JPH06151815A - Semiconductor device and manufacture threof - Google Patents

Semiconductor device and manufacture threof

Info

Publication number
JPH06151815A
JPH06151815A JP32846492A JP32846492A JPH06151815A JP H06151815 A JPH06151815 A JP H06151815A JP 32846492 A JP32846492 A JP 32846492A JP 32846492 A JP32846492 A JP 32846492A JP H06151815 A JPH06151815 A JP H06151815A
Authority
JP
Japan
Prior art keywords
layer
film
silicon substrate
tin film
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32846492A
Other languages
Japanese (ja)
Inventor
Katsunari Hanaoka
克成 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP32846492A priority Critical patent/JPH06151815A/en
Publication of JPH06151815A publication Critical patent/JPH06151815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To realize a barrier layer having high barrier properties by low stress. CONSTITUTION:An N-type diffusion layer 31 constituting a semiconductor element is formed to a P-type silicon substrate 1, a contact hole 32 on the diffusion layer 31 is formed to an SiO2 film 2 covering the surface of the substrate 1, TiN barrier metal layers 4, 5, 6 having three layer structure on a titanium layer 3 are shaped in the contact hole 32 through the titanium film 3, and an aluminum wiring 7 is formed onto the layers 4, 5, 6. The lowermost layer 4 of the barrier metal layers consists of a TiN film having columnar organization and low density, the second layer TiN film 5 on the layer 4 is composed of a TiN film having crystallite granular structure and high density, and the third layer TiN film 6 on the film 5 is made up of a TiN film having columnar organization and low density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は大規模集積回路に適する
半導体装置とその製造方法に関し、特にシリコン基板と
アルミニウム系メタル配線層との間のコンタクト部分の
構造に特徴をもつ半導体装置とその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device suitable for a large-scale integrated circuit and a method for manufacturing the same, and more particularly to a semiconductor device characterized by the structure of a contact portion between a silicon substrate and an aluminum-based metal wiring layer and the manufacturing thereof. It is about the method.

【0002】[0002]

【従来の技術】シリコン基板を被う絶縁膜にコンタクト
ホールを設け、そのコンタクトホールを介してアルミニ
ウム又はアルミニウムに1%程度のシリコンを含有した
アルミニウム合金などにてなるメタル配線(アルミニウ
ム系配線という)をシリコン基板に接続する場合、基板
のシリコンがアルミニウム中に溶け出してスパイクを発
生し、これが拡散層をつき破る不都合が生じる。そのた
め、シリコン基板とアルミニウム系メタル配線との間に
バリアメタル層として窒化チタン(TiN)膜を設ける
ことが行なわれている。バリアメタル層としてTiN膜
を形成するには反応性スパッタリング法が用いられてい
る。
2. Description of the Related Art A metal wiring (referred to as an aluminum-based wiring) made of aluminum or an aluminum alloy containing about 1% of silicon in aluminum through a contact hole provided in an insulating film covering a silicon substrate. Is connected to a silicon substrate, the silicon of the substrate melts into aluminum to generate spikes, which inconveniently breaks through the diffusion layer. Therefore, a titanium nitride (TiN) film is provided as a barrier metal layer between the silicon substrate and the aluminum-based metal wiring. Reactive sputtering is used to form a TiN film as a barrier metal layer.

【0003】反応性スパッタリング法により形成された
窒化チタン膜はバリア層として広く利用されているが、
チタンは酸素吸着能力が大きい材料であることから、形
成されたTiN膜は原子数で30%程度の酸素を含み、
体積抵抗率が非常に高くなる。また、膜構造はスパッタ
膜の特徴である柱状構造であり、低密度である。柱状構
造で低密度なTiN膜は、柱状構造の間のボイドを通し
て基板のシリコンが容易に拡散することや高抵抗である
という理由から、半導体装置のシリコン基板とアルミニ
ウム系メタル配線間の拡散防止膜としては問題がある。
A titanium nitride film formed by the reactive sputtering method is widely used as a barrier layer.
Since titanium is a material having a large oxygen adsorption capacity, the formed TiN film contains about 30% oxygen in atomic number,
The volume resistivity becomes very high. Further, the film structure is a columnar structure which is a characteristic of the sputtered film and has a low density. The columnar structure and low density TiN film is a diffusion prevention film between the silicon substrate of the semiconductor device and the aluminum-based metal wiring because the silicon of the substrate easily diffuses through the voids between the columnar structures and has high resistance. There is a problem as

【0004】この問題を解決するために、従来は反応性
スパッタリング法によりTiN膜を形成する際、基板に
適当な大きさの負電圧を印加することにより、低抵抗
で、かつ高密度な微結晶粒構造のTiN膜を形成してい
る。基板に負電圧を印加すると、基板の負電圧により基
板に対して不活性気体の陽イオンが加速されて衝突し、
基板に堆積したTiNに付着した酸素を選択的に脱離
し、また堆積中のTiN表面を活性化して原子の移動が
可能になるようなエネルギーを与える。そのため、基板
に印加する負電圧は、そのような作用を示すように、通
常−50〜−300Vの電圧に設定される。
In order to solve this problem, conventionally, when a TiN film is formed by a reactive sputtering method, a negative voltage of an appropriate magnitude is applied to a substrate to obtain a low-resistance and high-density microcrystal. A TiN film having a grain structure is formed. When a negative voltage is applied to the substrate, the negative voltage of the substrate accelerates and collides the cations of the inert gas with the substrate,
Oxygen attached to TiN deposited on the substrate is selectively desorbed, and the TiN surface during deposition is activated to give energy that enables movement of atoms. Therefore, the negative voltage applied to the substrate is usually set to a voltage of -50 to -300V so as to exhibit such an action.

【0005】[0005]

【発明が解決しようとする課題】基板に負電圧を印加し
てTiN膜を形成すると、アルゴンイオン粒子がTiN
膜に衝突することにより高い圧縮内部応力が発生する
(J. Vac. Sci. Technol.,A(4), 1850-1854 (1986)参
照)。また、基板に負電圧を印加しながら形成した厚さ
約1000ÅのTiN膜は内部応力が高く、550℃程
度の高温でTiN膜が基板から剥離する問題がある(J.
Electrochem. Soc., Vol. 130, 1215-1218 (1983)参
照)。本発明はバリアメタル層としてのTiN膜の従来
の欠点を解決し、低応力でバリア性の高いバリア層をも
つコンタクトを備えた半導体装置と、そのコンタクトの
形成方法を提供することを目的とするものである。
When a negative voltage is applied to the substrate to form a TiN film, argon ion particles are converted into TiN film.
A high compressive internal stress is generated by the collision with the membrane (see J. Vac. Sci. Technol., A (4), 1850-1854 (1986)). Further, the TiN film having a thickness of about 1000Å formed while applying a negative voltage to the substrate has a high internal stress, and there is a problem that the TiN film is separated from the substrate at a high temperature of about 550 ° C (J.
Electrochem. Soc., Vol. 130, 1215-1218 (1983)). It is an object of the present invention to solve the conventional drawbacks of a TiN film as a barrier metal layer, and to provide a semiconductor device having a contact having a barrier layer having a low stress and a high barrier property, and a method for forming the contact. It is a thing.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置で
は、シリコン基板を被う絶縁膜にシリコン基板の拡散層
上でコンタクトホールが形成され、そのコンタクトホー
ルではシリコン基板とオーミック接触を得るためのメタ
ル低抵抗層及びその上のバリアメタル層を介してアルミ
ニウム系メタル配線層が形成されており、バリアメタル
層は柱状構造の低密度な下層とその上の微結晶粒構造の
高密度な層とを少なくとも含む多層構造である。好まし
い態様では、バリアメタル層は柱状構造で低密度な下層
とその上の微結晶粒構造で高密度な層と、さらにその上
の柱状構造で低密度な層とからなる3層構造である。
In a semiconductor device of the present invention, a contact hole is formed in an insulating film covering a silicon substrate on a diffusion layer of the silicon substrate, and the contact hole is used to obtain ohmic contact with the silicon substrate. An aluminum-based metal wiring layer is formed via a metal low resistance layer and a barrier metal layer thereabove, and the barrier metal layer is composed of a low-density columnar structure lower layer and a fine-grain structure high-density layer above it. It is a multi-layer structure including at least. In a preferred embodiment, the barrier metal layer has a three-layer structure including a lower layer having a columnar structure and a low density, a layer having a fine crystal grain structure and a high density thereon, and a layer having a columnar structure and a low density further thereon.

【0007】本発明の製造方法は以下の工程(A)から
(G)を含んでいる。(A)不純物拡散層が形成された
シリコン基板を被う絶縁膜のうち、シリコン基板とコン
タクトを形成すべき領域にコンタクトホールを形成する
工程、(B)メタル低抵抗膜を堆積する工程、(C)そ
のメタル低抵抗膜上に、反応性スパッタリングを行な
い、柱状構造で低密度な第1層目の窒化チタン膜を堆積
する工程、(D)シリコン基板側に負電圧を印加し、チ
タンをターゲットとしたアルゴンガスと窒素ガスの雰囲
気中での反応性スパッタリングにより微結晶粒構造で高
密度な第2層目の窒化チタン膜を堆積する工程、(E)
シリコン基板側の電圧印加を停止し、チタンをターゲッ
トとしたアルゴンガスと窒素ガスの雰囲気中での反応性
スパッタリングにより柱状構造で低密度な第3層目の窒
化チタン膜を堆積する工程、(F)アルミニウム系導電
膜を堆積する工程、(G)前記導電膜、第1、第2及び
第3層目の窒化シリコン膜、並びに前記メタル低抵抗膜
をパターン化して配線とする工程。
The manufacturing method of the present invention includes the following steps (A) to (G). (A) A step of forming a contact hole in a region of the insulating film covering the silicon substrate on which the impurity diffusion layer is formed to form a contact with the silicon substrate, (B) a step of depositing a metal low resistance film, C) A step of performing reactive sputtering on the metal low-resistance film to deposit a titanium nitride film of the first layer having a columnar structure and a low density, (D) applying a negative voltage to the silicon substrate side to remove titanium. A step of depositing a high-density second layer titanium nitride film having a fine crystal grain structure by reactive sputtering in a target atmosphere of argon gas and nitrogen gas, (E)
A step of stopping the voltage application on the silicon substrate side and depositing a third-layer titanium nitride film having a columnar structure and low density by reactive sputtering in an atmosphere of argon gas and nitrogen gas targeting titanium; ) A step of depositing an aluminum-based conductive film, and (G) a step of patterning the conductive film, the first, second and third silicon nitride films and the metal low resistance film to form wiring.

【0008】[0008]

【作用】本発明の半導体装置のコンタクトでは、バリア
層の最下層が柱状構造の低密度なTiN膜で、その上に
微結晶粒構造の高密度なTiN膜を含む少なくとも2層
を含んでいるので、微結晶粒構造のTiN膜が高いバリ
ア性を有し、最下層の柱状構造のTiN膜は低応力であ
り、高温印加時にもバリア層の下側界面での膜の剥離を
防止する役割を果たす。柱状構造のTiN膜のボイドを
通って拡散したシリコンは微結晶粒構造のTiN膜で止
められる。微結晶粒構造のTiN膜の高い圧縮応力は下
側の柱状構造のTiN膜により緩和される。
In the contact of the semiconductor device of the present invention, the lowermost layer of the barrier layer is a low density TiN film having a columnar structure, and at least two layers including a high density TiN film having a fine crystal grain structure are provided thereon. Therefore, the TiN film having the fine crystal grain structure has a high barrier property, and the TiN film having the columnar structure at the lowermost layer has a low stress. The role of preventing the peeling of the film at the lower interface of the barrier layer even when a high temperature is applied. Fulfill. The silicon diffused through the voids of the TiN film having the columnar structure is stopped by the TiN film having the fine crystal grain structure. The high compressive stress of the TiN film having the fine crystal grain structure is relaxed by the TiN film having the columnar structure on the lower side.

【0009】微結晶粒構造のTiN膜の上にさらに柱状
構造で低密度なTiN膜を設けたときは、微結晶粒構造
のTiN膜の高い圧縮応力が下層の柱状構造のTiN膜
だけでなく上層の柱状構造のTiN膜によっても緩和さ
れる。柱状構造で低密度なTiN膜とするか微結晶粒構
造で高密度なTiN膜とするかは、基板側に負電圧を印
加しないか印加するかにより切り替えることができるの
で、TiN膜の堆積では基板側への負電圧の印加のオン
・オフにより連続して両膜を積層することができる。
When a TiN film having a columnar structure and a low density is further provided on the TiN film having a fine crystal grain structure, the high compressive stress of the TiN film having a fine crystal grain structure causes not only the TiN film of the lower columnar structure but also It is also relaxed by the upper columnar TiN film. Whether the columnar structure is a low-density TiN film or the microcrystalline structure is a high-density TiN film can be switched depending on whether or not a negative voltage is applied to the substrate side. Both films can be continuously laminated by turning on / off the application of the negative voltage to the substrate side.

【0010】[0010]

【実施例】図1は第1の実施例を表わす。P型シリコン
基板1に半導体素子を構成するN型拡散層31が形成さ
れており、シリコン基板1の表面を被うSiO2膜2に
は拡散層31上にコンタクトホール32が形成されてい
る。SiO2膜2上からはコンタクトホール32によっ
て露出したシリコン基板1の表面とオーミック接触をす
るためのチタン膜3が約200Åの厚さに形成されてい
る。チタン膜3上にはシリコン基板1とアルミニウム系
配線とのバリア層として3層構造のTiNバリアメタル
層4,5,6が形成されている。バリアメタル層の最下
層4は厚さが約250Åで、柱状構造で低密度なTiN
膜である。その上の第2層目のTiN膜5は厚さが約5
00Åで、微結晶粒構造で高密度なTiN膜であり、そ
のTiN膜5の結晶粒は直径100〜150Å程度であ
る。その上の第3層目のTiN膜6は厚さが約250Å
で、柱状構造で低密度なTiN膜である。この3層のT
iN膜4,5,6上にはアルミニウム系配線7がアルミ
ニウム膜又はアルミニウムにシリコンを1%含有したア
ルミニウム合金膜により形成されている。チタン膜3、
TiN膜4,5,6及び配線7はパターン化されてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first embodiment. An N type diffusion layer 31 forming a semiconductor element is formed on the P type silicon substrate 1, and a contact hole 32 is formed on the diffusion layer 31 in the SiO 2 film 2 covering the surface of the silicon substrate 1. A titanium film 3 for making ohmic contact with the surface of the silicon substrate 1 exposed by the contact holes 32 is formed on the SiO 2 film 2 to a thickness of about 200Å. On the titanium film 3, TiN barrier metal layers 4, 5 and 6 having a three-layer structure are formed as barrier layers between the silicon substrate 1 and aluminum-based wiring. The bottom layer 4 of the barrier metal layer has a thickness of about 250 Å and has a columnar structure and low density of TiN.
It is a film. The second TiN film 5 on the second layer has a thickness of about 5
It is a TiN film having a fine crystal grain structure and a high density, and the crystal grains of the TiN film 5 have a diameter of about 100 to 150 Å. The thickness of the third TiN film 6 on it is about 250Å
The columnar structure is a low density TiN film. This 3 layer T
Aluminum wiring 7 is formed on the iN films 4, 5 and 6 by an aluminum film or an aluminum alloy film containing 1% of silicon in aluminum. Titanium film 3,
The TiN films 4, 5, 6 and the wiring 7 are patterned.

【0011】図1の実施例では、バリアメタル層が中間
に微結晶粒構造のTiN膜5を挾んで上下の層が柱状構
造のTiN膜4,6となっているので、柱状構造のTi
N膜4,6の結晶粒界及びボイドが微結晶粒構造のTi
N膜5で中断され、また微結晶粒構造のTiN膜5のバ
リア性が高いことから、上層のアルミニウム系配線7と
下層のシリコン基板1が結晶粒界を通じて拡散すること
はない。その結果、例えば600℃で1時間の熱処理を
施した後にもアルミニウムスパイクによる接合破壊はみ
られなかった。
In the embodiment shown in FIG. 1, the barrier metal layer sandwiches the TiN film 5 having a fine crystal grain structure in the middle, and the upper and lower layers are the TiN films 4 and 6 having a columnar structure.
Ti of the grain boundaries and voids of the N films 4 and 6 having a fine grain structure
Since the TiN film 5 having the fine crystal grain structure is interrupted by the N film 5 and the barrier property of the TiN film 5 is high, the upper aluminum-based wiring 7 and the lower silicon substrate 1 do not diffuse through the crystal grain boundaries. As a result, no junction breakage due to aluminum spikes was observed even after heat treatment at 600 ° C. for 1 hour.

【0012】また、高圧縮応力をもつ微結晶粒構造のT
iN膜5が低応力の柱状構造のTiN膜4,6により両
側から挾まれており、バリアメタル層と上層のアルミニ
ウム系配線7との界面及び下層のチタン膜3との界面は
それぞれ応力の低い柱状構造のTiN層4,6で接して
いるので、600℃1時間の高温処理によっても膜の剥
離もなかった。
Further, the T having a fine grain structure having a high compressive stress is used.
The iN film 5 is sandwiched by the TiN films 4 and 6 having a low stress columnar structure from both sides, and the interface between the barrier metal layer and the upper aluminum-based wiring 7 and the interface between the lower titanium film 3 have low stress. Since the TiN layers 4 and 6 having a columnar structure are in contact with each other, the film was not peeled off even by the high temperature treatment at 600 ° C. for 1 hour.

【0013】図2は第2の実施例を表わす。図1の実施
例と比較すると、バリアメタル層が柱状構造の第1層目
のTiN膜4と微結晶粒構造の第2層のTiN膜5の2
層構造となっている点で相違する。膜厚は第1層目Ti
N膜4が約500Å、第2層TiN膜5が約500Åで
ある。
FIG. 2 shows a second embodiment. Compared to the embodiment of FIG. 1, two barrier metal layers, a first-layer TiN film 4 having a columnar structure and a second-layer TiN film 5 having a microcrystalline structure, are used.
The difference is that it has a layered structure. The film thickness is the first layer Ti
The N film 4 has a thickness of about 500Å, and the second-layer TiN film 5 has a thickness of about 500Å.

【0014】図2の実施例においても微結晶粒構造のT
iN膜5が存在することによって柱状構造のTiN膜4
の結晶粒界及びボイドがアルミニウム系配線7まで到達
することなく、また微結晶粒構造のTiN膜5のバリア
性の高いことによりアルミニウム系配線7とシリコン基
板1が結晶粒界を通じて拡散することはなく、600℃
で1時間の熱処理によってもアルミニウムスパイクによ
る接合破壊はみられなかった。しかも、図1の実施例と
同様に、微結晶粒構造のTiN膜5とチタン膜3との界
面は応力の低い柱状構造のTiN膜4で接しているた
め、600℃で1時間の熱処理時にも応力による膜の剥
離もなかった。
Also in the embodiment of FIG. 2, T having a fine crystal grain structure is used.
Due to the presence of the iN film 5, the TiN film 4 having a columnar structure is formed.
Does not reach the aluminum-based wiring 7 and the high barrier property of the TiN film 5 having the fine crystal grain structure prevents the aluminum-based wiring 7 and the silicon substrate 1 from diffusing through the crystal grain boundary. Without, 600 ℃
No joint failure due to aluminum spike was observed even after the heat treatment for 1 hour. Moreover, as in the embodiment of FIG. 1, since the interface between the TiN film 5 having the fine crystal grain structure and the titanium film 3 is in contact with the TiN film 4 having the columnar structure having a low stress, the heat treatment at 600 ° C. for 1 hour is performed. There was no peeling of the film due to stress.

【0015】次に、図1の実施例の製造方法を図3と図
4により説明する。 (A)表層にN型拡散層31が形成されているP型シリ
コン基板1上に、CVD法によりSiO2絶縁膜2を形
成する。 (B)ホトリソグラフィー法により絶縁膜2のN型拡散
層31に対応する領域に開口32を設ける。
Next, the manufacturing method of the embodiment shown in FIG. 1 will be described with reference to FIGS. (A) The SiO 2 insulating film 2 is formed by the CVD method on the P-type silicon substrate 1 having the N-type diffusion layer 31 formed on the surface thereof. (B) An opening 32 is provided in a region of the insulating film 2 corresponding to the N-type diffusion layer 31 by a photolithography method.

【0016】(C)この開口32によって露出したシリ
コン基板1の表面と絶縁膜2の表面とに例えばスパッタ
リング層を用いて厚さが約200Åのチタン膜3を堆積
する。 (D)続いて、10-8Torr台のベースプレッシャーの真
空チャンバ内にこのシリコン基板をおき、アルゴンガス
と窒素ガスを流量比で1:1となり、全圧が3.5mTo
rrになるように導入し、D.C.マグネトロン法により
0.1W/cm2の直流電力をチタンターゲットに投入
することにより、第1層目の柱状構造のTiN膜4を約
500Å/分の堆積速度で、厚さ約250Åに堆積す
る。この工程において、形成されるTiN膜4の柱の直
径は300Å程度である。この反応性スパッタリング法
では、真空チャンバ内の全圧が3mTorr以上の圧力で成
膜すれば柱状構造のTiN膜が形成される。
(C) A titanium film 3 having a thickness of about 200Å is deposited on the surface of the silicon substrate 1 and the surface of the insulating film 2 exposed by the opening 32 by using, for example, a sputtering layer. (D) Subsequently, the silicon substrate was placed in a vacuum chamber of base pressure of 10 −8 Torr level, the flow ratio of argon gas and nitrogen gas was 1: 1 and the total pressure was 3.5 mTo.
rr. C. By applying a DC power of 0.1 W / cm 2 to the titanium target by the magnetron method, the TiN film 4 having the columnar structure of the first layer is deposited to a thickness of about 250Å at a deposition rate of about 500Å / min. In this step, the diameter of the columns of the TiN film 4 formed is about 300Å. In this reactive sputtering method, if the total pressure in the vacuum chamber is 3 mTorr or more, a TiN film having a columnar structure is formed.

【0017】(E)1層目のTiN膜4の堆積を始めて
から30秒後に基板側に−80Vの電圧の印加を開始す
る。75秒間負電圧を印加することにより、1層目のT
iN膜4上に厚さが約500Åの微結晶粒構造のTiN
膜5が堆積される。この工程で形成されるTiN膜5の
結晶粒は直径100〜150Å程度である。 (F)TiN膜5を形成するための負電圧印加を停止し
た後、引続き30秒間スパッタリングを続けることによ
り、TiN膜5上に柱状構造のTiN膜6が約250Å
の厚さに堆積する。
(E) The application of a voltage of -80 V to the substrate side is started 30 seconds after the first TiN film 4 is deposited. By applying a negative voltage for 75 seconds, the first layer T
TiN having a fine crystal grain structure with a thickness of about 500Å on the iN film 4
The film 5 is deposited. The crystal grains of the TiN film 5 formed in this step have a diameter of about 100 to 150Å. (F) After the negative voltage application for forming the TiN film 5 is stopped, the TiN film 6 having a columnar structure has a TiN film 6 of about 250 Å by continuing the sputtering for 30 seconds.
Deposited to a thickness of.

【0018】(G)TiN膜6上にアルミニウム又はア
ルミニウムにシリコンを1%含有したアルミニウム合金
にてなるアルミニウム系導電膜7を堆積する。その後、
ホトリソグラフィー法によりチタン膜3、TiN膜6,
2,4及び導電膜7にパターン化を施して電極や配線を
形成する。
(G) On the TiN film 6, an aluminum-based conductive film 7 made of aluminum or an aluminum alloy containing 1% of silicon in aluminum is deposited. afterwards,
Titanium film 3, TiN film 6 by photolithography method
The electrodes 2 and 4 and the conductive film 7 are patterned to form electrodes and wirings.

【0019】図2の実施例を製造する方法も図1の実施
例を製造する方法と同様である。ただし、1層目TiN
膜4の膜厚を図1のものより厚い約500Åにするため
にTiN膜4のためのスパッタリング時間を60秒間と
長くする点及び、3層目のTiN膜6を設けないことか
らそのためのスパッタリング工程が不要になる点で異な
っている。
The method of manufacturing the embodiment of FIG. 2 is similar to the method of manufacturing the embodiment of FIG. However, the first layer TiN
In order to make the film thickness of the film 4 thicker than that of FIG. The difference is that the process is unnecessary.

【0020】図3及び図4の製造方法では、バリアメタ
ル層を形成する工程では1層目のTiN膜4を堆積した
後、半導体基板をチャンバから取り出すことなく連続し
て2層目のTiN膜5を堆積することができ、さらに3
層目のTiN膜6を設けるときはそれも基板をチャンバ
から取り出すことなく連続して堆積することができるの
で、TiN膜4とTiN膜5の間、TiN膜5とTiN
膜6の間に自然酸化膜が形成されることはなく、電極や
配線の抵抗が不必要に増加することがない。その結果、
例えば0.3μmサイズのコンタクトホールにおける接
触抵抗も100Ω以下の低い値であった。
In the manufacturing method of FIGS. 3 and 4, in the step of forming the barrier metal layer, after depositing the first-layer TiN film 4, the second-layer TiN film is continuously removed without taking out the semiconductor substrate from the chamber. 5 can be deposited, 3 more
Since the TiN film 6 of the layer can be continuously deposited without taking out the substrate from the chamber, the TiN film 5 and the TiN film 5 and the TiN film 5 can be continuously deposited.
No natural oxide film is formed between the films 6, and the resistance of the electrodes and wiring does not unnecessarily increase. as a result,
For example, the contact resistance in a 0.3 μm size contact hole was a low value of 100Ω or less.

【0021】また、反応性スパッタリング法によるTi
N膜形成に使用するアルゴンと窒素以外のガスを供給し
て結晶粒界及びボイドを遮断する層を形成する必要がな
いことからも、電極配線の抵抗増加を招くことがない。
実施例ではバリアメタル層が3層及び2層である場合に
ついて示しているが、4層以上の場合も柱状構造のTi
N膜と微結晶粒構造のTiN膜を交互に積層することに
より、シリコンの粒界拡散を抑制し、かつ圧縮応力を緩
和したバリアメタル層とすることができる。
Ti produced by the reactive sputtering method is also used.
Since it is not necessary to supply a gas other than argon and nitrogen used for forming the N film to form a layer that blocks the crystal grain boundaries and the voids, the resistance of the electrode wiring does not increase.
Although the examples show the cases where the barrier metal layer is composed of three layers and two layers, Ti having a columnar structure is also formed in the case of four layers or more.
By alternately laminating the N films and the TiN films having a fine crystal grain structure, it is possible to obtain a barrier metal layer in which the grain boundary diffusion of silicon is suppressed and the compressive stress is relaxed.

【0022】[0022]

【発明の効果】本発明ではシリコン基板とアルミニウム
系メタル配線との間のバリアメタル層として、柱状構造
の低密度な下層TiN膜とその上の微結晶粒構造の高密
度なTiN膜とを少なくとも含む多層構造としたので、
柱状構造のTiN膜の結晶粒界及びボイドが微結晶粒構
造のTiN膜で中断され、また微結晶粒構造のTiN膜
のバリア性が高いことから、上層のアルミニウム系配線
と下層のシリコン基板が結晶粒界を通じて拡散すること
がなくなり、その結果、例えば600℃で1時間の熱処
理を施した後にもアルミニウムスパイクによる接合破壊
はみられなかった。
According to the present invention, as the barrier metal layer between the silicon substrate and the aluminum-based metal wiring, at least a low-density lower-layer TiN film having a columnar structure and a high-density TiN film having a fine crystal grain structure thereon are formed. Because it has a multilayer structure including
Since the crystal grain boundaries and voids of the columnar TiN film are interrupted by the fine crystal grain TiN film and the TiN film having the fine crystal grain structure has a high barrier property, the upper aluminum-based wiring and the lower silicon substrate are It did not diffuse through the grain boundaries, and as a result, no junction breakage due to aluminum spikes was observed even after heat treatment at 600 ° C. for 1 hour.

【0023】また、高圧縮応力をもつ微結晶粒構造のT
iN膜の少なくとも下層には低応力の柱状構造のTiN
膜が存在するので、600℃1時間の高温処理によって
もバリア層の剥離もなかった。高圧縮応力をもつ微結晶
粒構造のTiN膜の上下を低応力の柱状構造のTiN膜
で挾む構造にすることにより、さらに応力を緩和するこ
とができる。
Further, the T having a fine grain structure having a high compressive stress is used.
At least the lower layer of the iN film has a low stress columnar structure TiN.
Since the film was present, the barrier layer was not peeled off even by the high temperature treatment at 600 ° C. for 1 hour. The stress can be further alleviated by forming a structure in which the TiN film having a fine crystal grain structure having a high compressive stress is sandwiched between the TiN film having a columnar structure having a low stress.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示す要部断面図である。FIG. 1 is a sectional view of an essential part showing an embodiment.

【図2】他の実施例を示す要部断面図である。FIG. 2 is a cross-sectional view of an essential part showing another embodiment.

【図3】一実施例の製造方法を示す工程前半の断面図で
ある。
FIG. 3 is a cross-sectional view of the first half of the steps showing the manufacturing method of the embodiment.

【図4】同実施例の製造方法を示す工程後半の断面図で
ある。
FIG. 4 is a cross-sectional view of the latter half of the steps showing the manufacturing method of the embodiment.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 絶縁膜 3 チタン膜 4,6 柱状構造のTiN膜 5 微結晶粒構造のTiN膜 7 アルミニウム系配線 31 N型拡散層 32 コンタクトホール 1 P-type silicon substrate 2 Insulating film 3 Titanium film 4, 6 TiN film having a columnar structure 5 TiN film having a microcrystalline structure 7 Aluminum-based wiring 31 N-type diffusion layer 32 Contact hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板を被う絶縁膜にシリコン基
板の拡散層上でコンタクトホールが形成され、そのコン
タクトホールではシリコン基板とオーミック接触を得る
ためのメタル低抵抗層及びその上のバリアメタル層を介
してアルミニウム系メタル配線層が形成されており、前
記バリアメタル層は柱状構造の低密度な下層とその上の
微結晶粒構造の高密度な層とを少なくとも含む多層構造
であることを特徴とする半導体装置。
1. A contact hole is formed in an insulating film covering a silicon substrate on a diffusion layer of the silicon substrate, and in the contact hole, a metal low resistance layer for obtaining ohmic contact with the silicon substrate and a barrier metal layer thereon. An aluminum-based metal wiring layer is formed through the barrier metal layer, and the barrier metal layer has a multi-layer structure including at least a lower layer having a columnar structure and a higher layer having a fine crystal grain structure on the lower layer. Semiconductor device.
【請求項2】 前記バリアメタル層は柱状構造で低密度
な下層とその上の微結晶粒構造で高密度な層と、さらに
その上の柱状構造で低密度な層とからなる3層構造であ
る請求項1に記載の半導体装置。
2. The barrier metal layer has a three-layer structure including a lower layer having a columnar structure and a lower density, a layer having a fine crystal grain structure and a higher density thereon, and a layer having a columnar structure and a lower density thereon. The semiconductor device according to claim 1.
【請求項3】 以下の工程(A)から(G)を含んでシ
リコン基板とのコンタクトを形成することを特徴とする
半導体装置の製造方法。 (A)不純物拡散層が形成されたシリコン基板を被う絶
縁膜のうち、シリコン基板とコンタクトを形成すべき領
域にコンタクトホールを形成する工程、(B)メタル低
抵抗膜を堆積する工程、(C)そのメタル低抵抗膜上
に、反応性スパッタリングを行ない、柱状構造で低密度
な第1層目の窒化チタン膜を堆積する工程、(D)シリ
コン基板側に負電圧を印加し、チタンをターゲットとし
たアルゴンガスと窒素ガスの雰囲気中での反応性スパッ
タリングにより微結晶粒構造で高密度な第2層目の窒化
チタン膜を堆積する工程、(E)シリコン基板側の電圧
印加を停止し、チタンをターゲットとしたアルゴンガス
と窒素ガスの雰囲気中での反応性スパッタリングにより
柱状構造で低密度な第3層目の窒化チタン膜を堆積する
工程、(F)アルミニウム系導電膜を堆積する工程、
(G)前記導電膜、第1、第2及び第3層目の窒化シリ
コン膜、並びに前記メタル低抵抗膜をパターン化して配
線とする工程。
3. A method of manufacturing a semiconductor device, which comprises forming a contact with a silicon substrate by including the following steps (A) to (G). (A) A step of forming a contact hole in a region of the insulating film covering the silicon substrate on which the impurity diffusion layer is formed to form a contact with the silicon substrate, (B) a step of depositing a metal low resistance film, C) A step of performing reactive sputtering on the metal low-resistance film to deposit a titanium nitride film of the first layer having a columnar structure and a low density, (D) applying a negative voltage to the silicon substrate side to remove titanium. A step of depositing a high-density second layer titanium nitride film having a fine crystal grain structure by reactive sputtering in a target atmosphere of argon gas and nitrogen gas, (E) stopping the voltage application on the silicon substrate side. A step of depositing a low density third layer titanium nitride film having a columnar structure by reactive sputtering in an atmosphere of argon gas and nitrogen gas targeting titanium, (F) aluminum Depositing a um based conductive film,
(G) A step of patterning the conductive film, the silicon nitride films of the first, second and third layers, and the metal low resistance film into wiring.
JP32846492A 1992-11-13 1992-11-13 Semiconductor device and manufacture threof Pending JPH06151815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32846492A JPH06151815A (en) 1992-11-13 1992-11-13 Semiconductor device and manufacture threof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32846492A JPH06151815A (en) 1992-11-13 1992-11-13 Semiconductor device and manufacture threof

Publications (1)

Publication Number Publication Date
JPH06151815A true JPH06151815A (en) 1994-05-31

Family

ID=18210564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32846492A Pending JPH06151815A (en) 1992-11-13 1992-11-13 Semiconductor device and manufacture threof

Country Status (1)

Country Link
JP (1) JPH06151815A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697729A2 (en) * 1994-08-18 1996-02-21 Oki Electric Industry Co., Ltd. Contact structure using barrier metal and method of manufacturing the same
US5763948A (en) * 1994-09-22 1998-06-09 Sony Corporation Semiconductor apparatus including a tin barrier layer having a (III) crystal lattice direction
US5880526A (en) * 1996-04-15 1999-03-09 Tokyo Electron Limited Barrier metal layer
US6066891A (en) * 1994-04-28 2000-05-23 Nippondenso Co., Ltd Electrode for semiconductor device including an alloy wiring layer for reducing defects in an aluminum layer and method for manufacturing the same
US6650017B1 (en) 1999-08-20 2003-11-18 Denso Corporation Electrical wiring of semiconductor device enabling increase in electromigration (EM) lifetime
JP2006116837A (en) * 2004-10-22 2006-05-11 Sony Corp Liquid discharging head, liquid discharging apparatus and manufacturing method for liquid discharging head
JP2006237394A (en) * 2005-02-25 2006-09-07 Rohm Co Ltd Semiconductor device and its fabrication process
JP2010209465A (en) * 2009-02-20 2010-09-24 Asm Internatl Nv Protection of conductor from oxidation in deposition chamber
US7812452B2 (en) 2006-09-11 2010-10-12 Oki Semiconductor Co., Ltd. Semiconductor device having barrier layer comprised of dissimilar materials, and method for fabricating the same
JP2010267899A (en) * 2009-05-18 2010-11-25 Renesas Electronics Corp Method of manufacturing semiconductor device
JP2011044477A (en) * 2009-08-19 2011-03-03 Stanley Electric Co Ltd Optical semiconductor device and method for manufacturing the same
US7964502B2 (en) * 2008-11-25 2011-06-21 Freescale Semiconductor, Inc. Multilayered through via
US8889565B2 (en) 2009-02-13 2014-11-18 Asm International N.V. Selective removal of oxygen from metal-containing materials
KR20160124001A (en) 2015-04-16 2016-10-26 르네사스 일렉트로닉스 가부시키가이샤 Semiconductor device and method of manufacturing same
JP2018050009A (en) * 2016-09-23 2018-03-29 東芝メモリ株式会社 Semiconductor device and method of manufacturing the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066891A (en) * 1994-04-28 2000-05-23 Nippondenso Co., Ltd Electrode for semiconductor device including an alloy wiring layer for reducing defects in an aluminum layer and method for manufacturing the same
US6348735B1 (en) 1994-04-28 2002-02-19 Nippondenso Co., Lt. Electrode for semiconductor device and method for manufacturing same
EP0697729A2 (en) * 1994-08-18 1996-02-21 Oki Electric Industry Co., Ltd. Contact structure using barrier metal and method of manufacturing the same
EP0697729A3 (en) * 1994-08-18 1996-11-13 Oki Electric Ind Co Ltd Contact structure using barrier metal and method of manufacturing the same
US5654235A (en) * 1994-08-18 1997-08-05 Oki Electric Industry Co., Ltd. Method of manufacturing contact structure using barrier metal
US5920122A (en) * 1994-08-18 1999-07-06 Oki Electric Industry Co., Ltd. Contact structure using barrier metal and method of manufacturing the same
US5763948A (en) * 1994-09-22 1998-06-09 Sony Corporation Semiconductor apparatus including a tin barrier layer having a (III) crystal lattice direction
US5880526A (en) * 1996-04-15 1999-03-09 Tokyo Electron Limited Barrier metal layer
US6650017B1 (en) 1999-08-20 2003-11-18 Denso Corporation Electrical wiring of semiconductor device enabling increase in electromigration (EM) lifetime
US6908857B2 (en) 1999-08-20 2005-06-21 Denso Corporation Method of manufacturing semiconductor device
JP2006116837A (en) * 2004-10-22 2006-05-11 Sony Corp Liquid discharging head, liquid discharging apparatus and manufacturing method for liquid discharging head
JP4661162B2 (en) * 2004-10-22 2011-03-30 ソニー株式会社 Liquid discharge head, liquid discharge apparatus, and method of manufacturing liquid discharge head
JP2006237394A (en) * 2005-02-25 2006-09-07 Rohm Co Ltd Semiconductor device and its fabrication process
US7812452B2 (en) 2006-09-11 2010-10-12 Oki Semiconductor Co., Ltd. Semiconductor device having barrier layer comprised of dissimilar materials, and method for fabricating the same
US7964502B2 (en) * 2008-11-25 2011-06-21 Freescale Semiconductor, Inc. Multilayered through via
US8178950B2 (en) 2008-11-25 2012-05-15 Freescale Semiconductor, Inc. Multilayered through a via
US8889565B2 (en) 2009-02-13 2014-11-18 Asm International N.V. Selective removal of oxygen from metal-containing materials
JP2010209465A (en) * 2009-02-20 2010-09-24 Asm Internatl Nv Protection of conductor from oxidation in deposition chamber
JP2010267899A (en) * 2009-05-18 2010-11-25 Renesas Electronics Corp Method of manufacturing semiconductor device
JP2011044477A (en) * 2009-08-19 2011-03-03 Stanley Electric Co Ltd Optical semiconductor device and method for manufacturing the same
US8597969B2 (en) 2009-08-19 2013-12-03 Stanley Electric Co., Ltd. Manufacturing method for optical semiconductor device having metal body including at least one metal layer having triple structure with coarse portion sandwiched by tight portions of a same material as coarse portion
KR20160124001A (en) 2015-04-16 2016-10-26 르네사스 일렉트로닉스 가부시키가이샤 Semiconductor device and method of manufacturing same
JP2018050009A (en) * 2016-09-23 2018-03-29 東芝メモリ株式会社 Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH06151815A (en) Semiconductor device and manufacture threof
JP3353727B2 (en) Method for forming wiring structure of semiconductor device
JPH08232080A (en) New tungsten welding process
JPH07221181A (en) Formation of metal wiring of semiconductor element
JP3328359B2 (en) Method for manufacturing semiconductor device
JP2001176875A (en) Semiconductor device
JP3447922B2 (en) Capacitive element and method of manufacturing the same
JPH0594990A (en) Manufacture of multilayer interconnection
JPH04256313A (en) Manufacture of semiconductor device
JPH06140401A (en) Integrated circuit device
JP3329148B2 (en) Wiring formation method
JP3339901B2 (en) Semiconductor device having a multilayer wiring structure and method of manufacturing the same
JPH02235372A (en) Semiconductor device and its manufacture
JPH065544A (en) Manufacture of semiconductor device
JPH05129223A (en) Manufacture of semiconductor device
JP3518110B2 (en) Multi-layer wiring formation method
JPH0472733A (en) Manufacture of semiconductor device
JPH0235731A (en) Manufacture of semiconductor device
JPH06318591A (en) Wiring structure of semiconductor integrated circuit
JPH11284071A (en) Semiconductor device and manufacture thereof
JPS62118539A (en) Formation of multilayer interconnection
JP2003124216A (en) Seed film for wiring and wiring method of semiconductor device
JPH02125431A (en) Semiconductor device
JPH06318594A (en) Wiring structure of semiconductor integrated circuit and its manufacture
JPH04278540A (en) Al alloy multilayered wiring structure