JPH06148399A - Multilayer film mirror for x rays and x-ray microscope - Google Patents

Multilayer film mirror for x rays and x-ray microscope

Info

Publication number
JPH06148399A
JPH06148399A JP4295459A JP29545992A JPH06148399A JP H06148399 A JPH06148399 A JP H06148399A JP 4295459 A JP4295459 A JP 4295459A JP 29545992 A JP29545992 A JP 29545992A JP H06148399 A JPH06148399 A JP H06148399A
Authority
JP
Japan
Prior art keywords
ray
multilayer film
mirror
refractive index
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4295459A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakamura
浩 中村
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4295459A priority Critical patent/JPH06148399A/en
Publication of JPH06148399A publication Critical patent/JPH06148399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To improve an X-ray transmittance by a method wherein a multilayer film is prepared by laminating alternately a substance having a large difference between a refractive index for an X-ray wavelength light and a refractive index in vacuum and a substance having a small difference between them and reflectances of this film for visible and ultraviolet lights are made less than a specified value. CONSTITUTION:A multilayer film layer 12 of a multilayer film mirror is formed by laminating an aluminum oxide layer 1 of a prescribed thickness and a lithium fluoride layer 2 of a prescribed thickness alternately in a plurality of prescribed numbers on a fused quartz substrate 6. When a visible or ultraviolet light is applied to this multilayer film mirror formed of the aluminum oxide layers 1 and the lithium fluoride layers 2, the reflectance at this time is less than 10 and thus it is unnecessary to provide a filter for cutting the visible and the ultraviolet lights.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線領域の波長を有す
る光(以下、X線と略す)に用いられる多層膜ミラー、
特に、軟X線を用いた顕微鏡の光学系での使用に好適な
多層膜ミラーとこれを用いたX線顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer film mirror used for light having a wavelength in the X-ray region (hereinafter abbreviated as X-ray).
In particular, the present invention relates to a multilayer mirror suitable for use in an optical system of a microscope using soft X-rays, and an X-ray microscope using the same.

【0002】[0002]

【従来の技術】X線領域の波長に対する物質の屈折率n
は、n=1−δ−iβ (δ、βは共に実数)と表さ
れ、δ、βともに1に比べて非常に小さい(屈折率の虚
部はX線の吸収を表す)。そのため、可視光のように屈
折現象を利用したレンズ等の光学素子は使用できない。
2. Description of the Related Art The refractive index n of a substance with respect to a wavelength in the X-ray region
Is represented as n = 1-δ-iβ (both δ and β are real numbers), and both δ and β are much smaller than 1 (the imaginary part of the refractive index represents absorption of X-rays). Therefore, an optical element such as a lens that utilizes a refraction phenomenon such as visible light cannot be used.

【0003】そこで、X線を対象とする場合は反射を利
用した光学系が用いられる。しかし、全反射臨界角θc
(波長2.5 nmで5゜程度以下)よりも垂直に近い入射角
では反射率が非常に小さい。そのため、界面の振幅反射
率の高い物質の組み合わせを何層も積層することで反射
面を多数(例えば数百層)設け、それぞれの反射波の位
相が合うように光学干渉理論に基づいて各層の厚さを調
整した多層膜ミラーが用いられている。
Therefore, when X-rays are used, an optical system utilizing reflection is used. However, the total reflection critical angle θc
The reflectance is very small at an incident angle closer to vertical than that (about 5 ° or less at a wavelength of 2.5 nm). Therefore, a large number of layers (for example, hundreds of layers) are provided by stacking multiple layers of a combination of substances having a high amplitude reflectance at the interface, and each layer of each layer is based on the optical interference theory so that the phases of the respective reflected waves match. A multilayer mirror whose thickness is adjusted is used.

【0004】より具体的に説明すれば、多層膜ミラー
は、「使用するX線波長での屈折率と真空の屈折率(=
1)との差」が小さい物質と、大きい物質とを交互に積
層することによって得られる。多層膜の代表的な例とし
ては、W(タングステン)/C(カーボン)、Mo(モ
リブデン)/Si(シリコン)などの組み合わせが従来
から知られており、スパッタリング、真空蒸着、CVD
などの薄膜形成技術によって形成されていた。
More specifically, the multilayer mirror has a "refractive index at the used X-ray wavelength and a vacuum refractive index (=
It is obtained by alternately stacking a substance having a small difference from 1) and a substance having a large difference. As typical examples of the multilayer film, combinations of W (tungsten) / C (carbon), Mo (molybdenum) / Si (silicon), etc. have been conventionally known, and sputtering, vacuum deposition, CVD
It was formed by a thin film forming technique such as.

【0005】このような多層膜は、測定光として波長2
〜5nmの軟X線を利用する軟X線顕微鏡の光学素子とし
て用いられいる。そして、この軟X線の波長領域で高い
反射率が得られるように、Ni(ニッケル)/LiF
(フッ化リチウム)、Ni/C(カーボン)等の組み合
わせの多層膜を用いていた。ところで、軟X線顕微鏡に
おいてX線源として用いるレーザープラズマX線源やシ
ンクロトロン放射光からは、所望のX線以外に可視、紫
外領域の波長を有する光(以下、可視、紫外光と略す)
も出射される。そのため、前記顕微鏡に組み込まれた多
層膜には可視、紫外光も入射することになる。前記多層
膜を構成する物質にニッケルなどの金属薄膜を用いた場
合、これら金属薄膜は可視、紫外光にも高い反射率を有
するので、可視、紫外光は軟X線と共に検出器まで到達
することになる。軟X線顕微鏡で検出器として用いられ
る写真フィルム、レジスト、CCD等は、可視、紫外光
に対しても感度があるため、得られた画像の解像度が悪
くなる場合があった。そのため、前記金属薄膜を有する
多層膜を用いた光学系を使用する際には、これら不必要
な光を取り除く必要があった。そこで、従来の軟X線顕
微鏡では、可視、紫外光を取り除くためにBe(ベリリ
ウム)、C(カーボン)等の膜からなる可視、紫外光カ
ット用フィルタを多層膜ミラーと組み合わせて使用して
いた。
Such a multilayer film has a wavelength of 2 as a measuring light.
It is used as an optical element of a soft X-ray microscope that utilizes soft X-rays of ~ 5 nm. Then, in order to obtain a high reflectance in the wavelength region of this soft X-ray, Ni (nickel) / LiF
A multilayer film of a combination of (lithium fluoride) and Ni / C (carbon) was used. By the way, from a laser plasma X-ray source or synchrotron radiation used as an X-ray source in a soft X-ray microscope, light having wavelengths in the visible and ultraviolet regions other than desired X-rays (hereinafter, abbreviated as visible and ultraviolet light)
Is also emitted. Therefore, visible light and ultraviolet light also enter the multilayer film incorporated in the microscope. When a metal thin film such as nickel is used as the material forming the multilayer film, the metal thin film has a high reflectance for visible light and ultraviolet light, so that the visible light and ultraviolet light reach the detector together with the soft X-ray. become. Since photographic films, resists, CCDs, etc. used as detectors in a soft X-ray microscope have sensitivity to visible light and ultraviolet light, the resolution of the obtained image may be poor. Therefore, when using an optical system using a multilayer film having the metal thin film, it is necessary to remove these unnecessary lights. Therefore, in the conventional soft X-ray microscope, in order to remove visible and ultraviolet light, a visible and ultraviolet light cutting filter made of a film of Be (beryllium), C (carbon) or the like is used in combination with a multilayer film mirror. .

【0006】[0006]

【発明が解決しようとする課題】ところが、前記可視、
紫外光カット用フィルタを用いると、可視、紫外光と共
にX線も吸収されていた。そのため、このようなフィル
タと多層膜ミラーを組み合わせると、検出器に達するX
線の強度が著しく低下していた。単位時間当たりに検出
器に入射するX線量が少ないと、露光時間を長くする必
要が生じる。しかし、長時間の露光は、露光中に生じる
ノイズ等(不要な光)が蓄積されるので、このノイズの
強度が大きくなり検出器に入射するノイズの強度とX線
の強度との差が小さくなる。そのため、像のコントラス
トが低下する。また、顕微鏡の周辺からの振動による像
の劣化、生体観察の際には試料の放射線損傷の増加など
多数の好ましくない影響がでてくる。さらに、X線顕微
鏡の光学系においては、多層膜ミラーと可視、紫外光カ
ット用フィルタとを組み合わせて配置しなければなら
ず、構成が複雑になるという問題があった。
However, the above visible
When the filter for cutting ultraviolet light was used, X-rays were absorbed together with visible light and ultraviolet light. Therefore, when such a filter and a multilayer mirror are combined, X reaching the detector is reached.
The strength of the wire was significantly reduced. When the X-ray dose incident on the detector per unit time is small, it is necessary to lengthen the exposure time. However, in long-time exposure, noise and the like (unnecessary light) generated during the exposure is accumulated, so that the intensity of this noise becomes large and the difference between the intensity of the noise incident on the detector and the intensity of the X-ray is small. Become. Therefore, the contrast of the image is lowered. In addition, there are many unfavorable effects such as image deterioration due to vibration from the periphery of the microscope and increased radiation damage to the sample during living body observation. Further, in the optical system of the X-ray microscope, it is necessary to combine and arrange the multilayer film mirror and the filter for cutting visible light and ultraviolet light, which causes a problem that the configuration becomes complicated.

【0007】本発明は、このような問題を解決すること
を目的とする。
The present invention aims to solve such a problem.

【0008】[0008]

【課題を解決するための手段】上記目的のために、本発
明は、「X線領域の波長を有する光に対する屈折率と真
空の屈折率との差」が大きい物質と小さい物質とが交互
に積層された多層膜を有するX線用多層膜ミラーにおい
て、可視、紫外光に対する反射率が10%未満となるよう
に、該多層膜を構成する物質を選択した。
To achieve the above object, the present invention provides a method in which a substance having a large difference between the refractive index for light having a wavelength in the X-ray region and the refractive index of a vacuum is alternating with a substance having a small difference. In the multilayer mirror for X-rays having a laminated multilayer film, the material forming the multilayer film was selected so that the reflectance with respect to visible light and ultraviolet light was less than 10%.

【0009】また、「X線領域の波長を有する光に対す
る屈折率と真空の屈折率との差」が大きい物質と小さい
物質とが交互に積層された多層膜を有するX線用多層膜
ミラーにおいて、前記多層膜の最上層に、可視、紫外光
の反射を防止する反射防止層を形成した。
Also, in a multilayer film mirror for X-rays having a multilayer film in which a substance having a large difference between the refractive index for light having a wavelength in the X-ray region and a vacuum refractive index is stacked alternately with a small substance. An antireflection layer for preventing reflection of visible light and ultraviolet light was formed on the uppermost layer of the multilayer film.

【0010】[0010]

【作用】波長 2.3〜4.3 nmのX線を使用する軟X線顕微
鏡では、可視、紫外光カット用フィルタ(以下単にフィ
ルタと略す)を形成する物質としてベリリウムが使われ
ていた。このベリリウムフィルタとニッケルなどの金属
薄膜を用いた多層膜ミラーとを組み合わせて光学系を構
成した場合、この光学系を通過するX線の初期強度(光
学系入射前の強度)I0 に対する通過後の強度Iの割合
を示すX線透過効率K1 は次式で表せる。
In a soft X-ray microscope using X-rays having a wavelength of 2.3 to 4.3 nm, beryllium was used as a substance forming a filter for cutting visible light and ultraviolet light (hereinafter simply referred to as a filter). When an optical system is configured by combining this beryllium filter and a multilayer mirror using a metal thin film such as nickel, after passing through the initial intensity (intensity before incidence of the optical system) I 0 of X-rays passing through this optical system. The X-ray transmission efficiency K1 showing the ratio of the intensity I of is expressed by the following equation.

【0011】 K1 =I/I0 = exp(−μ、ρ、t)×R1 ここで、μは前記フィルタを形成する物質のX線の線吸
収係数、ρは該物質の密度、tは前記フィルタの膜厚、
R1 は多層膜ミラーの反射率である。前記〔 exp(−
μ、ρ、t)〕はフィルタの透過率を示すので、X線透
過効率K1 はフィルタの透過率と多層膜ミラーの反射率
の積によって表されることになる。フィルタの透過率は
1よりも小さい値であるから、前記光学系全体のX線の
反射率は、多層膜ミラーの反射率よりも小さくなる。
K 1 = I / I 0 = exp (−μ, ρ, t) × R 1 where μ is the X-ray absorption coefficient of the substance forming the filter, ρ is the density of the substance, and t is the above. Filter thickness,
R1 is the reflectance of the multilayer mirror. The above [exp (-
.mu., .rho., t)] indicates the transmittance of the filter, and therefore the X-ray transmission efficiency K1 is represented by the product of the transmittance of the filter and the reflectance of the multilayer film mirror. Since the transmittance of the filter is smaller than 1, the X-ray reflectance of the entire optical system is smaller than that of the multilayer mirror.

【0012】これに対し、多層膜自身で所望の可視、紫
外光カットの効果が得られる多層膜ミラーの反射率をR
2 とした場合、光学系のX線透過効率K2 は次式で表せ
る。 K2 =I/I0 =R2 従って、前記K1 とK2 を比較して所望のX線透過効率
が得られる多層膜を使用することで、光学系の効率を高
めることが可能となる。本発明者らの研究によれば、前
記ニッケルなどの金属薄膜の代わりに酸化アルミニウム
(Al2O3 )もしくは酸化ハフニウム(HfO2)を用いて多
層膜を構成すると、可視、紫外光に対する反射率が低下
することが分かった。この場合、フィルタを設けなくて
も所定量の可視、紫外光をカットする(反射率を低下さ
せる)ことができるので、従来のようなフィルタによる
X線の吸収損失がなくなる。そのため、前記酸化アルミ
ニウムもしくは酸化ハフニウムを用いた多層膜ミラーの
反射率R2 がニッケルを用いた多層膜ミラーの反射率R
1 よりも若干低くても、従来の可視、紫外光カット用フ
ィルタを備えた光学系と比較した場合、前記X線透過効
率を高くすることが可能となる。
On the other hand, the reflectance of the multi-layer film mirror which can obtain the desired effect of cutting visible and ultraviolet light by the multi-layer film itself is R.
When the value is 2, the X-ray transmission efficiency K2 of the optical system can be expressed by the following equation. K2 = I / I 0 = R2 Therefore, by using a multilayer film desired X-ray transmission efficiency than the K1 and K2 is obtained, it is possible to increase the efficiency of the optical system. According to the research by the present inventors, when a multilayer film is formed by using aluminum oxide (Al 2 O 3 ) or hafnium oxide (HfO 2 ) instead of the metal thin film such as nickel, the reflectance with respect to visible light and ultraviolet light is increased. Was found to decrease. In this case, it is possible to cut a predetermined amount of visible light and ultraviolet light (reduce the reflectance) without providing a filter, so that there is no X-ray absorption loss due to the conventional filter. Therefore, the reflectance R2 of the multilayer mirror using aluminum oxide or hafnium oxide is the reflectance R of the multilayer mirror using nickel.
Even if it is slightly lower than 1, the X-ray transmission efficiency can be increased when compared with an optical system equipped with a conventional visible light and ultraviolet light cut filter.

【0013】一方、使用波長がカーボンのK吸収端(波
長4.3 nm)より長波長側である場合には、この波長域で
透過率の高いカーボンの自立膜(単独で設置された膜)
が可視、紫外光カット用フィルタとして用いられてい
た。この場合、可視、紫外光をカットするために必要な
カーボンの膜厚は500 nm程度であるが、このカーボンの
自立膜をその程度まで薄くすることは困難であった。そ
のため、通常はカーボンの膜厚を2μm以上に設定した
のでフィルタによるX線の吸収が大きく、多層膜ミラー
と組み合わせた光学系を通過してくるX線の透過効率は
低くなる。
On the other hand, when the wavelength used is on the longer wavelength side than the K absorption edge of carbon (wavelength 4.3 nm), a self-supporting carbon film having high transmittance in this wavelength range (a film installed independently)
Was used as a filter for cutting visible and ultraviolet light. In this case, the film thickness of carbon required to cut visible and ultraviolet light is about 500 nm, but it was difficult to thin the carbon self-supporting film to that extent. Therefore, since the thickness of carbon is usually set to 2 μm or more, the absorption of X-rays by the filter is large, and the transmission efficiency of X-rays passing through the optical system combined with the multilayer film mirror is low.

【0014】そこで、スパッタリング、真空蒸着、CV
Dなどの成膜法により、可視、紫外光をほとんど反射し
ないグラファイト状のカーボンを多層膜ミラーの上(X
線入射面)に500 nm以上の厚さで成膜することにより、
可視、紫外光の反射を防ぐようにした。この場合、多層
膜上に直接カーボンのフィルタを形成させるので、該フ
ィルタの厚さを薄くすることができる。そのため、この
フィルタによるX線の吸収を抑えることができる。従っ
て、フィルタを含めた光学系のX線透過効率は高くな
る。
Therefore, sputtering, vacuum deposition, CV
Graphite-like carbon that hardly reflects visible and ultraviolet light is deposited on the multilayer mirror (X
By forming a film with a thickness of 500 nm or more on the line incidence surface,
It was designed to prevent reflection of visible and ultraviolet light. In this case, since the carbon filter is directly formed on the multilayer film, the thickness of the filter can be reduced. Therefore, the absorption of X-rays by this filter can be suppressed. Therefore, the X-ray transmission efficiency of the optical system including the filter becomes high.

【0015】また、本発明では、多層膜ミラーと可視、
紫外光カット用フィルタとを一体化することができるの
で、X線用光学系を小型化(コンパクト化)することが
可能となる。なお、軟X線領域で用いる多層膜ミラーの
可視、紫外光に対する反射率は小さいほど好ましいが、
実用上は10%以下であれば良い。
Further, in the present invention, a multilayer mirror and visible
Since it can be integrated with the ultraviolet light cut filter, the X-ray optical system can be miniaturized. In addition, the smaller the reflectance of the multilayer mirror used in the soft X-ray region with respect to visible light and ultraviolet light, the better,
Practically, it should be 10% or less.

【0016】[0016]

【実施例1】図1は、本発明の一実施例を示す多層膜ミ
ラーの概略垂直断面図である。図1の多層膜ミラーは、
溶融石英基板6と、この基板6上にイオンビームスパッ
タ法により厚さ0.7 nmの酸化アルミニウム(Al2O3 )層
1と厚さ1nmのフッ化リチウム(LiF )層2を交互にそ
れぞれ100 層(図では層数を省略している)ずつ積層し
た多層膜12からなる。また、比較のために、おなじ基
板上に同様の成膜法により厚さ0.7nm のニッケルと1nm
のフッ化リチウムを交互にそれぞれ100 層ずつ積層した
多層膜を備えた多層膜ミラーを作製した。
EXAMPLE 1 FIG. 1 is a schematic vertical sectional view of a multilayer mirror showing an example of the present invention. The multilayer mirror of FIG.
A fused silica substrate 6 and an aluminum oxide (Al 2 O 3 ) layer 1 having a thickness of 0.7 nm and a lithium fluoride (LiF) layer 2 having a thickness of 1 nm are alternately formed on the substrate 6 by 100 layers. The multilayer film 12 is formed by stacking layers (the number of layers is omitted in the figure). For comparison, the same film deposition method was used to deposit 0.7 nm nickel and 1 nm nickel on the same substrate.
A multi-layered film mirror having a multi-layered film in which 100 layers of the above lithium fluoride were alternately laminated was prepared.

【0017】これら2つの多層膜ミラーに対し、波長3.
38nmの軟X線を用いてそれぞれ直入射(X線を垂直方向
から入射させる)反射率を測定したところ、本実施例
(酸化アルミニウム/フッ化リチウムの組み合わせ)の
多層膜ミラーの反射率は7%、ニッケル/フッ化リチウ
ムの組み合わせの多層膜ミラーの反射率は20%であっ
た。
For these two multilayer mirrors, a wavelength of 3.
When the direct incidence (X-ray is incident from the vertical direction) reflectance was measured using soft X-rays of 38 nm, the reflectance of the multilayer mirror of this example (combination of aluminum oxide / lithium fluoride) was 7 %, The reflectance of the multilayer film mirror of the combination of nickel / lithium fluoride was 20%.

【0018】次に、これら2つの多層膜ミラーに対し
て、可視、紫外光(波長2000〜6000Å)を照射し、その
時の反射率の測定した。その結果を図3に示す。図3か
ら明らかなように、従来のニッケル/フッ化リチウムの
組み合わせの多層膜がこの波長領域において高い反射率
を有するのに対し、本実施例(酸化アルミニウム/フッ
化リチウムの組み合わせ)の多層膜では可視、紫外光の
反射率は7%未満(数%程度)であった。
Next, these two multilayer mirrors were irradiated with visible and ultraviolet light (wavelength 2000 to 6000Å), and the reflectance at that time was measured. The result is shown in FIG. As is apparent from FIG. 3, the conventional multilayer film of the nickel / lithium fluoride combination has a high reflectance in this wavelength region, whereas the multilayer film of the present embodiment (aluminum oxide / lithium fluoride combination). Then, the reflectance of visible light and ultraviolet light was less than 7% (about several%).

【0019】さらに、実際の軟X線顕微鏡の光学系で使
用するように、ニッケル/フッ化リチウムの組み合わせ
の従来の多層膜ミラー7と厚さ2μmのベリリウムから
なるフィルタ8と組み合わせた状態でX線透過効率を測
定した。図5は、この時の測定状態を示す図である。X
線10を、フィルタ8を介して多層膜ミラー7に照射す
る。そして、このミラー7で反射したX線11の強度を
検出器9で測定してX線透過効率を求めた。この時のX
線透過効率は、多層膜ミラー単独で測定した時よりも低
下し約1%であった。この値は、本実施例で用いた酸化
アルミニウム/フッ化リチウムの組み合わせの多層膜ミ
ラーを用いた場合のX線透過効率7%よりも低い。つま
り、本実施例の多層膜ミラーでは、可視、紫外光を所定
量カットした時のX線の透過効率を従来よりも高くする
ことが可能となる。
Further, as used in an optical system of an actual soft X-ray microscope, X is used in a state of being combined with a conventional multilayer mirror 7 of nickel / lithium fluoride combination and a filter 8 made of beryllium having a thickness of 2 μm. The linear transmission efficiency was measured. FIG. 5 is a diagram showing a measurement state at this time. X
The line 10 is applied to the multilayer mirror 7 through the filter 8. Then, the intensity of the X-ray 11 reflected by the mirror 7 was measured by the detector 9 to obtain the X-ray transmission efficiency. X at this time
The line transmission efficiency was about 1%, which was lower than that when measured with the multilayer mirror alone. This value is lower than the X-ray transmission efficiency of 7% in the case of using the multilayer film mirror of the combination of aluminum oxide / lithium fluoride used in this example. That is, in the multilayer mirror of this embodiment, it is possible to increase the X-ray transmission efficiency when the visible light and the ultraviolet light are cut by a predetermined amount, compared to the conventional case.

【0020】[0020]

【実施例2】図2は、本発明の一実施例を示す多層膜ミ
ラーの概略垂直断面図である。図2の多層膜ミラーは、
溶融石英基板6と、この基板6上にイオンビームスパッ
タ法により厚さ1nmのニッケル(Ni)層1と厚さ1.25nm
のカーボン(C)層2を交互にそれぞれ100 層(図では
層数を省略している)ずつ積層した多層膜12と、この
多層膜12上に真空蒸着により成膜した厚さ500 nmのグ
ラファイト状カーボン層3からなる。また、比較のため
に、グラファイト状カーボン層3を設けていない他は実
施例2と同様の構成の多層膜ミラーを作製した。
[Embodiment 2] FIG. 2 is a schematic vertical sectional view of a multilayer mirror according to an embodiment of the present invention. The multilayer mirror shown in FIG.
A fused silica substrate 6, a nickel (Ni) layer 1 having a thickness of 1 nm and a thickness of 1.25 nm formed on the substrate 6 by an ion beam sputtering method.
100 layers (the number of layers is omitted in the figure) of 100 layers of carbon (C) layers are alternately laminated, and a 500 nm-thick graphite film formed on the multilayer film 12 by vacuum vapor deposition. The carbon layer 3 is formed. For comparison, a multilayer mirror having the same structure as in Example 2 was prepared except that the graphite carbon layer 3 was not provided.

【0021】これら2つの多層膜ミラーに対し、波長4.
5 nmの軟X線を用いてそれぞれ直入射(X線を垂直方向
から入射させる)反射率を測定したところ、本実施例の
多層膜ミラーの反射率は18%、グラファイト状カーボン
層3を設けていない多層膜ミラーの反射率は31%であっ
た。次に、これら2つの多層膜ミラーに対して、可視、
紫外光(波長2000〜6000Å)を照射し、その時の反射率
の測定した。その結果を図4に示す。図4から明らかな
ように、グラファイト状カーボン層3を設けていない従
来の多層膜がこの波長領域において高い反射率を有する
のに対し、本実施例の多層膜では可視、紫外光をほとん
ど反射しない(数%程度)。
For these two multilayer mirrors, a wavelength of 4.
The direct incidence (X-ray incidence from the vertical direction) reflectance was measured using a soft X-ray of 5 nm. The reflectance of the multilayer mirror of this example was 18%, and the graphite-like carbon layer 3 was provided. The reflectance of the uncoated multilayer mirror was 31%. Then, for these two multilayer mirrors,
Ultraviolet light (wavelength 2000-6000Å) was irradiated and the reflectance at that time was measured. The result is shown in FIG. As is apparent from FIG. 4, the conventional multilayer film having no graphite-like carbon layer 3 has a high reflectance in this wavelength region, whereas the multilayer film of this embodiment hardly reflects visible light and ultraviolet light. (A few percent).

【0022】さらに、実際の軟X線顕微鏡の光学系で使
用するように、グラファイト状カーボン層を設けていな
い従来の多層膜ミラー7と厚さ2μmのベリリウムから
なるフィルタ8と組み合わせた状態でX線透過効率を測
定した。図5は、この時の測定状態を示す図である。X
線10を、フィルタ8を介して多層膜ミラー7に照射す
る。そして、このミラー7で反射したX線11の強度を
検出器9で測定してX線透過効率を求めた。この時のX
線透過効率は、多層膜ミラー単独で測定した時よりも低
下し約11%であった。この値は、グラファイト状カーボ
ン層を設けた本実施例の多層膜ミラーを用いた場合のX
線透過効率18%よりも低い。つまり、本実施例の多層膜
ミラーでは、可視、紫外光を所定量カットした時のX線
の透過効率を従来よりも高くすることが可能となる。
Further, as used in an optical system of an actual soft X-ray microscope, the conventional multilayer mirror 7 without a graphite-like carbon layer and a filter 8 made of beryllium having a thickness of 2 μm are combined in an X state. The linear transmission efficiency was measured. FIG. 5 is a diagram showing a measurement state at this time. X
The line 10 is applied to the multilayer mirror 7 through the filter 8. Then, the intensity of the X-ray 11 reflected by the mirror 7 was measured by the detector 9 to obtain the X-ray transmission efficiency. X at this time
The line transmission efficiency was about 11%, which was lower than that when measured with the multilayer mirror alone. This value is X when the multilayer mirror of this embodiment provided with the graphite-like carbon layer is used.
The line transmission efficiency is lower than 18%. That is, in the multilayer mirror of this embodiment, it is possible to increase the X-ray transmission efficiency when the visible light and the ultraviolet light are cut by a predetermined amount, compared to the conventional case.

【0023】[0023]

【実施例3】図6は、本発明の多層膜ミラーを用いた軟
X線顕微鏡の概略構成図である。この軟X線顕微鏡は、
X線源31、回転楕円体の一部分となる形状に形成され
た多層膜コンデンサーミラー32、試料を載置する試料
台33、結像光学系34、X線検出器35、およびこれ
らの構成部品を収納すると共に内部を所望の真空度に設
定できる本体(図示せず)とを備えている。
Third Embodiment FIG. 6 is a schematic configuration diagram of a soft X-ray microscope using the multilayer mirror of the present invention. This soft X-ray microscope
An X-ray source 31, a multilayer condenser mirror 32 formed in a shape of a part of a spheroid, a sample stage 33 on which a sample is placed, an imaging optical system 34, an X-ray detector 35, and these components It is provided with a main body (not shown) which can be housed and whose interior can be set to a desired degree of vacuum.

【0024】X線源31としては、レーザープラズマX
線源やシンクロトロン放射光が用いることができる。多
層膜コンデンサーミラー32は、ガラスを研磨して得ら
れた回転楕円体の一部を構成する形状を有する基板に、
実施例1と同様、イオンビームスパッタ法により厚さ0.
7 nmの酸化アルミニウム(Al2O3 )層と厚さ1nmのフッ
化リチウム(LiF )層を交互にそれぞれ100 層(図では
層数を省略している)ずつ積層した多層膜を成膜して製
造した。X線源31と試料台33に載置された試料は、
前記回転楕円体の2つの焦点にそれぞれ配置されてい
る。また、多層膜コンデンサーミラー32へのX線36
の入射角は、使用するX線の波長と多層膜の各層の厚さ
に基づいて最も反射率が高くなるように設定してある。
As the X-ray source 31, a laser plasma X
A radiation source or synchrotron radiation can be used. The multilayer condenser mirror 32 is a substrate having a shape that constitutes a part of a spheroid obtained by polishing glass,
As in Example 1, the thickness was reduced to 0 by the ion beam sputtering method.
A multilayer film was formed by alternately stacking 7 nm aluminum oxide (Al 2 O 3 ) layers and 1 nm thick lithium fluoride (LiF) layers, 100 layers each (the number of layers is omitted in the figure). Manufactured. The sample placed on the X-ray source 31 and the sample table 33 is
It is arranged at each of two focal points of the spheroid. In addition, the X-ray 36 to the multilayer condenser mirror 32
The incident angle of is set to have the highest reflectance based on the wavelength of the X-ray used and the thickness of each layer of the multilayer film.

【0025】このような構成の軟X線顕微鏡では、X線
源31を出射したX線36は、多層膜コンデンサーミラ
ー32で反射され試料台33に載置された試料を照射す
る。そして、試料を照射したX線は、例えばゾーンプレ
ートからなる結像光学系34によってX線検出器35上
に結像する。本実施例の多層膜コンデンサーミラー32
では、該ミラー32の多層膜を構成する物質によって決
まる波長を有するX線が主に反射される。また、このミ
ラー32は可視、紫外光をほとんど反射しないので、前
記試料には、ほぼ所定の波長を有する光(軟X線)だけ
が照射されるようになる。そのため、X線検出器35に
到達する可視、紫外光はほとんどなく、検出器35とし
て用いられる写真フィルム、レジスト、CCD等が、可
視、紫外光によって感光することがない。また、可視、
紫外光をカットするためのフィルタを設けていないの
で、このフィルタによるX線の吸収がなく、検出器35
に到達するX線の強度が高くなる。従って、X線検出器
35で得られる前記試料の画像の解像度が向上する。
In the soft X-ray microscope having such a structure, the X-ray 36 emitted from the X-ray source 31 is reflected by the multilayer condenser mirror 32 and illuminates the sample placed on the sample stage 33. Then, the X-rays that irradiate the sample are imaged on the X-ray detector 35 by the imaging optical system 34 including, for example, a zone plate. The multilayer condenser mirror 32 of this embodiment
Then, X-rays having a wavelength determined by the substance forming the multilayer film of the mirror 32 are mainly reflected. Further, since the mirror 32 hardly reflects visible light and ultraviolet light, the sample is irradiated with only light (soft X-ray) having a substantially predetermined wavelength. Therefore, there is almost no visible or ultraviolet light reaching the X-ray detector 35, and the photographic film, resist, CCD or the like used as the detector 35 is not exposed to visible or ultraviolet light. Also visible,
Since no filter for cutting off ultraviolet light is provided, there is no absorption of X-rays by this filter, and the detector 35
The intensity of X-rays reaching the Therefore, the resolution of the image of the sample obtained by the X-ray detector 35 is improved.

【0026】なお、本実施例の多層膜ミラー(多層膜コ
ンデンサーミラー32)は、実施例1と同様、酸化アル
ミニウム層とフッ化リチウム層を交互にそれぞれ100 層
ずつ積層した多層膜によって構成されているが、実施例
2のようにニッケル層とカーボン層を交互にそれぞれ10
0 層ずつ積層した多層膜上に厚さ500 nmのグラファイト
状カーボン層を形成した構成としても、同様の効果を奏
することができる。
The multilayer mirror (multilayer capacitor mirror 32) of the present embodiment is composed of a multilayer film in which 100 layers of aluminum oxide layers and 100 layers of lithium fluoride are alternately laminated in the same manner as in Example 1. However, as in Example 2, the nickel layer and the carbon layer are alternately arranged to form 10 layers, respectively.
The same effect can be obtained even if a graphite-like carbon layer having a thickness of 500 nm is formed on a multilayer film in which 0 layers are stacked.

【0027】また、従来のように可視、紫外光をカット
するためのフィルタを設置する必要がないので、X線顕
微鏡の光学系の構成が簡単になる。
Further, since it is not necessary to install a filter for cutting visible light and ultraviolet light as in the conventional case, the structure of the optical system of the X-ray microscope is simplified.

【0028】[0028]

【発明の効果】以上のように、本発明のX線用多層膜ミ
ラーは、このミラー自体で可視、紫外光をカットするこ
とができる。そのため、従来のように可視、紫外光をカ
ットするフィルタを設ける必要がないので、このフィル
タによるX線の吸収を防ぐことができる。その結果、X
線用光学系におけるX線の透過効率を向上させることが
可能となる。
As described above, the multilayer mirror for X-rays of the present invention can cut visible light and ultraviolet light by the mirror itself. Therefore, it is not necessary to provide a filter for cutting visible light and ultraviolet light as in the conventional case, so that the absorption of X-rays by this filter can be prevented. As a result, X
It is possible to improve the transmission efficiency of X-rays in the optical system for rays.

【0029】また、可視、紫外光をカットするフィルタ
を独立して設置する必要がないので、X線光学系を小型
化することができる。
Further, since it is not necessary to separately install a filter for cutting visible light and ultraviolet light, the X-ray optical system can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の実施例1の多層膜ミラーの概略垂
直断面図である。
FIG. 1 is a schematic vertical sectional view of a multilayer mirror according to a first embodiment of the present invention.

【図2】は、本発明の実施例2の多層膜ミラーの概略垂
直断面図である。
FIG. 2 is a schematic vertical sectional view of a multilayer mirror according to a second embodiment of the present invention.

【図3】は、実施例1の多層膜ミラーと従来の多層膜ミ
ラーのそれぞれの可視、紫外光に対する分光反射率特性
を示すグラフである。
FIG. 3 is a graph showing the spectral reflectance characteristics of the multilayer mirror of Example 1 and the conventional multilayer mirror with respect to visible light and ultraviolet light, respectively.

【図4】は、実施例2の多層膜ミラーと従来の多層膜ミ
ラーのそれぞれの可視、紫外光に対する分光反射率特性
を示すグラフである。
FIG. 4 is a graph showing the spectral reflectance characteristics of the multilayer mirror of Example 2 and the conventional multilayer mirror with respect to visible light and ultraviolet light, respectively.

【図5】は、従来の多層膜ミラーと可視、紫外光カット
用フィルタを組み合わせた光学系で、該光学系のX線透
過効率を測定している状態を示す概略図である。
FIG. 5 is a schematic diagram showing a state in which the X-ray transmission efficiency of the optical system is measured by an optical system in which a conventional multilayer mirror and a filter for cutting visible light and ultraviolet light are combined.

【図6】は、本発明の多層膜ミラーを用いた軟X線顕微
鏡の概略構成図である。
FIG. 6 is a schematic configuration diagram of a soft X-ray microscope using the multilayer mirror of the present invention.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1 「X線領域の波長を有する光に対する屈折率と真空
の屈折率との差」が大きい物質(酸化アルミニウム、酸
化ハフニウム) 2 「X線領域の波長を有する光に対する屈折率と真空
の屈折率との差」が小さい物質(フッ化リチウム) 3 グラファイト状カーボン層(反射防止層) 4 「X線領域の波長を有する光に対する屈折率と真空
の屈折率との差」が大きい物質(ニッケル) 5 「X線領域の波長を有する光に対する屈折率と真空
の屈折率との差」が小さい物質(カーボン) 6 基板 7 多層膜ミラー 8 可視、紫外光カット用フィルタ 9 検出器 12 多層膜
1 "Substance with a large difference between the refractive index for light having a wavelength in the X-ray region and the vacuum" (aluminum oxide, hafnium oxide) 2 "The refractive index for light having a wavelength in the X-ray region and the refractive index of vacuum Substance with a small difference (lithium fluoride) 3 graphitic carbon layer (antireflection layer) 4 substance with a large difference between the refractive index for light having a wavelength in the X-ray region and the refractive index of vacuum (nickel) 5 Substance (carbon) with a small “difference between the refractive index for light having a wavelength in the X-ray region and the refractive index of vacuum” 6 Substrate 7 Multilayer film mirror 8 Visible / ultraviolet light cut filter 9 Detector 12 Multilayer film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 「X線領域の波長を有する光に対する屈
折率と真空の屈折率との差」が大きい物質と小さい物質
とが交互に積層された多層膜を有するX線用多層膜ミラ
ーにおいて、 可視、紫外光に対する反射率が10%未満であることを特
徴とするX線用多層膜ミラー。
1. A multilayer film mirror for X-rays, comprising a multilayer film in which a substance having a large difference between the refractive index for light having a wavelength in the X-ray region and a vacuum refractive index is laminated alternately with a small substance. A multilayer film mirror for X-rays, which has a reflectance of less than 10% with respect to visible light and ultraviolet light.
【請求項2】 「X線領域の波長を有する光に対する屈
折率と真空の屈折率との差」が大きい物質と小さい物質
とが交互に積層された多層膜を有するX線用多層膜ミラ
ーにおいて、 前記多層膜の最上層に、可視、紫外光の反射を防止する
反射防止層を形成したことを特徴とするX線用多層膜ミ
ラー。
2. A multilayer film mirror for X-rays, comprising a multilayer film in which a substance having a large difference between the refractive index for light having a wavelength in the X-ray region and a vacuum refractive index is stacked alternately with a small substance. The multilayer mirror for X-rays, wherein an antireflection layer for preventing reflection of visible light and ultraviolet light is formed on the uppermost layer of the multilayer film.
【請求項3】 X線源、試料を載置する載置手段、X線
検出器、前記X線源から出射したX線を前記試料に照射
するための照明光学系、前記試料を照射したX線を前記
X線検出器に照射するための結像光学系、および前記X
線源からX線検出器までのX線光路を所定の真空度に設
定された真空空間に維持する筐体とを備えたX線顕微鏡
において、 前記照明光学系および照明光学系を構成する光学素子の
少なくとも1つが、「X線領域の波長を有する光に対す
る屈折率と真空の屈折率との差」が大きい物質と小さい
物質とが交互に積層された多層膜を備えた可視、紫外光
に対する反射率が10%未満のX線用多層膜ミラーからな
ることを特徴とするX線顕微鏡。
3. An X-ray source, a mounting means for mounting a sample, an X-ray detector, an illumination optical system for irradiating the sample with X-rays emitted from the X-ray source, and an X for irradiating the sample. Imaging optics for irradiating the X-ray detector with a beam, and the X-ray
An X-ray microscope including a housing for maintaining an X-ray optical path from a radiation source to an X-ray detector in a vacuum space set to a predetermined vacuum degree, wherein the illumination optical system and an optical element constituting the illumination optical system are provided. At least one of which is provided with a multilayer film in which a substance having a large difference between the refractive index for light having a wavelength in the X-ray region and a vacuum refractive index and a substance having a small difference are alternately laminated An X-ray microscope comprising a multilayer film mirror for X-ray having a ratio of less than 10%.
【請求項4】 X線源、試料を載置する載置手段、X線
検出器、前記X線源から出射したX線を前記試料に照射
するための照明光学系、前記試料を照射したX線を前記
X線検出器に照射するための結像光学系、および前記X
線源からX線検出器までのX線光路を所定の真空度に設
定された真空空間に維持する筐体とを備えたX線顕微鏡
において、 前記照明光学系および照明光学系を構成する光学素子の
少なくとも1つが、「X線領域の波長を有する光に対す
る屈折率と真空の屈折率との差」が大きい物質と小さい
物質とが交互に積層された多層膜と該多層膜の最上層に
形成された可視、紫外光の反射を防止する反射防止層と
を有するX線用多層膜ミラーからなることを特徴とする
X線顕微鏡。
4. An X-ray source, a mounting means for mounting a sample, an X-ray detector, an illumination optical system for irradiating the sample with X-rays emitted from the X-ray source, and an X for irradiating the sample. Imaging optics for irradiating the X-ray detector with a beam, and the X-ray
An X-ray microscope including a housing for maintaining an X-ray optical path from a radiation source to an X-ray detector in a vacuum space set to a predetermined vacuum degree, wherein the illumination optical system and an optical element constituting the illumination optical system are provided. At least one of which is formed in a multilayer film in which a substance having a large difference between the refractive index for light having a wavelength in the X-ray region and the refractive index in a vacuum and a small substance are alternately laminated, and the uppermost layer of the multilayer film. An X-ray microscope, comprising an X-ray multilayer mirror having an antireflection layer for preventing reflection of visible light and ultraviolet light.
JP4295459A 1992-11-05 1992-11-05 Multilayer film mirror for x rays and x-ray microscope Pending JPH06148399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295459A JPH06148399A (en) 1992-11-05 1992-11-05 Multilayer film mirror for x rays and x-ray microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295459A JPH06148399A (en) 1992-11-05 1992-11-05 Multilayer film mirror for x rays and x-ray microscope

Publications (1)

Publication Number Publication Date
JPH06148399A true JPH06148399A (en) 1994-05-27

Family

ID=17820866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295459A Pending JPH06148399A (en) 1992-11-05 1992-11-05 Multilayer film mirror for x rays and x-ray microscope

Country Status (1)

Country Link
JP (1) JPH06148399A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723273A3 (en) * 1995-01-19 1997-04-09 Rikagaku Kenkyusho Multilayer film structure for soft X-ray optical elements
WO2007105406A1 (en) 2006-03-10 2007-09-20 Nikon Corporation Projection optical system, aligner and method for fabricating semiconductor device
US7773196B2 (en) 2006-03-10 2010-08-10 Nikon Corporation Projection-optical systems and exposure apparatus comprising same
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
CN108431903A (en) * 2015-06-30 2018-08-21 塞博利亚·贾斯瓦尔 Coating for extreme ultraviolet and soft x-ray optics device
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945204A (en) * 1995-01-19 1999-08-31 Ridagaku Kenkyusho Multilayer film structure for soft X-ray optical elements
EP0723273A3 (en) * 1995-01-19 1997-04-09 Rikagaku Kenkyusho Multilayer film structure for soft X-ray optical elements
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2007105406A1 (en) 2006-03-10 2007-09-20 Nikon Corporation Projection optical system, aligner and method for fabricating semiconductor device
JPWO2007105406A1 (en) * 2006-03-10 2009-07-30 株式会社ニコン Projection optical system, exposure apparatus, and semiconductor device manufacturing method
EP3264444A1 (en) 2006-03-10 2018-01-03 Nikon Corporation Projection optical system, exposure apparatus and method for manufacuring semiconductor device
US7773196B2 (en) 2006-03-10 2010-08-10 Nikon Corporation Projection-optical systems and exposure apparatus comprising same
JP4924604B2 (en) * 2006-03-10 2012-04-25 株式会社ニコン Projection optical system, exposure apparatus, and semiconductor device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN108431903A (en) * 2015-06-30 2018-08-21 塞博利亚·贾斯瓦尔 Coating for extreme ultraviolet and soft x-ray optics device

Similar Documents

Publication Publication Date Title
JP4466566B2 (en) MULTILAYER REFLECTOR, MULTILAYER REFLECTOR MANUFACTURING METHOD, AND EXPOSURE APPARATUS
JP3673968B2 (en) Manufacturing method of multilayer mirror
JP2004524524A (en) Narrow frequency band spectral filter and its use
JPH06148399A (en) Multilayer film mirror for x rays and x-ray microscope
EP1378918A1 (en) Multi-layered film reflector manufacturing method
US10916356B2 (en) Reflective optical element
JP2883100B2 (en) Half mirror or beam splitter for soft X-ray and vacuum ultraviolet
JPH05157900A (en) X-ray microscope
JPH0545498A (en) Multilayer film reflector
JP3917261B2 (en) Optical absorber and optical apparatus using the same
US6920199B2 (en) Mirror element for the reflection of x-rays
JP4142289B2 (en) Broadband telescope
EP2068325B1 (en) Optical element for X-ray
JP2001027699A (en) Multi-layer film reflecting mirror and reflecting optical system
US6728037B2 (en) Multilayer-coated reflective mirrors for X-ray optical systems, and methods for producing same
KR100952326B1 (en) Multi-energy X-ray imaging system for quasi-monochromatic X-ray
JP2002286547A (en) Wide band normal incidence telescope
EP3906434A1 (en) Boron-based capping layers for euv optics
JP4406980B2 (en) Multilayer antireflection film
JP2007155407A (en) Multilayered film mirror for soft x-ray
JP2009109193A (en) Method for manufacturing soft x-ray optical element
JP2001066399A (en) Multilayer film reflecting mirror and exposure device or analyzer
JP2000089010A (en) Multilayered film reflection mirror
JP4524976B2 (en) Manufacturing method of multilayer mirror
JPH06140303A (en) Projection aligner