JPH06158507A - Perforated interlaced ultra-fine fiber nonwoven fabric and its production - Google Patents

Perforated interlaced ultra-fine fiber nonwoven fabric and its production

Info

Publication number
JPH06158507A
JPH06158507A JP4333613A JP33361392A JPH06158507A JP H06158507 A JPH06158507 A JP H06158507A JP 4333613 A JP4333613 A JP 4333613A JP 33361392 A JP33361392 A JP 33361392A JP H06158507 A JPH06158507 A JP H06158507A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
web
fibers
pressure
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4333613A
Other languages
Japanese (ja)
Inventor
敏 ▲かせ▼谷
Satoshi Kaseya
Nobuo Noguchi
信夫 野口
Yasuhiro Yonezawa
安広 米沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP4333613A priority Critical patent/JPH06158507A/en
Publication of JPH06158507A publication Critical patent/JPH06158507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain nonwoven fabric, excellent in mechanical characteristics, dimensional stability and flexibility and suitable for uses as various sanitary materials, industrial materials and clothes. CONSTITUTION:This perforated interlaced ultra-fine fiber nonwoven fabric is constructed of ultra-fine fiber having 0.1-10mum average fiber diameter and has sites where the constituent fibers are mutually and three-dimensionally interlaced and sites having openings in a mixed state. This nonwoven fabric has characteristics of 20-50% average opening ratio and <=0.3g/g/m<2> compression rigidity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械的特性、寸法安定
性及び柔軟性に優れた交絡を有する開孔極細繊維不織布
及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perforated ultrafine fiber nonwoven fabric having entanglement excellent in mechanical properties, dimensional stability and flexibility, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、口金よりポリマーを吐出すると同
時に高温高速ガスで牽引細化し、極細繊維を得る、いわ
ゆるメルトブローン法はよく知られている。例えば、イ
ンダストリアル アンド エンジニアリング ケミスト
リーの48巻、第8号(P1342〜1346、1956年発行)に
は、メルトブローン法の基本的な方法及び装置が開示さ
れており、極めて細い繊維が得られることから、現在、
各種素材で展開がなされている。
2. Description of the Related Art Conventionally, a so-called melt blown method has been well known in which a polymer is discharged from a die and simultaneously pulled and thinned by a high temperature and high speed gas to obtain ultrafine fibers. For example, Industrial and Engineering Chemistry, Vol. 48, No. 8 (P1342-1346, published in 1956) discloses a basic method and apparatus of the melt blown method, and it is currently possible to obtain extremely fine fibers. ,
It is developed with various materials.

【0003】また、繊維形成性樹脂を溶融紡糸し、メル
トブローン法を適用して極細繊維不織布を得た後、熱エ
ンボスローラを用いてこの不織布を部分的に熱圧着さ
せ、機械的特性及び寸法安定性を向上させる方法も広く
採用されている。しかしながら、この方法により得られ
る極細繊維不織布は、機械的特性は向上するものの部分
的に熱圧着しているために柔軟性が損われるという欠点
があった。
Further, a fiber-forming resin is melt-spun and a melt blown method is applied to obtain an ultrafine fiber non-woven fabric, and the non-woven fabric is partially thermocompressed by using a hot embossing roller to obtain mechanical properties and dimensional stability. The method of improving the sex is also widely adopted. However, although the ultrafine fiber nonwoven fabric obtained by this method has improved mechanical properties, it has a drawback that flexibility is impaired due to partial thermocompression bonding.

【0004】また、特公昭58-43502号公報や特公平4-3
3905号公報には、多数の型孔を有する支持板を用いて、
この支持板上にウエブを堆積し、ウエブの上方より水流
を当てて開孔を持つ不織布を製造する方法が開示されて
いる。しかしながら、この不織布を製造するために用い
るウエブの製造方法は、短繊維を水中に懸濁し、抄造す
る方法やステープルファイバーをカードによりウエブ化
する方法等であり、また、短繊維の繊度も実施例から明
らかなように、せいぜい1.5 dや2d程度である。した
がって、本発明の目的とするような極細繊維で構成され
た不織布でないため、柔軟性に劣るものであった。
Also, Japanese Patent Publication No. 58-43502 and Japanese Patent Publication No. 4-3
In 3905, using a support plate having a large number of mold holes,
A method is disclosed in which a web is deposited on the support plate and a water flow is applied from above the web to produce a nonwoven fabric having openings. However, the method for producing a web used to produce this nonwoven fabric is a method in which short fibers are suspended in water, a method for papermaking, a method for webbing staple fibers with a card, etc. As is clear from the figure, it is at most 1.5 d or 2 d. Therefore, since it is not a nonwoven fabric composed of ultrafine fibers as the object of the present invention, it is inferior in flexibility.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述した問
題点を解決し、引張強力や引張伸度等の機械的特性、寸
法安定性及び柔軟性に優れ、各種の衛生材料、産業資材
用途のみならず衣料用にも好適に使用できる開孔極細繊
維不織布及びその製造方法を提供することを技術的な課
題とするものである。
The present invention solves the above-mentioned problems and is excellent in mechanical properties such as tensile strength and tensile elongation, dimensional stability and flexibility, and is used for various sanitary materials and industrial materials. It is a technical object to provide an apertured ultrafine fiber nonwoven fabric which can be suitably used not only for clothing, but also to provide a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記の課題
を解決すべく鋭意検討の結果、本発明に到達した。すな
わち、本発明は次の構成を有するものである。 (1) 平均繊維径が0.1 〜10μmの極細繊維で構成された
不織布であって、構成繊維同士が三次元的に交絡してし
ている部位と開孔部を有している部位とが混在し、平均
開孔率が20〜50%であり、かつ圧縮剛軟度が0.3 g/g
/m2 以下であることを特徴とする開孔交絡極細繊維不
織布。 (2) 繊維形成性樹脂を溶融紡糸し、紡糸温度より20〜50
℃高い温度で、かつ圧力1.0 〜2.5 Kg/cm2 の高速
ガスで牽引細化して移動するネット上にウエブとして堆
積させ、次いで、前記ウエブを10〜50メッシュの金網上
に移行させ、高圧液体流を作用させることにより、構成
繊維同士を三次元的に交絡させるとともに開孔を生じさ
せることを特徴とする開孔交絡極細繊維不織布の製造方
法。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the present invention has the following configurations. (1) A non-woven fabric composed of ultrafine fibers with an average fiber diameter of 0.1 to 10 μm, where the constituent fibers are three-dimensionally entangled with each other and the parts having openings are mixed. The average porosity is 20 to 50%, and the compression stiffness is 0.3 g / g.
/ M 2 or less, an open pore entangled ultrafine fiber nonwoven fabric. (2) The fiber-forming resin is melt-spun and the spinning temperature is 20 to 50
℃ at a high temperature and with a high-speed gas with a pressure of 1.0 to 2.5 Kg / cm 2 , tow and deposit it as a web on a moving net, and then transfer the web onto a wire mesh of 10 to 50 mesh to obtain a high pressure liquid. A method for producing an open-hole entangled ultrafine fiber nonwoven fabric, characterized in that the constituent fibers are three-dimensionally entangled with each other and a hole is generated by applying a flow.

【0007】以下、本発明について詳細に説明する。ま
ず、本発明では不織布に十分な柔軟性を付与するため
に、不織布を構成する繊維を極細繊維とし、極細繊維の
平均繊維径を0.1 〜10μmとする必要がある。平均繊維
径が0.1 μmより小さい極細繊維は製糸性が悪く、逆に
10μmを超えると、柔軟性に富む不織布を得ることが困
難となるので好ましくない。
The present invention will be described in detail below. First, in the present invention, in order to impart sufficient flexibility to the non-woven fabric, it is necessary that the fibers constituting the non-woven fabric are ultrafine fibers and the average fiber diameter of the ultrafine fibers is 0.1 to 10 μm. Ultrafine fibers with an average fiber diameter of less than 0.1 μm have poor spinnability.
When it exceeds 10 μm, it is difficult to obtain a nonwoven fabric having a high flexibility, which is not preferable.

【0008】また、本発明の不織布には構成繊維同士が
三次元的に交絡した部位と、開孔部とが混在している必
要がある。構成繊維同士が三次元的に交絡していること
によって、熱圧着部位が存在しなくても機械的特性、寸
法安定性を向上させることができる。また、開孔してい
ることによって柔軟性及び通気性に富む不織布となる。
Further, in the nonwoven fabric of the present invention, it is necessary that the part where the constituent fibers are three-dimensionally entangled and the open part are mixed. Since the constituent fibers are three-dimensionally entangled, mechanical properties and dimensional stability can be improved even if there is no thermocompression bonding site. In addition, the perforation provides a nonwoven fabric that is highly flexible and breathable.

【0009】本発明の開孔交絡極細繊維不織布の平均開
孔率は20〜50%であることが好ましい。平均開孔率が20
%より低いと開孔部が不十分であり、柔軟性及び通気性
に劣るため好ましくなく、逆に50%を超えると開孔部の
面積が大きすぎて地合いが悪く、また、不織布の機械的
特性が低下し、実用性に欠けるため好ましくない。
The open pore entangled ultrafine fiber nonwoven fabric of the present invention preferably has an average open area ratio of 20 to 50%. Average porosity is 20
If it is lower than 50%, the open area is insufficient and the flexibility and breathability are poor, which is not preferable. On the contrary, if it exceeds 50%, the area of the open area is too large and the texture is poor. It is not preferable because the characteristics are deteriorated and the practicality is lacking.

【0010】さらに、本発明の不織布に十分な柔軟性を
付与するために、圧縮剛軟度を0.3g/g/m2 以下と
することが必要である。圧縮剛軟度が0.3 g/g/m2
を超えると不織布が硬くなるので好ましくない。
Further, in order to impart sufficient flexibility to the nonwoven fabric of the present invention, it is necessary to set the compression stiffness to 0.3 g / g / m 2 or less. Compression stiffness is 0.3 g / g / m 2
If it exceeds, the nonwoven fabric becomes hard, which is not preferable.

【0011】本発明の不織布を形成する繊維形成性樹脂
としては、ポリオレフィン系重合体、ポリアミド系重合
体及びポリエステル系重合体等の熱可塑性樹脂を用いる
ことができる。
As the fiber-forming resin forming the nonwoven fabric of the present invention, thermoplastic resins such as polyolefin-based polymers, polyamide-based polymers and polyester-based polymers can be used.

【0012】本発明に適用できる繊維形成性ポリオレフ
イン系重合体としては、炭素原子の数が2〜18の脂肪族
α- モノオレフイン、例えばエチレン、プロピレン、1-
ブテン、1-ペンテン、3-メチル-1- ブテン、1-ヘキセ
ン、1-オクテン、1-ドデセン、1-オクタデセンのホモポ
リマー又は共重合ポリマーがある。脂肪族α- モノオレ
フインは他のオレフイン及び/又は少量(重合体重量の
約10重量%まで)の他のエチレン系不飽和モノマー、例
えばブタジエン、イソプレン、1,3-ペンタジエン、スチ
レン、α- メチルスチレンのような類似のエチレン系不
飽和モノマーと共重合されていてもよい。特にポリエチ
レンの場合、重合体重量の約10%までのプロピレン、1-
ブテン、1-ヘキセン、1-オクテン又は類似の高級α- オ
レフインと共重合させたものが好ましい。
The fiber-forming polyolefin polymer applicable to the present invention includes aliphatic α-monoolefins having 2 to 18 carbon atoms, such as ethylene, propylene, 1-
There are homopolymers or copolymers of butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 1-octene, 1-dodecene, 1-octadecene. Aliphatic α-monoolefins are other olefins and / or small amounts (up to about 10% by weight of the polymer) of other ethylenically unsaturated monomers such as butadiene, isoprene, 1,3-pentadiene, styrene, α-methyl. It may be copolymerized with a similar ethylenically unsaturated monomer such as styrene. Especially in the case of polyethylene, up to about 10% by weight of polymer propylene, 1-
Copolymers with butene, 1-hexene, 1-octene or similar higher α-olefins are preferred.

【0013】本発明に適用できる繊維形成性ポリアミド
系重合体としては、ナイロン4、ナイロン46、ナイロン
6、ナイロン66、ナイロン610 、ナイロン11、ナイロン
12やポリメタキシリレンアジパミド(MXD6)、ポリ
パラキシリレンデカナミド(PXD12)、ポリビスシク
ロヘキシルメタンデカナミド(PCM12)又はこれらの
モノマーを構成単位とする共重合ポリマーがある。
Fiber forming polyamide polymers applicable to the present invention include nylon 4, nylon 46, nylon 6, nylon 66, nylon 610, nylon 11 and nylon.
12 and polymeta-xylylene adipamide (MXD6), poly-para-xylylene decanamide (PXD12), polybiscyclohexylmethane decanamide (PCM12) or copolymers having these monomers as constituent units.

【0014】本発明に適用できる繊維形成性ポリエステ
ル系重合体としては、酸成分としてテレフタル酸、イソ
フタル酸、フタル酸、ナフタリン-2,6- ジカルボン酸等
の芳香族ジカルボン酸、もしくはアジピン酸、セバシン
酸などの脂肪族ジカルボン酸又はこれらのエステル類
と、アルコール成分としてエチレングリコール、ジエチ
レングリコール、1,4-ブタンジオール、ネオペンチルグ
リコール、シクロヘキサン-1,4- ジメタノール等のジオ
ール化合物とから合成されるホモポリマーもしくは共重
合ポリマーであり、上記ポリエステルにパラオキシ安息
香酸、5-ナトリウムスルフオイソフタル酸、ポリアルキ
レングリコール、ペンタエリスリトール、ビスフエノー
ルA等が共重合されていてもよい。
Examples of the fiber-forming polyester polymer applicable to the present invention include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid and naphthalene-2,6-dicarboxylic acid as acid components, or adipic acid and sebacine. Synthesized from aliphatic dicarboxylic acids such as acids or esters thereof and diol compounds such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, cyclohexane-1,4-dimethanol as alcohol components It is a homopolymer or a copolymer, and paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, bisphenol A, etc. may be copolymerized with the above polyester.

【0015】なお、本発明では、上記の熱可塑性樹脂を
それぞれ紡糸性を損なわない範囲で混合して用いてもよ
い。例えば2種の異なるポリアミド系重合体を混合して
もよいし、ポリエステル系重合体とポリオレフィン系重
合体を混合して使用してもよい。特に後者の場合、未配
向、低結晶化のポリエステルの収縮を押さえるのに有効
である。さらに上記の熱可塑性重合体には、本発明の効
果を阻害しない範囲で艶消し剤、顔料、防炎剤、消臭
剤、帯電防止剤、酸化防止剤、紫外線吸収剤等の任意の
添加剤が添加されていてもよい。
In the present invention, the above thermoplastic resins may be mixed and used within a range that does not impair the spinnability. For example, two different polyamide polymers may be mixed, or a polyester polymer and a polyolefin polymer may be mixed and used. Especially in the latter case, it is effective in suppressing the shrinkage of unoriented and low-crystallized polyester. Further, the above-mentioned thermoplastic polymer is an optional additive such as a matting agent, a pigment, a flameproofing agent, a deodorant, an antistatic agent, an antioxidant, and an ultraviolet absorber within a range that does not impair the effects of the present invention. May be added.

【0016】次に、開孔交絡極細繊維不織布の製造方法
を説明する。まず、上記した繊維形成性樹脂を溶融紡糸
し、高温で高速のガスを吹き付け、牽引細化させて極細
繊維とし、この極細繊維を移動するネット上に堆積させ
るメルトブローン法でウエブを作成する。次いでこのウ
エブを金網上に移行させ、高圧液体流を噴射させること
によって、ウエブを構成する繊維同士を三次元的に交絡
させるとともに、開孔を生じさせる。得られた不織布の
過剰の水分を機械的な絞りで除去し、さらに乾燥、熱処
理して最終製品とする。
Next, a method for manufacturing the open-entangled ultrafine fiber nonwoven fabric will be described. First, the above-mentioned fiber-forming resin is melt-spun, blown with a high-speed gas at a high temperature, pulled and thinned to form ultrafine fibers, and a web is prepared by a meltblown method in which the ultrafine fibers are deposited on a moving net. Next, this web is transferred onto a wire mesh and a high-pressure liquid flow is jetted to three-dimensionally entangle the fibers constituting the web and to form openings. Excess water in the obtained non-woven fabric is removed by mechanical squeezing, followed by drying and heat treatment to obtain a final product.

【0017】本発明では、繊維形成性樹脂を溶融紡糸
し、ウエブを形成する際に紡糸温度より20〜50℃高い温
度で、かつ圧力1.0 〜2.5 Kg/cm2 の高速ガスで牽
引細化させる必要がある。ガスの温度や圧力が本発明の
範囲より低いと、繊維形成性樹脂が高結晶性重合体の場
合、十分な細化がなされず、極細繊維を得ることができ
ない。逆にガスの温度や圧力が本発明の範囲より高い
と、得られる不織布の機械的特性が低下したり、吐出糸
条がガスにより吹き飛ばされて繊維長が短くなり、得ら
れる不織布の機械的特性が低下し、実用性に欠けるため
好ましくない。
In the present invention, the fiber-forming resin is melt-spun and drawn by a high-speed gas at a temperature of 20 to 50 ° C. higher than the spinning temperature and a pressure of 1.0 to 2.5 Kg / cm 2 to form a web. There is a need. When the gas temperature or pressure is lower than the range of the present invention, when the fiber-forming resin is a highly crystalline polymer, it is not sufficiently thinned, and ultrafine fibers cannot be obtained. On the contrary, when the temperature or pressure of the gas is higher than the range of the present invention, the mechanical properties of the obtained nonwoven fabric are deteriorated, or the discharged yarn is blown off by the gas to shorten the fiber length, and the mechanical properties of the obtained nonwoven fabric are reduced. Is deteriorated and it is not practical, which is not preferable.

【0018】上述したように、繊維形成性樹脂を溶融紡
糸し、高温高速ガスで牽引細化して得られる極細繊維を
下方の移動するネット上に堆積させてウエブを形成する
が、その際に、口金とネット間の距離を短くすると、口
金より吐出される糸条の自由度が低くなり、交絡の度合
を小さくすることができ、逆に口金とネット間の距離を
長くすると、口金より吐出された糸条の自由度が高くな
り交絡の度合を大きくすることができる。
As described above, the fiber-forming resin is melt-spun and the ultrafine fibers obtained by pulling and thinning with a high-temperature high-speed gas are deposited on the moving net below to form a web. When the distance between the mouthpiece and the net is reduced, the degree of freedom of the yarn discharged from the mouthpiece is reduced, and the degree of entanglement can be reduced. Conversely, when the distance between the mouthpiece and the net is increased, the yarn is discharged from the mouthpiece. The degree of freedom of the yarn is increased, and the degree of entanglement can be increased.

【0019】本発明ではメルトブローン法で得られたウ
エブを金網上に移行させ、高圧液体流をウエブに噴射し
て三次元的な交絡及び開孔を形成させる。交絡の度合
は、ウエブを形成する際の口金とネット間の距離と、高
圧液体流を付与する条件によって容易に調整することが
できる。
In the present invention, the web obtained by the melt blown method is transferred onto a wire net and a high-pressure liquid stream is jetted onto the web to form three-dimensional entanglement and openings. The degree of entanglement can be easily adjusted by the distance between the die and the net when forming the web, and the conditions for applying the high-pressure liquid flow.

【0020】メルトブローン法で得られたウエブを移行
させて高圧液体流を作用させる際に用いる金網は、10〜
50メッシュとする必要があり、好ましくは15〜45メッシ
ュ、さらに好ましくは20〜40メッシュがよい。10メッシ
ュ未満の金網を用いる場合は、開孔部の面積が大きすぎ
て地合いの悪い不織布になるとともに、機械的特性も劣
り、使用に耐えるものではない。一方、金網が50メッシ
ュを超えると、得られる不織布の開孔部の面積が小さい
すぎるため、十分な通気性及び柔軟性を付与することが
できない。
The wire mesh used for moving the web obtained by the melt blown method to act the high-pressure liquid flow is 10 to
It should be 50 mesh, preferably 15-45 mesh, more preferably 20-40 mesh. When a wire mesh of less than 10 mesh is used, the area of the openings is too large, resulting in a non-woven fabric having a poor texture and poor mechanical properties, so that it cannot be used. On the other hand, if the wire mesh exceeds 50 mesh, the area of the pores of the obtained nonwoven fabric is too small, and thus sufficient air permeability and flexibility cannot be imparted.

【0021】本発明では、メルトブローン法で得られた
ウエブに高圧液体流を作用させるが、高圧液体流の衝撃
力がウエブ間の部分的に融着した繊維を解くとともに、
構成繊維同士を三次元的に交絡させ、かつ開孔を生じさ
せるので、得られる不織布の圧縮剛軟度が0.3 g/g/
2 以下となり、不織布に十分な柔軟性を付与すること
ができる。
In the present invention, a high-pressure liquid stream is applied to the web obtained by the melt blown method, and the impact force of the high-pressure liquid stream releases the partially fused fibers between the webs.
Since the constituent fibers are three-dimensionally entangled with each other and the openings are formed, the resulting nonwoven fabric has a compression stiffness of 0.3 g / g /
Since it becomes m 2 or less, sufficient flexibility can be imparted to the nonwoven fabric.

【0022】本発明で用いる高圧液体流は、液体を噴射
孔を通して高圧で噴射することにより得ることができ
る。噴射孔としては、一般的に孔径0.05〜1.0 mm、特
に0.1〜0.4 mm程度のものが好ましい。また、噴射圧
力としては5〜150 Kg/ cm2 程度の圧力が好まし
い。また、使用する液体は特に限定されるものではない
が、取扱いの容易な水又は温水が好ましい。
The high-pressure liquid stream used in the present invention can be obtained by injecting liquid at high pressure through the injection holes. The injection holes generally have a hole diameter of 0.05 to 1.0 mm, and preferably 0.1 to 0.4 mm. The injection pressure is preferably about 5 to 150 Kg / cm 2 . The liquid used is not particularly limited, but water or warm water that is easy to handle is preferable.

【0023】高圧液体流をウエブに噴射する際の噴射孔
とウエブとの距離は、1〜15cm程度が好ましい。この
距離が15cmを超えると、液体がウエブに与える衝撃力
が低下し、繊維間の交絡が不足して不織布に柔軟性を付
与することができにくくなる。また、1cm未満になる
と、液体がウエブに与える衝撃力が大きくなり、ウエブ
の地合いが乱れやすくなる。
When the high-pressure liquid stream is jetted onto the web, the distance between the jet holes and the web is preferably about 1 to 15 cm. If this distance exceeds 15 cm, the impact force exerted by the liquid on the web decreases, and the entanglement between fibers becomes insufficient, making it difficult to impart flexibility to the nonwoven fabric. On the other hand, if it is less than 1 cm, the impact force of the liquid exerted on the web increases, and the texture of the web tends to be disturbed.

【0024】本発明では、高圧液体流の噴射孔を複数個
設け、ウエブの進行方向と直角方向に列状に配置するの
が好ましい。均一で緊密な交絡結合を得るためには、ウ
エブの両面から高圧液体流を噴射させることが好ましい
が、片面のみから噴射させる場合、高圧液体流の噴射処
理を二列以上、好ましくは三列以上で行うのがよい。液
体の噴射圧は、前段階で低く、後段階で高くするのが、
不織布の地合いを均一化させるために好ましい。
In the present invention, it is preferable to provide a plurality of injection holes for the high-pressure liquid stream and arrange them in rows in a direction perpendicular to the direction of travel of the web. In order to obtain a uniform and close entangled bond, it is preferable to inject the high-pressure liquid stream from both sides of the web, but when injecting from only one side, the injection treatment of the high-pressure liquid stream is performed in two or more rows, preferably three or more rows. It is good to do it in. The liquid injection pressure is low in the previous stage and high in the latter stage.
It is preferable for making the texture of the non-woven fabric uniform.

【0025】さらに、本発明では、高圧液体流を作用さ
せる時に使用する金網のメッシュ数、もしくは金網の織
り組織を適宜選択することにより、得られる不織布の開
孔部で形成される柄を任意に変更することができる。
Further, according to the present invention, by appropriately selecting the number of meshes of the wire mesh used when the high pressure liquid flow is made to act, or the weave structure of the wire mesh, the pattern formed in the opening portion of the obtained nonwoven fabric can be arbitrarily set. Can be changed.

【0026】高圧液体流で交絡処理を施された不織布は
その後、過剰の水分を機械的な絞りで除去した上、乾
燥、熱処理されて最終製品となるが、熱処理温度及び時
間は、単に水分の除去に留まらず、適度に収縮させるよ
うに選ぶこともでき、また、熱処理方法としては乾熱処
理、湿熱処理のいずれでもよい。なお、本発明では、ウ
エブ形成と高圧液体流による交絡処理を連続工程とする
のが好ましいが、別工程としてもよい。
The non-woven fabric subjected to the entanglement treatment with the high-pressure liquid stream is then subjected to mechanical squeezing to remove excess moisture, and then dried and heat-treated to obtain a final product. It is possible to select not only the removal but also an appropriate shrinkage, and the heat treatment method may be either dry heat treatment or wet heat treatment. In the present invention, the web formation and the entanglement treatment by the high-pressure liquid flow are preferably continuous steps, but they may be separate steps.

【0027】[0027]

【実施例】次に、本発明を実施例によって具体的に説明
する。なお、実施例中の各種特性値は以下の方法で測定
した。 ・融点:パーキンエルマ社製示差走査型熱量計DSC−
2型を用い、昇温速度20℃/分で測定した融解吸熱曲線
の極値を与える温度を融点とした。 ・ポリプロピレンのメルトフローレート値:ASTM−
D1238(L)に記載の方法により測定した。(以降、単
にMFRと記す) ・ポリエチレンテレフタレートの相対粘度:フエノール
と四塩化エタン1/1重量比の混合溶媒を用い、0.5 g
/100 ccのポリマー濃度に調整し、20℃の温度で測定
した。・ナイロン6の相対粘度:96%硫酸100 mlに該
樹脂を1gを溶解し、25℃で常法により測定した。 ・平均繊維径:不織布を形成している繊維について電子
顕微鏡で測定した。 ・不織布の引張強力:東洋ボールドウイン社製テンシロ
ンUTM−4−1−100を用い、JIS−L−1096に記
載のストリップ法に従い、幅5cm、長さ10cmの試料
片を10個準備し、引張速度10cm/分の条件で最大引張
強力を個々に測定し、その平均値を求めた。 ・不織布の引張伸度:上記方法で測定した最大引張強力
時の伸度を求めた。 ・圧縮剛軟度:幅5cm、長さ10cmの試料片を5個準
備し、個々の試料片を横方向に曲げて円筒状とし、その
端部を接合して試料とした後、東洋ボールドウイン社製
テンシロンUTM−4−1−100 を用い、圧縮速度5c
m/分の条件で試料を縦方向に圧縮し、その最大荷重時
の応力を測定し、その平均の値を目付けで除して求め
た。 ・開孔率:1インチ平方の試料片を10個準備し、投影機
にて開孔部20カ所をランダムに選択、面積を算出した平
均値を開孔率として求めた。
EXAMPLES Next, the present invention will be specifically described with reference to examples. The various characteristic values in the examples were measured by the following methods. Melting point: Differential scanning calorimeter DSC-manufactured by Perkin Elma
The melting point was defined as the temperature at which the exothermic value of the melting endotherm curve measured using a type 2 and a temperature rising rate of 20 ° C./min. -Polypropylene melt flow rate value: ASTM-
It was measured by the method described in D1238 (L). (Hereinafter, simply referred to as MFR) -Relative viscosity of polyethylene terephthalate: 0.5 g using a mixed solvent of phenol and ethane tetrachloride in a 1/1 weight ratio.
The polymer concentration was adjusted to / 100 cc and the temperature was measured at 20 ° C. -Relative viscosity of nylon 6: 1 g of the resin was dissolved in 100 ml of 96% sulfuric acid, and the viscosity was measured at 25 ° C by an ordinary method. -Average fiber diameter: The fibers forming the nonwoven fabric were measured with an electron microscope. Tensile strength of non-woven fabric: Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd. was used and 10 sample pieces having a width of 5 cm and a length of 10 cm were prepared and pulled according to the strip method described in JIS-L-1096. The maximum tensile strength was individually measured at a speed of 10 cm / min, and the average value was calculated. -Nonwoven fabric tensile elongation: The elongation at maximum tensile strength measured by the above method was determined.・ Compressive bending resistance: Prepare 5 sample pieces with a width of 5 cm and a length of 10 cm, bend each sample piece laterally into a cylindrical shape, and join the ends to form a sample. Using Tensilon UTM-4-1-100 manufactured by the company, compression speed 5c
The sample was compressed in the longitudinal direction under the condition of m / min, the stress at the maximum load was measured, and the average value was divided by the basis weight to obtain the value. -Aperture ratio: Ten sample pieces of 1 inch square were prepared, 20 aperture parts were randomly selected by a projector, and the average value obtained by calculating the area was determined as the aperture ratio.

【0028】実施例1 融点160 ℃、MFR400 のポリプロピレンを、紡糸温度
280 ℃、単孔吐出量0.2 g/分で溶融紡糸し、温度320
℃、圧力1.4 kg/cm2 の加熱空気で牽引した。得ら
れた糸条を口金より20cm離れた位置で速度6.7 m/分
で移動するネット上に捕集堆積してウエブとし、次い
で、このウエブを20メッシュの金網上に供給し、水付与
装置で水を付与した後、高圧液体流を噴射して開孔交絡
処理を行った。高圧液体流は、孔径0.12mm、孔ピッチ
0.6 mm、噴射孔群3列で、水圧30kg/cm2 で噴射
した高圧水柱状流であり、ウエブの上方8cmの位置か
らウエブ片側に2回処理を施した。さらに、マングルロ
ールで水分を絞り、98℃の乾燥機で乾燥して開孔交絡極
細繊維不織布を得た。
Example 1 Polypropylene having a melting point of 160 ° C. and an MFR of 400 was spun at a spinning temperature.
Melt spinning at 280 ℃, single hole discharge 0.2 g / min, temperature 320
It was pulled by heated air having a pressure of 1.4 kg / cm 2 at ℃. The obtained yarn is collected and deposited on a net moving at a speed of 6.7 m / min at a position 20 cm away from the spinneret to form a web, which is then fed onto a 20-mesh wire net and is then applied by a water applicator. After applying water, a high-pressure liquid stream was jetted to perform an open hole entanglement treatment. High pressure liquid flow has a hole diameter of 0.12 mm and hole pitch
It was a high-pressure water columnar flow that was sprayed at a water pressure of 30 kg / cm 2 with 0.6 mm and 3 rows of injection holes, and was treated twice on one side of the web from a position 8 cm above the web. Further, the water content was squeezed with a mangle roll, and dried with a drier at 98 ° C. to obtain an aperture-entangled ultrafine fiber nonwoven fabric.

【0029】実施例2 実施例1と同一条件下で得たウエブを、40メッシュの金
網上に供給し、水付与装置で水を付与した後、水圧30k
g/cm2 の高圧水柱状流を作用させて、実施例1と同
一条件下で不織布を得た。
Example 2 The web obtained under the same conditions as in Example 1 was fed onto a 40-mesh wire net and water was applied by a water applicator, followed by a water pressure of 30 k.
A high-pressure columnar flow of g / cm 2 was applied to obtain a nonwoven fabric under the same conditions as in Example 1.

【0030】実施例3 速度4m/分で移動するネット上に捕集堆積してウエブ
とした以外は実施例1と同一条件下で得たウエブを、20
メッシュの金網上に供給し、水付与装置で水を付与した
後、水圧30kg/cm2 の高圧水柱状流を作用させて、
実施例1と同一条件下で不織布を得た。
Example 3 A web obtained under the same conditions as in Example 1 except that the web was collected and deposited on a net moving at a speed of 4 m / min to give 20
After supplying it on the wire mesh of the mesh and applying water with the water application device, a high-pressure water columnar flow with a water pressure of 30 kg / cm 2 is applied,
A nonwoven fabric was obtained under the same conditions as in Example 1.

【0031】実施例4 融点214 ℃、相対粘度2.4 のナイロン6を、紡糸温度32
0 ℃、単孔吐出量0.2g/分で溶融紡糸し、温度350
℃、圧力1.6 kg/cm2 の加熱空気で牽引した。得ら
れた糸条を口金より25cm離れた位置で速度6.7 m/分
で移動するネット上に捕集堆積してウエブとし、次い
で、このウエブを20メッシュの金網上に供給し、水付与
装置で水を付与した後、高圧液体流を噴射して開孔交絡
処理を行った。高圧液体流は、孔径0.12mm、孔ピッチ
0.6 mm、噴射孔群3列で、水圧40kg/cm2 で噴射
した高圧水柱状流であり、ウエブの上方8cmの位置か
らウエブ片側に2回処理を施した。さらに、マングルロ
ールで水分を絞り、98℃の乾燥機で乾燥して不織布を得
た。
Example 4 Nylon 6 having a melting point of 214 ° C. and a relative viscosity of 2.4 was prepared at a spinning temperature of 32.
Melt-spin at 0 ℃, single hole discharge 0.2g / min, temperature 350
It was pulled by heated air having a pressure of 1.6 kg / cm 2 at ℃. The obtained yarn is collected and deposited on a net moving at a speed of 6.7 m / min at a position 25 cm away from the spinneret to form a web, which is then fed onto a 20-mesh wire net and is then applied by a water applicator. After applying water, a high-pressure liquid stream was jetted to perform an open hole entanglement treatment. High pressure liquid flow has a hole diameter of 0.12 mm and hole pitch
It was a high-pressure water columnar flow that was sprayed at a water pressure of 40 kg / cm 2 in a row of injection holes of 0.6 mm in three groups, and was treated twice on one side of the web from a position 8 cm above the web. Further, the water was squeezed with a mangle roll and dried with a drier at 98 ° C to obtain a nonwoven fabric.

【0032】実施例5 融点260 ℃、相対粘度1.24のポリエチレンテレフタレー
トと、MFR400 のポリプロピレンとを重量比90/10で
ブレンドしたものを、紡糸温度350 ℃、単孔吐出量0.2
g/分で溶融紡糸し、温度380 ℃、圧力1.2 kg/cm
2 の加熱空気で牽引した。得られた糸条を口金より15c
m離れた位置で速度6.7 m/分で移動するネット上に捕
集堆積してウエブとし、次いで、このウエブを20メッシ
ュの金網上に供給し、水付与装置で水を付与した後、高
圧液体流を噴射して開孔交絡処理を行った。高圧液体流
は、孔径0.12mm、孔ピッチ0.6 mm、噴射孔群3列
で、水圧50kg/cm2 で噴射した高圧水柱状流であ
り、ウエブの上方8cmの位置からウエブ片側に2回処
理を施した。さらに、マングルロールで水分を絞り、98
℃の乾燥機で乾燥して不織布を得た。
Example 5 Polyethylene terephthalate having a melting point of 260 ° C. and a relative viscosity of 1.24 and polypropylene having an MFR of 400 were blended at a weight ratio of 90/10, and the spinning temperature was 350 ° C. and the single hole discharge rate was 0.2.
Melt spinning at g / min, temperature 380 ℃, pressure 1.2 kg / cm
Pulled with 2 heated air. 15c of the obtained thread from the spinneret
A web is collected and deposited on a net moving at a speed of 6.7 m / min at a distance of m, and then this web is supplied onto a 20-mesh wire net and water is applied by a water applicator, and then a high pressure liquid is applied. A flow was jetted to perform an open hole confounding process. The high-pressure liquid flow is a high-pressure water column flow injected with a hole diameter of 0.12 mm, a hole pitch of 0.6 mm, three rows of injection holes, and a water pressure of 50 kg / cm 2 , and is treated twice from the position 8 cm above the web to one side of the web. gave. In addition, squeeze the water with a mangle roll, 98
A non-woven fabric was obtained by drying with a dryer at ℃.

【0033】比較例1 実施例1と同一条件下で得たウエブを、100 メッシュの
金網上に供給し、水付与装置にて水を付与した後、水圧
30kg/cm2 の高圧水柱状流を噴射させて不織布を得
た。
Comparative Example 1 The web obtained under the same conditions as in Example 1 was fed onto a 100-mesh wire net, water was applied by a water applicator, and then the water pressure was applied.
A high-pressure columnar flow of 30 kg / cm 2 was jetted to obtain a nonwoven fabric.

【0034】比較例2 実施例1と同一条件下で得たウエブを、100 メッシュの
金網上に供給し、水付与装置にて水を付与した後、水圧
60kg/cm2 の高圧水柱状流を噴射させて不織布を得
た。
Comparative Example 2 The web obtained under the same conditions as in Example 1 was fed onto a 100-mesh wire net and water was applied by a water applicator, followed by hydrostatic pressure.
A high-pressure water columnar flow of 60 kg / cm 2 was jetted to obtain a nonwoven fabric.

【0035】比較例3 実施例1と同一条件下で得たウエブを、6メッシュの金
網上に供給し、水付与装置にて水を付与した後、水圧30
kg/cm2 の高圧水柱状流を噴射させて不織布を得
た。
Comparative Example 3 The web obtained under the same conditions as in Example 1 was fed onto a 6-mesh wire net, water was applied by a water applicator, and the water pressure was adjusted to 30.
A non-woven fabric was obtained by jetting a high-pressure columnar flow of kg / cm 2 .

【0036】比較例4 融点160 ℃、MFR400 のポリプロピレンを、紡糸温度
280 ℃、単孔吐出量0.2 g/分で溶融紡糸し、温度320
℃、圧力1.4 kg/cm2 の加熱空気で牽引した。得ら
れた糸条を口金より20cm離れた位置で速度6.7 m/分
で移動するネット上に捕集堆積してウエブとし、次い
で、このウエブを圧接面積14.2%、温度110 ℃のエンボ
スローラに供給し、熱圧着させて不織布を得た。上記の
実施例1〜5及び比較例1〜4で得られた不織布の特性
を表1に示した。
Comparative Example 4 Polypropylene having a melting point of 160 ° C. and MFR 400 was spun at a spinning temperature.
Melt spinning at 280 ℃, single hole discharge 0.2 g / min, temperature 320
It was pulled by heated air having a pressure of 1.4 kg / cm 2 at ℃. The obtained yarn is collected and accumulated on a net moving at a speed of 6.7 m / min at a position 20 cm away from the spinneret to form a web, and then this web is supplied to an embossing roller with a pressure contact area of 14.2% and a temperature of 110 ° C. Then, thermocompression bonding was performed to obtain a nonwoven fabric. The characteristics of the nonwoven fabrics obtained in Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1から明らかなように、実施例1〜5で
得られた不織布は、交絡部と開孔部が混在し、機械的特
性、柔軟性ともに優れていた。一方、比較例1、2で得
られた不織布は、機械的特性に優れていたが、開孔して
いない不織布であり、柔軟性に劣るものであった。ま
た、比較例3で得られた不織布は、柔軟性に優れていた
が、開孔部の面積が大きすぎて機械的特性に劣り、実用
性に欠ける不織布であった。比較例4で得られた不織布
は、機械的特性には優れていたが、エンボスローラで熱
圧着させているため開孔していない不織布であり、柔軟
性にも劣るものであった。
As is clear from Table 1, the non-woven fabrics obtained in Examples 1 to 5 had a mixture of interlaced parts and open parts and were excellent in mechanical properties and flexibility. On the other hand, the non-woven fabrics obtained in Comparative Examples 1 and 2 were excellent in mechanical properties, but were non-perforated and poor in flexibility. Further, the nonwoven fabric obtained in Comparative Example 3 was excellent in flexibility, but the area of the opening was too large, resulting in poor mechanical properties and impracticality. The non-woven fabric obtained in Comparative Example 4 was excellent in mechanical properties, but it was a non-perforated non-woven fabric because it was thermocompression bonded by an embossing roller, and was also inferior in flexibility.

【0039】[0039]

【発明の効果】本発明によれば、機械的特性、寸法安定
性及び柔軟性に優れ、各種の衛生材料、産業資材用途及
び衣料用に好適な開孔交絡極細繊維不織布が提供され
る。また、本発明の製造方法によれば、上記の利点を有
する開孔交絡極細繊維不織布を容易に安定して製造する
ことが可能となる。
Industrial Applicability According to the present invention, there is provided an open-entangled ultrafine fiber nonwoven fabric which is excellent in mechanical properties, dimensional stability and flexibility and is suitable for various sanitary materials, industrial materials and clothing. Further, according to the production method of the present invention, it becomes possible to easily and stably produce the open-hole entangled ultrafine fiber nonwoven fabric having the above advantages.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均繊維径が0.1 〜10μmの極細繊維で
構成された不織布であって、構成繊維同士が三次元的に
交絡してしている部位と開孔部を有している部位とが混
在し、平均開孔率が20〜50%であり、かつ圧縮剛軟度が
0.3 g/g/m2 以下であることを特徴とする開孔交絡
極細繊維不織布。
1. A non-woven fabric composed of ultrafine fibers having an average fiber diameter of 0.1 to 10 μm, wherein the constituent fibers are three-dimensionally entangled with each other and the area has an opening. Mixed, the average porosity is 20 to 50%, and the compression stiffness is
An open-cell entangled ultrafine fiber non-woven fabric, which is 0.3 g / g / m 2 or less.
【請求項2】 繊維形成性樹脂を溶融紡糸し、紡糸温度
より20〜50℃高い温度で、かつ圧力1.0 〜2.5 Kg/c
2 の高速ガスで牽引細化して移動するネット上にウエ
ブとして堆積させ、次いで、前記ウエブを10〜50メッシ
ュの金網上に移行させ、高圧液体流を作用させることに
より、構成繊維同士を三次元的に交絡させるとともに開
孔を生じさせることを特徴とする開孔交絡極細繊維不織
布の製造方法。
2. A fiber-forming resin is melt-spun, at a temperature 20 to 50 ° C. higher than the spinning temperature, and at a pressure of 1.0 to 2.5 Kg / c.
A high-speed gas of m 2 was used to draw and deposit the web on a moving net, and then the web was transferred onto a wire mesh of 10 to 50 mesh, and a high-pressure liquid stream was made to act on the fibers to form tertiary fibers. A method for producing an open-entangled ultrafine fiber nonwoven fabric, which is characterized by causing original openings and opening.
JP4333613A 1992-11-18 1992-11-18 Perforated interlaced ultra-fine fiber nonwoven fabric and its production Pending JPH06158507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4333613A JPH06158507A (en) 1992-11-18 1992-11-18 Perforated interlaced ultra-fine fiber nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4333613A JPH06158507A (en) 1992-11-18 1992-11-18 Perforated interlaced ultra-fine fiber nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH06158507A true JPH06158507A (en) 1994-06-07

Family

ID=18268012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4333613A Pending JPH06158507A (en) 1992-11-18 1992-11-18 Perforated interlaced ultra-fine fiber nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH06158507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280267A (en) * 1997-04-08 1998-10-20 Mitsui Chem Inc Flexible spun-bonded nonwoven fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280267A (en) * 1997-04-08 1998-10-20 Mitsui Chem Inc Flexible spun-bonded nonwoven fabric

Similar Documents

Publication Publication Date Title
JPH11217757A (en) Staple fiber nonwoven fabric and its production
WO2015008898A1 (en) Melt-blown fiber web having improved elasticity and cohesion, and manufacturing method therefor
JP2001519856A (en) Fine denier fiber and fabric made from the fiber
JPH03294558A (en) Interlaced non-woven fabric and production thereof
JPH06192954A (en) Extra fine fiber non-woven fabric and its production
JPH10331063A (en) Composite nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JPH06158507A (en) Perforated interlaced ultra-fine fiber nonwoven fabric and its production
JPH06192953A (en) Polyolefin extra fine fiber non-woven fabric and its production
JPH0673654A (en) Polyamide ultrafine fiber non-woven fabric and its production
JP3070632B2 (en) Flexible nonwoven fabric and method for producing the same
JPH10280262A (en) Nonwoven fabric and its production
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
JPH06212550A (en) Ultra-fine polypropylene fiber nonwoven web and its production
JP4453179B2 (en) Split fiber and fiber molded body using the same
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same
JPH09195155A (en) Nonwoven fabric for hook-and-loop fastener and its production
JPH10280258A (en) Nonwoven fabric and its production
JPH11100764A (en) Nonwoven fabric and its production
JP2005126865A (en) High-strength filament nonwoven fabric
JPH10158968A (en) Nonwoven fabric and its production
JPH1121752A (en) Composite nonwoven fabric and its production
JPH1161623A (en) Composite non-woven fabric and its production