JPH06151962A - Nitrogen-iii compound semiconductor luminous element and manufacture thereof - Google Patents

Nitrogen-iii compound semiconductor luminous element and manufacture thereof

Info

Publication number
JPH06151962A
JPH06151962A JP31659692A JP31659692A JPH06151962A JP H06151962 A JPH06151962 A JP H06151962A JP 31659692 A JP31659692 A JP 31659692A JP 31659692 A JP31659692 A JP 31659692A JP H06151962 A JPH06151962 A JP H06151962A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
buffer layer
nitrogen
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31659692A
Other languages
Japanese (ja)
Other versions
JP3184341B2 (en
Inventor
Katsuhide Manabe
勝英 真部
Norikatsu Koide
典克 小出
Masami Yamada
正巳 山田
Hisayoshi Kato
久喜 加藤
Isamu Akasaki
勇 赤崎
Hiroshi Amano
浩 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18078848&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06151962(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP31659692A priority Critical patent/JP3184341B2/en
Publication of JPH06151962A publication Critical patent/JPH06151962A/en
Application granted granted Critical
Publication of JP3184341B2 publication Critical patent/JP3184341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To improve the luminous intensity of blue color and the crystallinity of GaN. CONSTITUTION:The title luminous element consists of a sapphire substrate 1, and a light-emitting section; the light-emitting section consists of a plurality of layers composed of nitrogen-III compound semiconductor (including AlXGaYIn1-X-YN; X=0, Y=0, X=Y=0). The luminous element includes an amorphous (AlXGa1-XN; Xnot equal to 0) buffer layer 2 with a thickness of 100Angstrom -500Angstrom formed at a temperature of 400 deg.C-800 deg.C, and the layers 3, 4 and 5 of the light- emitting section are formed on the buffer layer 2. The presence of the buffer layer 2 improves the crystallinity of GaN formed thereon, resulting in improved the luminous intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青色発光の窒素−3属元
素化合物半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blue light-emitting nitrogen-group III compound semiconductor light-emitting device.

【0002】[0002]

【従来技術】従来、青色の発光ダイオードとしてGaN 系
の化合物半導体を用いたものが知られている。そのGaN
系の化合物半導体は直接遷移であることから発光効率が
高いこと、光の3原色の1つである青色を発光色とする
こと等から注目されている。
2. Description of the Related Art Conventionally, as a blue light emitting diode, one using a GaN compound semiconductor has been known. Its GaN
Attention has been paid to the fact that the compound semiconductors of the type have high emission efficiency because they are direct transitions, and that blue, which is one of the three primary colors of light, is the emission color.

【0003】このようなGaN 系の化合物半導体を用いた
発光ダイオードは、サファイア基板上に窒化アルミニウ
ム又は窒化ガリウムから成るバッファ層を介在させて、
n型のGaN 系の化合物半導体から成るn層を成長させ、
そのn層の上にp型不純物を添加して半絶縁性のi型の
GaN 系の化合物半導体から成るi層又は熱処理又は電子
線照射によりp型のGaN 系の化合物半導体から成るp層
を成長させた構造をとっている(特開昭62-119196 号公
報、特開昭63-188977 号公報、JJAP Vol.30,No.12A,199
9 年12月,pp.L1998-L2008 、JJAP Vol.31,Part2,No.2B,
1992年 2月,pp.L139-L142 ) 。
A light emitting diode using such a GaN compound semiconductor has a buffer layer made of aluminum nitride or gallium nitride on a sapphire substrate,
growing an n-layer made of n-type GaN-based compound semiconductor,
A p-type impurity is added on the n-layer to form a semi-insulating i-type
It has a structure in which an i layer made of a GaN-based compound semiconductor or a p-layer made of a p-type GaN-based compound semiconductor is grown by heat treatment or electron beam irradiation (JP-A-62-119196, JP-A-62-119196). 63-188977, JJAP Vol.30, No.12A, 199
Dec. 9, pp.L1998-L2008, JJAP Vol.31, Part2, No.2B,
February 1992, pp.L139-L142).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記構造の発
光ダイオードの発光強度は未だ十分ではなく、改良が望
まれている。本発明者らは、研究を重ねた結果、サファ
イア基板上に良質な窒素−3属元素化合物半導体(AlxGa
YIn1-X-YN;X=0,Y=0,X=Y=0 を含む) のエピタキシャル成
長膜を得ることができた。この結果、発光輝度が向上し
た。本発明は、この問題を解決するものであり、青色の
発光強度を向上させることを目的としている。
However, the light emission intensity of the light emitting diode having the above structure is not yet sufficient, and improvement is desired. As a result of repeated research, the inventors of the present invention have found that a high-quality nitrogen group-3 element compound semiconductor (Al x Ga) is formed on a sapphire substrate.
Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) was obtained. As a result, the emission brightness was improved. The present invention solves this problem, and an object thereof is to improve blue light emission intensity.

【0005】[0005]

【課題を解決するための手段】本発明は、サファイア基
板と、窒素−3属元素化合物半導体(AlxGaYIn1-X-YN;X=
0,Y=0,X=Y=0を含む)から成る複数の層で構成された発光
部とを有する発光素子において、サファイア基板上に、
温度400℃〜800℃において、非晶質のAlXGa1-XN
;X≠0が厚さ100Å〜500Åに形成されたバッフ
ァ層を有し、バッファ層上に発光部の各層を形成したこ
とを特徴とする。
The present invention relates to a sapphire substrate and a nitrogen-3 group element compound semiconductor (Al x Ga Y In 1-XY N; X =
0, Y = 0, X = Y = 0 inclusive), in a light emitting device having a light emitting portion composed of a plurality of layers, on a sapphire substrate,
Amorphous Al X Ga 1-X N at temperatures of 400 ° C to 800 ° C
X ≠ 0 has a buffer layer formed to have a thickness of 100Å to 500Å, and each layer of the light emitting portion is formed on the buffer layer.

【0006】又、他の発明は、サファイア基板上に窒素
−3属元素化合物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=
0を含む)から成る層をエピタキシャル成長させる方法に
おいて、サファイア基板上に、温度400℃〜800℃
において、厚さ100Å〜500Åの非晶質のAlXGa1-X
N ;X≠0から成るバッファ層を成長させ、そのバッファ
層上に温度1000℃〜1200℃で窒素−3属元素化
合物半導体(AlxGaYIn1 -X-YN;X=0,Y=0,X=Y=0を含む) を
エピタキシャル成長させることを特徴とする製造方法で
ある。
Another invention is a nitrogen-group-3 compound semiconductor (Al x Ga Y In 1-XY N; X = 0, Y = 0, X = Y = on a sapphire substrate.
(Including 0) in a method of epitaxially growing a layer of 400 ℃ ~ 800 ℃ on a sapphire substrate
, Amorphous Al X Ga 1-X with a thickness of 100Å to 500Å
A buffer layer consisting of N; X ≠ 0 is grown, and a nitrogen-3 group element compound semiconductor (Al x Ga Y In 1 -XY N; X = 0, Y = 0) is grown on the buffer layer at a temperature of 1000 ° C to 1200 ° C. , Including X = Y = 0) is epitaxially grown.

【0007】[0007]

【作用及び発明の効果】上記のように、サファイア基板
上に、温度400℃〜800℃において、厚さ100Å
〜500ÅのAlXGa1-XN ;X≠0から成る非晶質のバッフ
ァ層を形成した結果、その上にエピタキシャル成長され
る窒素−3属元素化合物半導体(AlxGaYIn1-X-YN;X=0,Y=
0,X=Y=0を含む) の結晶性を向上させることができた。
この結果、発光素子の発光輝度が向上した。
FUNCTION AND EFFECT OF THE INVENTION As described above, the thickness of 100 Å on the sapphire substrate at the temperature of 400 ° C to 800 ° C.
As a result of the formation of an amorphous buffer layer consisting of ~ 500Å Al X Ga 1-X N; X ≠ 0, a nitrogen-group 3 compound semiconductor (Al x Ga Y In 1-XY N) epitaxially grown thereon is formed. ; X = 0, Y =
(Including 0, X = Y = 0) could be improved.
As a result, the emission brightness of the light emitting element was improved.

【0008】[0008]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。第1実施例 図1において、発光ダイオード10は、サファイア基板
1を有しており、そのサファイア基板1に500 ÅのAlXG
a1-XN(X=0.1)のバッファ層2が形成されている。そのバ
ッファ層2の上には、順に、膜厚約2.2 μmのGaN から
成る高キャリア濃度n+ 層3と膜厚約 1.5μmのGaN か
ら成る低キャリア濃度n層4が形成されており、更に、
低キャリア濃度n層4の上に膜厚約 0.2μmのGaN から
成るi層50が形成されている。又、そのi層50の所
定領域にはp型を示すp型部5が形成されている。
EXAMPLES The present invention will be described below based on specific examples. First Embodiment In FIG. 1, a light emitting diode 10 has a sapphire substrate 1, and the sapphire substrate 1 has an Al X G of 500 Å.
The buffer layer 2 of a 1-X N (X = 0.1) is formed. On the buffer layer 2, a high carrier concentration n + layer 3 made of GaN having a film thickness of about 2.2 μm and a low carrier concentration n layer 4 made of GaN having a film thickness of about 1.5 μm are sequentially formed. ,
On the low carrier concentration n-layer 4, an i-layer 50 made of GaN having a film thickness of about 0.2 μm is formed. Further, a p-type portion 5 exhibiting p-type is formed in a predetermined region of the i layer 50.

【0009】i層50の上面からは、i層50と低キャ
リア濃度n層4とを貫通して高キャリア濃度n+ 層3に
至る孔15が形成されている。その孔15を通って高キ
ャリア濃度n+ 層3に接合されたアルミニウムで形成さ
れた電極52がi層50上に形成されている。又、p型
部5の上面には、p型部5に対するアルミニウムで形成
された電極51が形成されている。 高キャリア濃度n
+ 層3に対する電極52は、p型部5に対してi層50
により絶縁分離されている。
From the upper surface of the i layer 50, a hole 15 is formed which penetrates the i layer 50 and the low carrier concentration n layer 4 to reach the high carrier concentration n + layer 3. An electrode 52 made of aluminum bonded to the high carrier concentration n + layer 3 through the hole 15 is formed on the i layer 50. Further, an electrode 51 made of aluminum for the p-type portion 5 is formed on the upper surface of the p-type portion 5. High carrier concentration n
The electrode 52 for the + layer 3 is the i layer 50 for the p-type portion 5.
It is insulated and separated by.

【0010】次に、この構造の発光ダイオード10の製
造方法について説明する。製造工程を示す図2から図8
は、ウエハにおける1素子のみに関する断面図であり、
実際には図に示す素子が繰り返し形成されたウエハに関
して次の製造処理が行われる。そして、最後に、ウエハ
が切断されて各発光素子が形成される。
Next, a method of manufacturing the light emitting diode 10 having this structure will be described. 2 to 8 showing the manufacturing process
Is a sectional view of only one element on a wafer,
Actually, the following manufacturing process is performed on the wafer in which the elements shown in the drawing are repeatedly formed. Then, finally, the wafer is cut to form each light emitting element.

【0011】上記発光ダイオード10は、有機金属化合
物気相成長法( 以下「M0VPE 」と記す) による気相成長
により製造された。用いられたガスは、NH3 とキャリア
ガスH2とトリメチルガリウム(Ga(CH3)3)(以下「TMG 」
と記す) とトリメチルアルミニウム(Al(CH3)3)(以下
「TMA 」と記す) とシラン(SiH4)とビスシクロペンタジ
エニルマグネシウムMg(C5H5)2(以下、「CP2Mg 」と記
す) である。
The light emitting diode 10 was manufactured by vapor phase epitaxy by a metal organic compound vapor phase epitaxy method (hereinafter referred to as "M0VPE"). The gas used was NH 3 , carrier gas H 2, and trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter “TMG”).
) And trimethylaluminum (Al (CH 3 ) 3 ) (hereinafter referred to as “TMA”), silane (SiH 4 ), and biscyclopentadienyl magnesium Mg (C 5 H 5 ) 2 (hereinafter referred to as “CP 2 Mg ]).

【0012】図2に示す構成に、各層が積層される。そ
の手順を説明する。有機洗浄及び熱処理により洗浄した
A面を主面とする単結晶のサファイア基板1をM0VPE 装
置の反応室に載置されたサセプタに装着する。次に、常
圧でH2を流速 2 litre /分で反応室に流しながら温度11
00℃でサファイア基板1を気相エッチングした。次に、
温度を 400℃まで低下させて、H2を20 litre/分、NH3
を10litre/分、TMA を 1.8×10-5モル/分、TMG を1.6
×10-4モル/分で供給してAlXGa1-XN(X=0.1)のバッフ
ァ層2が約 500Åの厚さに形成された。
Each layer is laminated in the structure shown in FIG. The procedure will be described. A single-crystal sapphire substrate 1 whose main surface is the A surface, which has been cleaned by organic cleaning and heat treatment, is mounted on a susceptor placed in the reaction chamber of the M0VPE apparatus. Next, while flowing H 2 at a normal pressure at a flow rate of 2 litre / min into the reaction chamber, the temperature 11
The sapphire substrate 1 was vapor-phase etched at 00 ° C. next,
The temperature is reduced to 400 ° C and H 2 is 20 litre / min, NH 3
10 liter / min, TMA 1.8 × 10 -5 mol / min, TMG 1.6
The buffer layer 2 of Al X Ga 1 -X N (X = 0.1) was formed at a thickness of about 500 Å by supplying at a dose of × 10 -4 mol / min.

【0013】次に、サファイア基板1の温度を1150℃に
保持し、H2を20 litre/分、NH3 を10 litre/分、TMG
を 1.7×10-4モル/分、H2で0.86ppm まで希釈したシラ
ン(SiH4)を 200 ml /分の割合で30分間供給し、膜厚約
2.2μm、キャリア濃度 1.5×1018/cm3のGaN から成る
高キャリア濃度n+ 層3を形成した。
Next, the temperature of the sapphire substrate 1 is maintained at 1150 ° C., H 2 is 20 litre / min, NH 3 is 10 litre / min, and TMG is used.
Silane (SiH 4 ) diluted to 1.7 × 10 -4 mol / min and 0.86 ppm with H 2 at a rate of 200 ml / min for 30 minutes to obtain a film thickness of approx.
A high carrier concentration n + layer 3 of 2.2 μm and a carrier concentration of 1.5 × 10 18 / cm 3 made of GaN was formed.

【0014】続いて、サファイア基板1の温度を1150℃
に保持し、H2を20 litre/分、NH3を10 litre/分、TMG
を1.7 ×10-4モル/分の割合で20分間供給し、膜厚約
1.5μm、キャリア濃度 1×1015/cm3のGaN から成る低
キャリア濃度n層4を形成した。次に、サファイア基板
1を 900℃にして、H2 を20 litre/分、NH3 を10 lit
re/分、TMG を 1.7×10-4モル/分、CP2Mg を 3×10-6
モル/分の割合で 3分間供給して、膜厚 0.2μmのGaN
から成るi層50を形成した。この状態では、i層50
は絶縁体である。
Then, the temperature of the sapphire substrate 1 is set to 1150 ° C.
Hold at 20 litre / min for H 2 , 10 litre / min for NH 3 , TMG
For 20 minutes at a rate of 1.7 × 10 -4 mol / min,
A low carrier concentration n layer 4 made of GaN having a carrier concentration of 1 × 10 15 / cm 3 and having a thickness of 1.5 μm was formed. Next, the sapphire substrate 1 is heated to 900 ° C., H 2 is 20 litre / min, and NH 3 is 10 lit.
re / min, TMG 1.7 × 10 -4 mol / min, CP 2 Mg 3 × 10 -6
GaN with a film thickness of 0.2 μm is supplied at a rate of mol / min for 3 minutes.
An i-layer 50 was formed. In this state, the i layer 50
Is an insulator.

【0015】図3に示すように、i層50の上に、スパ
ッタリングによりSiO2層11を2000Åの厚さに形成し
た。次に、そのSiO2層11上にフォトレジスト12を塗
布した。そして、フォトリソグラフにより、i層50に
おいてn層4に至るように形成される孔15に対応する
電極形成部位Aのフォトレジストを除去した。
As shown in FIG. 3, a SiO 2 layer 11 having a thickness of 2000 Å was formed on the i layer 50 by sputtering. Next, a photoresist 12 was applied on the SiO 2 layer 11. Then, by photolithography, the photoresist of the electrode forming portion A corresponding to the hole 15 formed in the i layer 50 to reach the n layer 4 was removed.

【0016】次に、図4に示すように、フォトレジスト
12によって覆われていないSiO2層11をフッ化水素酸
系エッチング液で除去した。次に、図5に示すように、
フォトレジスト12及びSiO2層11によって覆われてい
ない部位のi層50とその下の低キャリア濃度n層4と
高キャリア濃度n+ 層3の上面一部を、真空度0.04Tor
r、高周波電力0.44W/cm2 、BCl3ガスを10 ml/分の割合
で供給しドライエッチングした後、Arでドライエッチン
グした。この工程で、高キャリア濃度n+ 層3に対する
電極取出しのための孔15が形成された。
Next, as shown in FIG. 4, the SiO 2 layer 11 not covered with the photoresist 12 was removed with a hydrofluoric acid-based etching solution. Next, as shown in FIG.
A part of the upper surface of the i layer 50 which is not covered with the photoresist 12 and the SiO 2 layer 11 and the low carrier concentration n layer 4 and the high carrier concentration n + layer 3 under the i layer 50 are vacuumed to 0.04 Torr.
r, high frequency power 0.44 W / cm 2 , and BCl 3 gas were supplied at a rate of 10 ml / min to perform dry etching, and then dry etching was performed using Ar. In this step, the hole 15 for taking out the electrode for the high carrier concentration n + layer 3 was formed.

【0017】次に、図6に示すように、i層50上に残
っているSiO2層11をフッ化水素酸で除去した。次に、
図7に示すように、i層50の所定領域にのみ、反射電
子線回析装置を用いて電子線を照射して、p型半導体の
p型部5が形成された。電子線の照射条件は、加速電圧
10KV、試料電流 1μA 、ビームの移動速度0.2mm/sec、
ビーム径60μmφ、真空度2.1 ×10-5Torrである。この
電子線の照射により、i層50の抵抗率は108 Ωcm以上
の絶縁体から抵抗率35Ωcmのp型半導体となった。
Next, as shown in FIG. 6, the SiO 2 layer 11 remaining on the i layer 50 was removed with hydrofluoric acid. next,
As shown in FIG. 7, the p-type portion 5 of the p-type semiconductor was formed by irradiating only a predetermined region of the i layer 50 with an electron beam using a reflected electron beam diffraction apparatus. Electron beam irradiation conditions are acceleration voltage
10KV, sample current 1μA, beam moving speed 0.2mm / sec,
The beam diameter is 60 μmφ and the degree of vacuum is 2.1 × 10 -5 Torr. By this electron beam irradiation, the i layer 50 changed from an insulator having a resistivity of 10 8 Ωcm or more to a p-type semiconductor having a resistivity of 35 Ωcm.

【0018】この時、p型部5以外の部分、即ち、電子
線の照射されなかった部分は、絶縁体のi層50のまま
である。従って、p型部5は、縦方向に対しては、低キ
ャリア濃度n層4とpn接合を形成するが、横方向に
は、p型部5は、周囲に対して、i層50により電気的
に絶縁分離される。
At this time, the portion other than the p-type portion 5, that is, the portion not irradiated with the electron beam, remains the i-layer 50 of the insulator. Therefore, the p-type portion 5 forms a pn junction with the low carrier concentration n layer 4 in the vertical direction, but in the horizontal direction, the p-type portion 5 is electrically connected to the surroundings by the i layer 50. Electrically isolated.

【0019】次に、図8に示すように、p型部5とi層
50の上面と孔15を通って高キャリア濃度n+ 層3と
に、Al層20が蒸着により形成された。そして、そのAl
層20の上にフォトレジスト21を塗布して、フォトリ
ソグラフにより、そのフォトレジスト21が高キャリア
濃度n+ 層3及びp型部5に対する電極部が残るよう
に、所定形状にパターン形成した。
Next, as shown in FIG. 8, an Al layer 20 was formed by vapor deposition on the high carrier concentration n + layer 3 through the upper surface of the p-type portion 5, the i layer 50 and the hole 15. And that Al
A photoresist 21 was applied on the layer 20, and the photoresist 21 was patterned into a predetermined shape by photolithography so that the electrode portion for the high carrier concentration n + layer 3 and the p-type portion 5 remained.

【0020】次に、そのフォトレジスト21をマスクと
して下層のAl層20の露出部を硝酸系エッチング液でエ
ッチングし、フォトレジスト21をアセトンで除去し
た。このようにして、図1に示すように、高キャリア濃
度n+ 層3の電極52、p型部5の電極51を形成し
た。その後、上述のように形成されたウエハが各素子毎
に切断された。
Next, using the photoresist 21 as a mask, the exposed portion of the lower Al layer 20 was etched with a nitric acid-based etching solution, and the photoresist 21 was removed with acetone. Thus, as shown in FIG. 1, the electrode 52 of the high carrier concentration n + layer 3 and the electrode 51 of the p-type portion 5 were formed. After that, the wafer formed as described above was cut into each element.

【0021】尚、AlxGa1-XN のバッファ層の結晶構造
は、無定形構造の中に、多結晶又は微結晶が混在した状
態であると思われる。このような結晶状態の時に、その
層の上に成長するGaN 層の結晶性が良くなると思われ
る。GaN 層の結晶性を良くするには、AlxGa1-XN のバッ
ファ層における多結晶又は微結晶の存在割合は1〜90
%、その大きさは0.1 μm以下が望ましいと思われる。
The crystal structure of the Al x Ga 1 -X N buffer layer seems to be a state in which polycrystalline or microcrystals are mixed in the amorphous structure. In such a crystalline state, the crystallinity of the GaN layer grown on that layer will be improved. In order to improve the crystallinity of the GaN layer, the existence ratio of polycrystals or microcrystals in the Al x Ga 1 -X N buffer layer is 1 to 90.
%, And its size should be 0.1 μm or less.

【0022】第2実施例 図1に示す構造の第1実施例の発光ダイオードにおい
て、高キャリア濃度n+層3、低キャリア濃度n層4、
i層50、p型部5を、それぞれ、Al0.2Ga0.5In0.3Nと
した。高キャリア濃度n+ 層3は、シリコンを添加して
電子濃度2 ×1018/cm3に形成し、低キャリア濃度n層4
は不純物無添加で電子濃度1 ×1016/cm3に形成した。i
層50はマグネシウム(Mg)を添加し、p型部5はその
後、所定の領域に電子線を照射して正孔濃度1 ×1016/c
m3に形成した。
Second Embodiment In the light emitting diode of the first embodiment having the structure shown in FIG. 1, a high carrier concentration n + layer 3, a low carrier concentration n layer 4,
The i layer 50 and the p-type portion 5 were made of Al 0.2 Ga 0.5 In 0.3 N, respectively. The high carrier concentration n + layer 3 is formed by adding silicon to an electron concentration of 2 × 10 18 / cm 3 , and the low carrier concentration n layer 4 is formed.
Was formed to have an electron concentration of 1 × 10 16 / cm 3 without any impurities. i
The layer 50 is formed by adding magnesium (Mg), and then the p-type portion 5 is irradiated with an electron beam in a predetermined region to have a hole concentration of 1 × 10 16 / c.
formed to m 3 .

【0023】次に、この構造の発光ダイオード10も第
1実施例の発光ダイオードと同様に製造することができ
る。トリメチルインジウム(In(CH3)3)がTMG 、TMA 、シ
ラン、CP2Mg ガスに加えて使用された。生成温度、ガス
流量は第1実施例と同じである。トリメチルインジウム
を 1.7×10-4モル/分で供給することを除いて他のガス
の流量は第1実施例と同一である。
Next, the light emitting diode 10 having this structure can be manufactured similarly to the light emitting diode of the first embodiment. Trimethylindium (In (CH 3 ) 3 ) was used in addition to TMG, TMA, silane, CP 2 Mg gas. The generation temperature and gas flow rate are the same as in the first embodiment. The flow rates of the other gases are the same as those in the first embodiment except that trimethylindium is supplied at 1.7 × 10 −4 mol / min.

【0024】このようにして製造された発光ダイオード
10の発光強度を測定したところ10mcd であり、発光寿
命は、104 時間であった。
The light emission intensity of the light emitting diode 10 thus manufactured was measured and found to be 10 mcd, and the light emission life was 10 4 hours.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な一実施例に係る発光ダイオー
ドの構成を示した構成図。
FIG. 1 is a configuration diagram showing a configuration of a light emitting diode according to a specific embodiment of the present invention.

【図2】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 2 is a cross-sectional view showing a manufacturing process of the light emitting diode of the same embodiment.

【図3】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 3 is a cross-sectional view showing a manufacturing process of the light emitting diode of the embodiment.

【図4】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 4 is a cross-sectional view showing a manufacturing process of the light emitting diode of the same embodiment.

【図5】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 5 is a cross-sectional view showing the manufacturing process of the light emitting diode of the same embodiment.

【図6】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 6 is a cross-sectional view showing a manufacturing process of the light emitting diode of the embodiment.

【図7】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 7 is a sectional view showing a manufacturing process of the light emitting diode of the embodiment.

【図8】同実施例の発光ダイオードの製造工程を示した
断面図。
FIG. 8 is a cross-sectional view showing a manufacturing process of the light emitting diode of the embodiment.

【符号の説明】[Explanation of symbols]

10…発光ダイオード 1…サファイア基板 2…バッファ層 3…高キャリア濃度n+ 層 4…低キャリア濃度n層 5…p型部 50…i層 51,52…電極 15…孔10 ... Light emitting diode 1 ... Sapphire substrate 2 ... Buffer layer 3 ... High carrier concentration n + layer 4 ... Low carrier concentration n layer 5 ... P-type part 50 ... i layer 51, 52 ... Electrode 15 ... Hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 真部 勝英 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 小出 典克 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 山田 正巳 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 加藤 久喜 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 赤崎 勇 愛知県名古屋市西区浄心1丁目1番38− 805 (72)発明者 天野 浩 愛知県名古屋市名東区神丘町二丁目21 虹 ケ丘東団地19号棟103号室 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhide Mabe Aichi Prefecture Kasuga Town Kasuga Town Ochiai character No. 1 Nagahata Toyoda Gosei Co., Ltd. (72) Inventor Norikazu Koide Kasuga Town Nishi Kasugai County Aichi Prefecture Ochiai letter Nagahata No. 1 in Toyoda Gosei Co., Ltd. (72) Inventor Masami Yamada Ochiai, Kasuga-cho, Nishikasugai-gun, Aichi Prefecture Nagahata No. 1 Toyoda Gosei Co., Ltd. (72) Inventor Kuki Kato Nishi-Kasuga-cho, Aichi Ochiai 1 Nagachihata Address: Toyoda Gosei Co., Ltd. (72) Inventor, Isamu Akasaki, 1-1, Jyoshin, Nishi-ku, Nagoya-shi, Aichi Prefecture 38-805 (72) Inventor, Hiroshi Amano 2--21, Kamioka-cho, Meito-ku, Nagoya-shi, Aichi Nijigaoka-higashichi 19 Building No. 103

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 サファイア基板と、窒素−3属元素化合
物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0を含む) から
成る複数の層で構成された発光部とを有する発光素子に
おいて、 前記サファイア基板上に、温度400℃〜800℃にお
いて、非晶質のAlXGa1-XN;X≠0が厚さ100Å〜50
0Åに形成されたバッファ層を有し、 前記バッファ層上に前記発光部の各層を形成したことを
特徴とする窒化ガリウム系化合物半導体発光素子。
1. A sapphire substrate and a plurality of layers composed of a nitrogen-3 group compound semiconductor (Al x Ga Y In 1-XY N; including X = 0, Y = 0, X = Y = 0) A light emitting device having a light emitting part formed on the sapphire substrate at a temperature of 400 ° C. to 800 ° C. with an amorphous Al X Ga 1-X N; X ≠ 0 having a thickness of 100Å to 50.
A gallium nitride-based compound semiconductor light-emitting device having a buffer layer formed in 0Å, wherein each layer of the light-emitting portion is formed on the buffer layer.
【請求項2】 サファイア基板上に窒素−3属元素化合
物半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0を含む)から成
る層をエピタキシャル成長させる方法において、 前記サファイア基板上に、温度400℃〜800℃にお
いて、厚さ100Å〜500Åの非晶質のAlXGa1-XN ;X
≠0から成るバッファ層を成長させ、そのバッファ層上
に温度1000℃〜1200℃で窒素−3属元素化合物
半導体(AlxGaYIn1-X-YN;X=0,Y=0,X=Y=0を含む) をエピ
タキシャル成長させる半導体の製造方法。
2. A method of epitaxially growing a layer made of a nitrogen-3 group compound semiconductor (Al x Ga Y In 1 -XY N; including X = 0, Y = 0, X = Y = 0) on a sapphire substrate. In the above, on the sapphire substrate, at a temperature of 400 ° C. to 800 ° C., an amorphous Al X Ga 1-X N; X having a thickness of 100 Å to 500 Å.
A buffer layer consisting of ≠ 0 is grown, and a nitrogen-group 3 compound semiconductor (Al x Ga Y In 1-XY N; X = 0, Y = 0, X = is formed on the buffer layer at a temperature of 1000 ° C. to 1200 ° C. A method for manufacturing a semiconductor in which (including Y = 0) is epitaxially grown.
JP31659692A 1992-10-29 1992-10-29 Nitrogen-3 group element compound semiconductor light emitting device and manufacturing method Expired - Fee Related JP3184341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31659692A JP3184341B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group element compound semiconductor light emitting device and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31659692A JP3184341B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group element compound semiconductor light emitting device and manufacturing method

Publications (2)

Publication Number Publication Date
JPH06151962A true JPH06151962A (en) 1994-05-31
JP3184341B2 JP3184341B2 (en) 2001-07-09

Family

ID=18078848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31659692A Expired - Fee Related JP3184341B2 (en) 1992-10-29 1992-10-29 Nitrogen-3 group element compound semiconductor light emitting device and manufacturing method

Country Status (1)

Country Link
JP (1) JP3184341B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852416A1 (en) * 1995-09-18 1998-07-08 Hitachi, Ltd. Semiconductor material, method of producing the semiconductor material, and semiconductor device
US5863811A (en) * 1995-06-28 1999-01-26 Sony Corporation Method for growing single crystal III-V compound semiconductor layers on non single crystal III-V Compound semiconductor buffer layers
WO2005062390A1 (en) * 2003-12-22 2005-07-07 Showa Denko K.K. Group iii nitride semiconductor device and light-emitting device using the same
KR101364168B1 (en) * 2007-03-20 2014-02-18 서울바이오시스 주식회사 Method of fabricating substrates for light emitting device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
WO2017113523A1 (en) * 2015-12-31 2017-07-06 华灿光电(苏州)有限公司 Algan template, preparation method for algan template, and semiconductor device on algan template

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US5863811A (en) * 1995-06-28 1999-01-26 Sony Corporation Method for growing single crystal III-V compound semiconductor layers on non single crystal III-V Compound semiconductor buffer layers
EP0852416A1 (en) * 1995-09-18 1998-07-08 Hitachi, Ltd. Semiconductor material, method of producing the semiconductor material, and semiconductor device
EP0852416A4 (en) * 1995-09-18 1999-04-07 Hitachi Ltd Semiconductor material, method of producing the semiconductor material, and semiconductor device
EP1081818A2 (en) * 1995-09-18 2001-03-07 Hitachi, Ltd. Semiconductor laser devices
EP1081818A3 (en) * 1995-09-18 2001-08-08 Hitachi, Ltd. Semiconductor laser devices
US6377596B1 (en) 1995-09-18 2002-04-23 Hitachi, Ltd. Semiconductor materials, methods for fabricating semiconductor materials, and semiconductor devices
US6459712B2 (en) 1995-09-18 2002-10-01 Hitachi, Ltd. Semiconductor devices
WO2005062390A1 (en) * 2003-12-22 2005-07-07 Showa Denko K.K. Group iii nitride semiconductor device and light-emitting device using the same
US7781795B2 (en) 2003-12-22 2010-08-24 Showa Denko K.K. Group III nitride semiconductor device and light-emitting device using the same
KR101364168B1 (en) * 2007-03-20 2014-02-18 서울바이오시스 주식회사 Method of fabricating substrates for light emitting device
WO2017113523A1 (en) * 2015-12-31 2017-07-06 华灿光电(苏州)有限公司 Algan template, preparation method for algan template, and semiconductor device on algan template

Also Published As

Publication number Publication date
JP3184341B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
JP2623466B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2698796B2 (en) Group III nitride semiconductor light emitting device
JP2681733B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP3506874B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07202265A (en) Manufacture of group iii nitride semiconductor
JP3795624B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP2626431B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JP2657743B2 (en) Nitrogen-3 group element compound semiconductor light emitting device
JPH07263748A (en) Iii group nitride semiconductor light emitting element and manufacture of it
JP3312715B2 (en) Gallium nitride based compound semiconductor light emitting device
JP2658009B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH07131068A (en) Nitrogen-group-iii element compound semiconductor light emitting element
JPH06151962A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JPH06151966A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JP3026102B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH08125222A (en) Method for manufacture of group iii nitride semiconductor
JP3727091B2 (en) Group 3 nitride semiconductor device
JP3661871B2 (en) Method for producing gallium nitride compound semiconductor
JP2002270892A (en) Gallium nitride compound semiconductor light-emitting element
JPH06291367A (en) Light emitting element of nitrogen-group iii element compound semiconductor
JP3193980B2 (en) Gallium nitride based compound semiconductor light emitting device
JPH06151964A (en) Nitrogen-iii compound semiconductor luminous element and manufacture thereof
JP2004080047A (en) METHOD FOR MANUFACTURIG GALLIUM NITRIDE(GaN) COMPOUND SEMICONDUCTOR
JP3232654B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP3613190B2 (en) Gallium nitride compound semiconductor light emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080427

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees