JP 1987030895 U JP1987030895 U JP 1987030895U JP 3089587 U JP3089587 U JP 3089587U JP H061606 Y2 JPH061606 Y2 JP H061606Y2
Authority
JP
Japan
Prior art keywords
heat exchange
pipe
groundwater
underground
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987030895U
Other languages
Japanese (ja)
Other versions
JPS63141205U (en
Inventor
博明 上山
Original Assignee
博明 上山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博明 上山 filed Critical 博明 上山
Priority to JP1987030895U priority Critical patent/JPH061606Y2/en
Publication of JPS63141205U publication Critical patent/JPS63141205U/ja
Application granted granted Critical
Publication of JPH061606Y2 publication Critical patent/JPH061606Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

【考案の詳細な説明】 A.考案の目的 a.産業上の利用分野 本案は、地中熱交換装置に関するものである。Detailed Description of the Invention A. Purpose of device a. Industrial Application Field This proposal relates to an underground heat exchange device.

b.従来の技術とその問題点 従来提供されているこの種のものにあっては、地下水を
汲み上げ路上の積雪を融雪する方式のものとなっている
が、これでは地下水の枯渇の心配があると共に、供給す
る熱量が少なく大量に融雪できず、また、融雪してもす
ぐ凍結するなど厳寒な地方の実態にそぐわない。また、
夏期における舗装面の流動現象については何等配慮する
ところがない。
b. Conventional technology and its problems In this type of equipment that has been provided so far, it is a method of pumping groundwater and melting snow on the road, but with this, there is a fear of groundwater depletion, The amount of heat supplied is so small that a large amount of snow cannot be melted, and even if the snow melts, it freezes immediately and does not fit the actual conditions of the extremely cold regions. Also,
No consideration is given to the flow phenomenon on the pavement surface in the summer.

B.考案の構成 a問題を解決しようとする手段 本願では、下記の構成のものによって、上述した問題を
解決しようとするものである。
B. Configuration of the Invention a Means for Solving the Problem The present application is intended to solve the above-mentioned problems by the following configurations.

すなわち、本願のものは、地中熱供給地下還元井側壁2
Aの下方位置に適数個の地下水還元ストレーナ2A1が
設けられている親井戸2内に多管式地下水熱交換パイプ
4Aを蛇行状に配設してなる地中熱交換装置本体を設
け、この地中熱交換装置本体と路面融雪用の配管とを不
凍液が循環するよう構成し、上記親井戸2内には、当該
親井戸2の近傍に掘られた子井戸6から地下水を供給す
るよう構成したこと地中熱交換装置である。
That is, the one of the present application is the side wall 2
In the parent well 2 where a proper number of groundwater reduction strainers 2A1 are provided below A, a subterranean heat exchange device main body is provided in which a multi-tube groundwater heat exchange pipe 4A is arranged in a meandering manner. An antifreeze solution is configured to circulate through the underground heat exchanger main body and a road surface snow melting pipe, and groundwater is supplied into the parent well 2 from a child well 6 dug in the vicinity of the parent well 2. It is the underground heat exchanger.

b.考案の実施例 1は地中熱交換装置である。b. Example 1 of the invention is an underground heat exchange device.

2は親井戸で、内部に地中熱交換装置本体が装置されて
いる。
Reference numeral 2 is a parent well in which the main body of the underground heat exchange device is installed.

上記親井戸2は、地中熱供給地下還元井側壁2Aとこの
側壁2Aの上下に張設された底部2Bと天板2Cとから
なり、かつ、これが地中Gに所定深度を以て埋設されて
いる。
The parent well 2 is composed of a subsurface side wall 2A of the underground heat supply underground return well, a bottom portion 2B stretched above and below the side wall 2A, and a top plate 2C, and this is buried in the ground G with a predetermined depth. .

上記地中熱供給地下還元井側壁2Aの下方位置には適数
個の地下水還元ストレーナ2A1が設けられている。
An appropriate number of groundwater reduction strainers 2A1 are provided below the side wall 2A of the underground heat supply underground reduction well.

3は路面(舗装面)3A内に蛇行埋設された路面融雪用
の配管で、3Bは入口用配管、3Cは出口用配管を示
す。
Reference numeral 3 indicates a pipe for snow melting on the road, which is buried in a road surface (paved surface) 3A in a meandering manner, 3B indicates an inlet pipe, and 3C indicates an outlet pipe.

4は上記親井戸2内に配設された第1種の多管式地中熱
交換装置本体で、上記親井戸2内を蛇行せしめた多管式
地下水熱交換パイプ4Aで構成され、一端を入口用配管
3Bに連通せしめ、他端を出口用配管3Cに連結してあ
る。
Reference numeral 4 denotes a main body of the first type multi-tube underground heat exchange device arranged in the parent well 2, which is composed of a multi-tube groundwater heat exchange pipe 4A meandering in the parent well 2 and has one end It is connected to the inlet pipe 3B and the other end is connected to the outlet pipe 3C.

5は地下水を上記親井戸2内に供給する地下水配管で、
当然、先端の地下水出口用配管5Aは当該親井戸2内に
引き込まれていると共に。他端の地下水入口用配管5B
は上記親井戸2の近傍に掘られた子井戸6内に引き込ま
れ、その先端には地下水圧送水中ポンプ5Cが連結され
ている。
Reference numeral 5 is a groundwater pipe for supplying groundwater into the parent well 2,
Of course, the groundwater outlet pipe 5A at the tip is pulled into the parent well 2. Pipe 5B for groundwater inlet at the other end
Is drawn into the child well 6 dug in the vicinity of the parent well 2, and a groundwater pressure submersible pump 5C is connected to the tip thereof.

この場合、公知のごとく通常のポンプであってもよい。In this case, an ordinary pump may be used as is known.

6Aは地下水吸入ストレーナである。6A is a groundwater suction strainer.

7は上記親井戸2内に配設された第2種の二重管貯留式
地中熱交換装置本体で、外方の地下水熱交換ケーシング
7Aと、当該地下水熱交換ケーシング7A内に引き込ま
れた二重管熱交換促進ケーシング7Bとからなり、この
二重管熱交換促進ケーシング7Bの下端の融雪不凍液取
入口7B1は開口されていると共に、当該二重管熱交換
促進ケーシング7B内には熱交換不凍液圧送配管7Cが
引き込まれ、その下端には不凍液圧送水中ポンプ7Dが
連結されている。
Reference numeral 7 is a main body of a double pipe storage type underground heat exchange device of the second type arranged in the parent well 2 and is drawn into the outer groundwater heat exchange casing 7A and the groundwater heat exchange casing 7A. The double pipe heat exchange promoting casing 7B is formed, and the snow melting antifreeze inlet 7B1 at the lower end of the double pipe heat exchange promoting casing 7B is opened, and heat is exchanged in the double pipe heat exchange promoting casing 7B. The antifreeze liquid pressure feeding pipe 7C is drawn in, and the antifreeze liquid pressure feeding submersible pump 7D is connected to the lower end thereof.

そして、この熱交換不凍液圧送配管7Cは上記路面融雪
用の配管における入口用配管3Bに連結され、出口用配
管3Cに連結された戻り管7Eは外方の地下水熱交換ケ
ーシング7A内に引き込まれている。
The heat exchange antifreeze pumping pipe 7C is connected to the inlet pipe 3B in the road snow melting pipe, and the return pipe 7E connected to the outlet pipe 3C is drawn into the groundwater heat exchange casing 7A on the outside. There is.

8は上記井戸内に配設された第3種の多管貯留複合式地
中熱交換装置本体で、上記親井戸2内を蛇行せしめた多
管式地下水熱交換パイプ8Aの一端の多管式地下水熱交
換パイプ入口8A1を外方の地下水熱交換ケーシング8
B内に連通せしめ、他端の多管式地下水熱交換パイプ出
口8A2を二重管熱交換不凍液貯留槽8C内に連通させ
たものとなっている。
Reference numeral 8 is a main body of a third type multi-tube storage composite type underground heat exchange device arranged in the well, and a multi-tube type at one end of the multi-tube groundwater heat exchange pipe 8A that meanders in the parent well 2. Groundwater heat exchange pipe inlet 8A1 to the outside groundwater heat exchange casing 8
The outlet of the multi-pipe type groundwater heat exchange pipe 8A2 at the other end is made to communicate with the inside of the double pipe heat exchange antifreeze storage tank 8C.

8Dは上記二重管熱交換不凍液貯留槽8C内に引き込ま
れた熱交換不凍液配管で、下端には不凍液圧送水中ポン
プ8Eが連結され、上端は上記路面融雪用の配管におけ
る入口用配管3Bに連結され、出口用配管3Cに連結さ
れた戻り管8Fは外方の地下水熱交換ケーシング8B内
に引き込まれている。
8D is a heat exchange antifreeze pipe drawn into the double pipe heat exchange antifreeze storage tank 8C, an antifreeze liquid pressure submersible pump 8E is connected to the lower end, and an upper end is connected to the inlet pipe 3B of the road snow melting pipe. The return pipe 8F connected to the outlet pipe 3C is drawn into the outer groundwater heat exchange casing 8B.

このものは、多管式(ラジエータ)構造と貯留式構造と
を結合したものであるが、熱交換液である不凍液の熱交
換率の高い多管式(ラジエータ)構造を地下水内に設置
すると共に、上部は不凍液圧送水中ポンプを内設した上
記多管貯留複合式地中熱交換装置本体で、熱交換液の循
環と貯留によって熱交換率を高め、子井戸より地下水を
親井戸に注入し地下水還元ストレーナより地中に還元す
る。
This is a combination of a multi-tube type (radiator) structure and a storage type structure, but with the multi-tube type (radiator) structure having a high heat exchange rate of the antifreeze liquid, which is a heat exchange liquid, installed in the groundwater. The upper part is the main body of the above-mentioned multi-tube storage type underground heat exchange device with an antifreeze liquid pressure pump installed inside, which increases the heat exchange rate by circulating and storing the heat exchange liquid, and injects groundwater from the sub-well into the parent well. Reduction Strainer returns to the ground.

当然のことながら、地中熱交換装置本体内と上記路面融
雪用の配管3とは不凍液が循環するよう構成されてい
る。
As a matter of course, the antifreeze liquid is circulated in the underground heat exchange device main body and the road surface snow melting pipe 3.

ここで、上記親井戸について詳細に説明する。Here, the parent well will be described in detail.

親井戸は上記路面融雪用の配管3に必要な熱交換である
不凍液を処理できる地中熱交換装置本体を内蔵している
ため、地下温度上昇率(地下は100m深くなるごとに
平均約3℃の地下温上昇がある。)と必要容量即ち融雪
に必要な熱交換液(不凍液)を確保できる口径と深さに
構成されている。冬期における融雪などにあまり多量の
融雪エネルギーを必要としない場合は、親井戸の地下水
還元ストレーナを出来るだけ下方に設けることにより、
当該親井戸における一番高い地下温水によって、上記地
中熱交換装置本体の内部の熱交換液と熱交換を行ない、
ある程度の融雪可能温度の熱交換液を貯留でき、その目
的を達成できる。
Since the parent well has a built-in underground heat exchange device that can process the antifreeze liquid that is the heat exchange required for the road surface snow melting pipe 3, the rate of underground temperature rise (an average of about 3 ° C for every 100m deep underground) It has a caliber and depth that can secure the required capacity, that is, the heat exchange liquid (antifreeze liquid) necessary for melting snow. If a large amount of snowmelt energy is not required for snowmelt in the winter season, install the groundwater reduction strainer of the parent well as low as possible.
The highest underground hot water in the parent well performs heat exchange with the heat exchange liquid inside the underground heat exchange device body,
The heat exchange liquid having a certain temperature capable of melting snow can be stored, and the purpose can be achieved.

大量の融雪により多量の融雪エネルギーが必要の場合
は、地下水を適当量ずつ連続注水することによって多量
の融雪をすることになるので、子井戸を設け、これに設
置した水中ポンプによって地下温水を配管を通じて、地
中熱交換装置本体を暖めるため、親井戸に注水し熱交換
液を、融雪可能温度まで高めかつ必要容量を貯留させ
る。
If a large amount of snowmelt energy is required due to a large amount of snowmelt, a large amount of snowmelt will be melted by continuously pouring groundwater in appropriate amounts. In order to warm the body of the underground heat exchange device, the water is poured into the parent well to raise the heat exchange liquid to the temperature at which snow can be melted and to store the required capacity.

使用済の地下水は親井戸の地下水還元ストレーナより地
中に還元する。
Spent groundwater is returned to the ground through the groundwater reduction strainer in the parent well.

夏期は路面融雪用の配管3によって舗装面より太陽熱を
吸収循環する熱交換液の温度が高くなっても、地下水に
よる冷却で問題なく舗装面の流動現象を抑えることがで
きる。使用済の地下水は親井戸の地下水還元ストレーナ
より地中に還元する。
In the summer, even if the temperature of the heat exchange liquid that absorbs and circulates the solar heat from the pavement surface is increased by the road surface snow-melting pipe 3, the flow phenomenon of the pavement surface can be suppressed without problem by cooling with groundwater. Spent groundwater is returned to the ground through the groundwater reduction strainer in the parent well.

c.作用 上記親井戸内に、人為的に加熱水または冷却水の働きを
する地下水を、子井戸より適量ずつ供給する事により、
冬季間は路面融雪によって冷却された不凍液を、上記地
中熱交換装置本体によって融雪可能温度まで高める。
c. Action Ground water that artificially functions as heating water or cooling water is supplied from the child well to the parent well by an appropriate amount,
During the winter season, the antifreeze liquid cooled by the snow melting on the road surface is raised to a snow melting temperature by the underground heat exchange device body.

以上の働きによって、温度の下がった地下水(排水)を
親井戸の地下還元ストレーナより地中に還元する。
With the above functions, the groundwater (drainage) whose temperature has dropped is returned to the ground from the underground return strainer of the parent well.

また、夏は流動舗装面より熱を吸収して正常舗装面を維
持するため、上記地中熱交換装置本体で冷却した冷却液
によって、暖められた子井戸の地中水を親井戸の地下水
還元ストレーナより地中に還元する。
In the summer, heat is absorbed from the fluidized pavement surface to maintain a normal pavement surface.Therefore, the ground water of the sub-well that has been warmed is returned to the ground water of the parent well by the cooling liquid cooled by the underground heat exchange device body. Return to the ground from the strainer.

C.考案の効果 a.親井戸2に地中熱交換装置本体を内蔵しているか
ら、 イ.地中熱交換装置本体に何か不慮の事故があった場
合、これを引き上げ原因を検討できる再配置できる。
C. Effect of the invention a. Since the main well 2 has a built-in underground heat exchanger, If there is any accident in the body of the underground heat exchanger, it can be rearranged so that it can be pulled up and the cause of the accident can be examined.

ロ.親井戸の還元井としての能力が低下した場合、地中
熱交換装置本体を引き上げ当該親井戸を掃除することに
よって効率のよい還元井として再生できる。
B. When the capacity of the parent well as the reduction well is lowered, the underground well can be regenerated as an efficient reduction well by pulling up the body of the geothermal heat exchanger and cleaning the parent well.

このように、井戸部分、地中熱交換装置本体部分の能力
を個々に発揮できる。
In this way, the capabilities of the well portion and the underground heat exchange device main body portion can be exhibited individually.

b.地中熱交換装置本地の暖冷のため、子井戸の地下水
を親井戸に注入し、使用済の排水、地下水を親井戸の地
下水還元ストレーナ地中に還元する。この結果、 イ.子井戸より親井戸に注入する地下水を還元できるの
で、下水設備が不要である。
b. Underground heat exchange device To warm and cool the main ground, inject groundwater from the sub-well into the parent well, and return used wastewater and groundwater to the groundwater reduction strainer ground in the parent well. As a result, a. Since the groundwater injected into the parent well can be returned from the child well, no sewage system is required.

ロ.子井戸より汲み揚げた地下水を親井戸より地中に還
元するので、地下水枯渇による地盤沈下の心配がない。
B. Since the groundwater pumped from the child well is returned to the ground from the parent well, there is no concern about ground subsidence due to groundwater depletion.

ハ、親井戸と子井戸の間に汚染の原因が介在しないか
ら、地下水を汚染させることがない。
C. Because there is no cause of pollution between the parent and child wells, it does not pollute the groundwater.

ニ.親井戸と子井戸とも、地下水を空気に触れさせない
で還元できるので、地下水の酸化作用を止めることがで
き、自然のままの環境を維持できる。
D. Both the parent and child wells can reduce the groundwater without exposing it to the air, so the oxidation of the groundwater can be stopped and the natural environment can be maintained.

ホ.多管貯留複合式地中熱交換装置本体8にあっては、
地中熱交換装置本体の主要部分に、細いパイプなどによ
り熱交換液を循環させる構造に出来るので、口径の細い
親井戸にすることができる。
E. In the multi-tube storage composite type underground heat exchanger main body 8,
Since a structure in which the heat exchange liquid is circulated through a main part of the underground heat exchange device main body with a thin pipe or the like, a parent well with a small diameter can be obtained.

なお、上記不凍液にかえて、フロンガス、アルコールな
どを使用する所謂ヒートパイプ作用を行なう構造のもの
にすることもできる。この場合、水中ポンプは不要とな
るが、気化したものを送るための気圧ポンプを要するこ
とになるなど適当な設計変更をすることになるのは当然
である。
Instead of the antifreeze liquid, a structure that performs a so-called heat pipe action using CFC gas, alcohol, or the like may be used. In this case, the submersible pump is not necessary, but it is natural to make appropriate design changes such as the need for an atmospheric pressure pump for sending vaporized substances.

【図面の簡単な説明】[Brief description of drawings]

第1図は一部を切り欠いた全体の斜視図、 第2図は縦断面図、 第3図、第4図は他の実施例の縦断面図である。 1…地中熱交換装置 2…親井戸 3…路面融雪用の配管 4…多管式地中熱交換装置本体 6…子井戸 7…二重管貯留式地中熱交換装置本体 8…多管貯留複合式地中熱交換装置本体。 FIG. 1 is a perspective view of the whole with a part cut away, FIG. 2 is a longitudinal sectional view, and FIGS. 3 and 4 are longitudinal sectional views of another embodiment. DESCRIPTION OF SYMBOLS 1 ... Underground heat exchange device 2 ... Parent well 3 ... Road snow melting piping 4 ... Multi-tube underground heat exchange device body 6 ... Child well 7 ... Double pipe storage-type underground heat exchange device body 8 ... Multi pipe Storage composite type underground heat exchanger main unit.

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】地中熱供給地下還元井側壁2Aの下方位置
に適数個の地下水還元ストレーナ2A1が設けられてい
る親井戸2内に多管式地下水熱交換パイプ4Aを蛇行状
に配設してなる多管式地中熱交換装置本体を設け、この
多管式地中熱交換装置本体と路面融雪用の配管とを不凍
液が循環するよう構成し、上記親井戸2内には、当該親
井戸2の近傍に掘られた子井戸6から地下水を供給する
よう構成したことを特徴とする地中熱交換装置。
1. A multi-tube groundwater heat exchange pipe 4A is arranged in a meandering manner in a parent well 2 in which an appropriate number of groundwater reduction strainers 2A1 are provided below a side wall 2A of an underground heat supply underground reduction well. The main body of the multitubular underground heat exchange device is provided, and the antifreeze liquid is circulated through the main body of the multitubular underground heat exchange device and the pipe for snow melting on the road surface. An underground heat exchange device characterized in that ground water is supplied from a child well 6 dug in the vicinity of the parent well 2.
【請求項2】上記多管式地中熱交換装置本体は、外方の
地下水熱交換ケーシング7Aと、当該地下水熱交換ケー
シング7A内に引き込まれた二重管熱交換促進ケーシン
グ7Bとからなり、この二重管熱交換促進ケーシング7
Bの下端の融雪不凍液取入口7B1は開口されていると
共に、当該二重管熱交換促進ケーシング7B内には熱交
換不凍液圧送配管7Cが引き込まれ、その下端には不凍
液圧送水中ポンプ7Dが連結され、上記熱交換不凍液圧
送配管7Cは上記路面融雪用の配管における入口用配管
3Bに連結され、出口用配管3Cに連結された戻り管7
Eは外方の地下水熱交換ケーシング7A内に引き込ま
れ、不凍液圧送水中ポンプ7Dの稼働で不凍液を循環融
雪し、親井戸2内には当該親井戸2の近傍に掘られた子
井戸6から地下水を供給するように構成した実用新案登
録請求の範囲第1項記載の地中熱交換装置。
2. The main body of the multitubular underground heat exchange device comprises an outer groundwater heat exchange casing 7A and a double pipe heat exchange promotion casing 7B drawn into the groundwater heat exchange casing 7A. This double tube heat exchange promoting casing 7
The snow-melting antifreeze inlet 7B1 at the lower end of B is opened, the heat exchange antifreeze pumping pipe 7C is drawn into the double pipe heat exchange promoting casing 7B, and the antifreeze pumping submersible pump 7D is connected to the lower end thereof. The heat exchange antifreeze pumping pipe 7C is connected to the inlet pipe 3B of the road snow melting pipe, and the return pipe 7 is connected to the outlet pipe 3C.
E is drawn into the outer groundwater heat exchange casing 7A, and the antifreeze liquid pumping water pump 7D is operated to circulate and melt the antifreeze liquid. In the parent well 2, groundwater is extracted from the child well 6 dug in the vicinity of the parent well 2. The underground heat exchange device according to claim 1, wherein the underground heat exchange device is configured to supply heat.
【請求項3】上記多管式地中熱交換装置本体は、上記親
井戸2内を蛇行せしめた多管式地下水熱交換パイプ8A
の一端の多管式地下水熱交換パイプ入口8A1を外方の
地下水熱交換ケーシング8B内に連通せしめ、他端の多
管式地下水熱交換パイプ出口8A2を二重管熱交換不凍
液貯留槽8C内に連通させたものとなっていると共に、
上記地下水熱交換ケーシング8B内に引き込まれた熱交
換不凍液配管8Dの下端は不凍液圧送水中ポンプ8Eが
連結され、上端は上記路面融雪用の配管における入口用
配管3Bに連結され、出口用配管3Cに連結された戻り
管8Fは外方の地下水熱交換ケーシング8B内に入り、
さらに多管式地下水熱交換パイプ入口8A1より多管式
地下水熱交換パイプ8A内に引き込まれている実用新案
登録請求の範囲第1項記載の地中熱交換装置。
3. The main body of the multitubular underground heat exchanger is a multitubular groundwater heat exchange pipe 8A in which the main well 2 is meandered.
The multi-tube groundwater heat exchange pipe inlet 8A1 at one end of is connected to the outer groundwater heat exchange casing 8B, and the multitubular groundwater heat exchange pipe outlet 8A2 at the other end is placed in the double-tube heat exchange antifreeze storage tank 8C. In addition to being communicated,
The lower end of the heat exchange antifreeze pipe 8D drawn into the groundwater heat exchange casing 8B is connected to the antifreeze liquid pressure submersible pump 8E, the upper end is connected to the inlet pipe 3B in the road snow melting pipe, and the outlet pipe 3C. The connected return pipe 8F enters the outer groundwater heat exchange casing 8B,
Further, the underground heat exchange device according to claim 1, wherein the utility model registration is drawn into the multitubular groundwater heat exchange pipe 8A from the multitubular groundwater heat exchange pipe inlet 8A1.
JP1987030895U 1987-03-02 1987-03-02 Underground heat exchanger Expired - Lifetime JPH061606Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987030895U JPH061606Y2 (en) 1987-03-02 1987-03-02 Underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987030895U JPH061606Y2 (en) 1987-03-02 1987-03-02 Underground heat exchanger

Publications (2)

Publication Number Publication Date
JPS63141205U JPS63141205U (en) 1988-09-16
JPH061606Y2 true JPH061606Y2 (en) 1994-01-12

Family

ID=30836124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987030895U Expired - Lifetime JPH061606Y2 (en) 1987-03-02 1987-03-02 Underground heat exchanger

Country Status (1)

Country Link
JP (1) JPH061606Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639762B2 (en) * 1989-03-02 1994-05-25 日本地下水開発株式会社 Facility for snow-melting without heat exchange in wells
JP6262688B2 (en) * 2015-05-11 2018-01-17 株式会社 日東 Heat exchange system
JP2019148385A (en) * 2018-02-28 2019-09-05 株式会社長谷工コーポレーション Underground heat exchanger, and method of using underground heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101608A (en) * 1979-01-30 1980-08-02 Seiken Co Device for preventing fall of snow and ice in cold area
JPS6038487A (en) * 1983-08-11 1985-02-28 Nisshinbo Ind Inc Friction material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55101608A (en) * 1979-01-30 1980-08-02 Seiken Co Device for preventing fall of snow and ice in cold area
JPS6038487A (en) * 1983-08-11 1985-02-28 Nisshinbo Ind Inc Friction material

Also Published As

Publication number Publication date
JPS63141205U (en) 1988-09-16

Similar Documents

Publication Publication Date Title
AU2003257096B2 (en) Sealed well direct expansion heating and cooling system
US4174752A (en) Secondary recovery method and system for oil wells using solar energy
US7234314B1 (en) Geothermal heating and cooling system with solar heating
JP3927593B1 (en) Double pipe type geothermal water circulation device
US20080128108A1 (en) Convective earrh coil
JPH0247404A (en) Well interior heat-exchanging non-water-sprinkling snow-removing method and apparatus
JP2005207718A (en) Snow melting device utilizing soil heat
CN209893671U (en) High-efficient geothermal utilization system based on closed loop heat medium pipe
US4452227A (en) Active thermal storage using the ground underlying a solar pond
JPH061606Y2 (en) Underground heat exchanger
KR102000481B1 (en) Greenhouse cooling and heating system
JPH07190503A (en) Method and apparatus for collecting terrestrial heat
JP2003307353A (en) Antifreeze circulation-type device for utilizing underground heat
JP2007255803A (en) Waste heat storing and utilizing method
WO2007061017A1 (en) Temperature control system
JP2004225936A (en) Cooling system utilizing groundwater heat
JP2001107307A (en) Snow melting antifreezer
JP2849699B2 (en) Solar thermal storage snow melting device
JP6303361B2 (en) Thermal well and snow melting method
JPS6320913Y2 (en)
JPH01247601A (en) Water unsprinkling type snow melting method utilizing geothermal effect in the depth of ground
JPH09159227A (en) Method for storing warm and chilled waters in underground aquifer and alternately using in winter and summer
JP2019219159A (en) Waste hot water heat regenerator and waste hot water heat regeneration system using the same
JPH0645443Y2 (en) Snow melting equipment
JPH0565645B2 (en)