JPH06132243A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH06132243A
JPH06132243A JP27872892A JP27872892A JPH06132243A JP H06132243 A JPH06132243 A JP H06132243A JP 27872892 A JP27872892 A JP 27872892A JP 27872892 A JP27872892 A JP 27872892A JP H06132243 A JPH06132243 A JP H06132243A
Authority
JP
Japan
Prior art keywords
oxide film
metal silicide
gate electrode
deposited
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27872892A
Other languages
Japanese (ja)
Inventor
Atsushi Otomo
篤 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP27872892A priority Critical patent/JPH06132243A/en
Publication of JPH06132243A publication Critical patent/JPH06132243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To obtain thermally stable metal silicide by releasing residual pollutant from the surface where a metal silicide layer was formed to inert gas atmosphere and performing sputter etching in inert gas ion plasma while maintaining vacuum. CONSTITUTION:Pwell 2 is formed on a p-type silicon substrate 1, a field oxide film 3 is formed, a gate oxide film 4 is formed, moreover, polysilicon is deposited and phosphorus is diffused inside the deposit. Then, a gate electrode 5 is formed, and a side wall film 6 is formed on a gate side wall. Thereafter, a source drain portion 7 is formed, Then, it is washed with a dilute hydrofluoric acid base and, after spin drying, residual pollutant 11 is released by lamp heating for one minute at 200 deg.C in Ar atmosphere. Thereafter, spatter etching is performed in Av + ion plasma without breaking vacuum, titanium 12 is vapor-deposited, and titanium silicide 13 is formed by selfconformance on a source drain 7 and the gate electrode 5 from which natural oxide film 8 was removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、MOS型半導体素子
の製造方法、なかでもサリサイド法による金属珪化物の
生成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a MOS semiconductor device, and more particularly to the production of metal silicide by the salicide method.

【0002】[0002]

【従来の技術】MOS型半導体素子は高集積化が進むに
つれ、基板上に形成するMOSFET(MOS型電界効
果トランジスタ)の加工寸法が縮小されて来た。加工寸
法がサブミクロンレベルになると、MOSFETのゲー
ト電極及びソース・ドレインの寄生抵抗がMOS型集積
回路の高速化の障害となって来た。かかる寄生抵抗低減
のため、高融点金属を蒸着し、熱反応により、ゲート電
極、ソース・ドレイン上に自己整合的に低抵抗金属珪化
物を生成させる方法(サリサイド法)が開発されて来
た。
2. Description of the Related Art As MOS type semiconductor devices have been highly integrated, the processing size of MOSFETs (MOS type field effect transistors) formed on a substrate has been reduced. When the processing dimension becomes a submicron level, the parasitic resistance of the gate electrode and the source / drain of the MOSFET has become an obstacle to speeding up the MOS integrated circuit. In order to reduce the parasitic resistance, a method (salicide method) has been developed in which a refractory metal is vapor-deposited and a low resistance metal silicide is self-aligned on the gate electrode and the source / drain by thermal reaction.

【0003】図6に現在一般的に使用されているサリサ
イド法によるMOSFETの製造工程の一部を示し、以
下工程順に説明する。
FIG. 6 shows a part of a process for manufacturing a MOSFET by the salicide method which is generally used at present, which will be described below in the order of processes.

【0004】図6(a)P型シリコン基板1に通常方法
により、Pwell(ウェル)2を形成し、LOCOS
(Local Oxidation of Silic
on)法によりフィールド酸化膜3を形成する。その
後、ゲート酸化膜4、ポリシリコン電極(ゲート電極)
5を成膜、パターニングする。さらにゲート側壁膜(サ
イドウォール)6を形成した後、ソース・ドレイン部7
をイオン注入、活性化アニールにより形成する。
FIG. 6A, a Pwell (well) 2 is formed on a P-type silicon substrate 1 by a normal method, and LOCOS is formed.
(Local Oxidation of Silic
on) method to form the field oxide film 3. After that, gate oxide film 4, polysilicon electrode (gate electrode)
5 is deposited and patterned. Further, after forming the gate side wall film (sidewall) 6, the source / drain portion 7 is formed.
Are formed by ion implantation and activation annealing.

【0005】図6(b)次に、ゲート電極5、ソース・
ドレイン部7上の自然酸化膜8をAr+ イオンプラズマ
中でスパッタエッチングする。
Next, as shown in FIG. 6B, the gate electrode 5, the source
The natural oxide film 8 on the drain portion 7 is sputter-etched in Ar + ion plasma.

【0006】図6(c)次にシリコン基板を別のチャン
バーに移して、高融点金属9を蒸着し、図6(d)のよ
うに、熱反応により、ゲート電極5、ソース・ドレイン
7上に金属珪化物10を生成させる。この後、中間絶縁
膜形成、コンタクトホール開孔、アルミ等による配線層
形成を行う。
Next, the silicon substrate is transferred to another chamber to deposit a refractory metal 9 on it, and as shown in FIG. 6 (d), a thermal reaction is performed on the gate electrode 5 and the source / drain 7 as shown in FIG. 6 (c). To produce metal silicide 10. After that, an intermediate insulating film is formed, contact holes are opened, and a wiring layer is formed using aluminum or the like.

【0007】[0007]

【発明が解決しようとする課題】以上述べた製造方法で
は、金属珪化物生成面上の自然酸化膜除去のためのAr
+ イオンスパッタエッチングの際に、シリコン基板表面
の残留汚染物11が、基板中に取り込まれるおそれがあ
り、この残留汚染物によるシリサイド化反応の不均一
性、生成される金属珪化物の熱処理による凝集等が起こ
り、ゲート電極、ソース・ドレイン部の層抵抗のばらつ
き、接合リーク電流の増大、ゲート耐圧の劣化等を引き
起こし、MOS型集積回路性能の悪化を引き起こす原因
となっている。
In the manufacturing method described above, Ar for removing the natural oxide film on the metal silicide forming surface is used.
+ At the time of ion sputter etching, the residual contaminants 11 on the surface of the silicon substrate may be taken into the substrate, the non-uniformity of the silicidation reaction due to the residual contaminants, and the agglomeration of the generated metal silicide due to the heat treatment. Etc., the layer resistance of the gate electrode, the source / drain portion is varied, the junction leak current is increased, the gate breakdown voltage is deteriorated, and the performance of the MOS integrated circuit is deteriorated.

【0008】この発明は、以上述べた、ゲート電極、ソ
ース・ドレイン部の層抵抗のばらつき、接合リーク電流
の増大、ゲート耐圧の劣化等を防ぎ、安定で良好な高速
MOS型集積回路性能を実現するため、Ar+ イオンス
パッタエッチングの前に、シリコン基板表面の残留汚染
物を除き、均一な金属珪化物生成反応をもたらすと同時
に、熱的に安定な金属珪化物層を生成することを目的と
するものである。
The present invention prevents the above-mentioned variations in layer resistance of the gate electrode, source / drain portions, increase in junction leak current, deterioration of gate breakdown voltage, etc., and realizes stable and favorable high-speed MOS integrated circuit performance. Therefore, prior to Ar + ion sputter etching, the purpose is to remove residual contaminants on the surface of the silicon substrate, to bring about a uniform metal silicide formation reaction, and at the same time to form a thermally stable metal silicide layer. To do.

【0009】[0009]

【課題を解決するための手段】この発明は前記目的のた
め、金属珪化物層を形成する表面上の残留汚染物を、加
熱チャンバー内において、不活性ガス雰囲気中でランプ
加熱を行うことにより放出させ、しかる後に、真空を保
持したまま、シリコン基板をエッチングチャンバーに送
り、不活性ガスイオンプラズマ中において、スパッタエ
ッチングを行うようにしたものである。
For this purpose, the present invention releases residual contaminants on the surface forming a metal silicide layer by performing lamp heating in an inert gas atmosphere in a heating chamber. After that, the silicon substrate is sent to the etching chamber while the vacuum is maintained, and the sputter etching is performed in the inert gas ion plasma.

【0010】[0010]

【作用】前述のように、この発明の製造方法に依れば、
金属珪化物生成表面の自然酸化膜除去工程であるAr+
イオンによるスパッタエッチングの前に、当該表面残留
汚染物を、ランプ加熱により放出したことにより、自然
酸化膜除去工程中に、残留不純物がシリコン基板中に取
り込まれることを防ぎ、安定した金属珪化物層の形成が
可能となり、当該表面層抵抗のばらつきを抑えられる。
従って、N+ /P型接合上においては、逆方向接合リー
ク電流の低減をもたらし、安定で高速なMOS型集積回
路性能の実現が可能となる。
As described above, according to the manufacturing method of the present invention,
Ar + which is the process of removing the natural oxide film on the surface of the metal silicide
Prior to sputter etching with ions, the surface residual contaminants were released by lamp heating to prevent residual impurities from being taken into the silicon substrate during the natural oxide film removal process, and to provide a stable metal silicide layer. Can be formed, and variations in the surface layer resistance can be suppressed.
Therefore, on the N + / P type junction, the reverse junction leakage current is reduced, and stable and high-speed MOS type integrated circuit performance can be realized.

【0011】[0011]

【実施例】図1は、本発明の第1の実施例による、サリ
サイド法によるMOSFETの製造工程の主要部分であ
る。以下、工程順に説明する。なお、本例は金属として
チタニウムを使用した例である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a main part of a process for manufacturing a MOSFET by a salicide method according to a first embodiment of the present invention. The steps will be described below in order. In this example, titanium is used as the metal.

【0012】図1(a)P型シリコン基板1に従来同
様、通常方法によりPwell2を形成し、LOCOS
法によりフィールド酸化膜3を形成する。その後シリコ
ン基板の熱酸化により、ゲート酸化膜4を形成する。さ
らにLPCVD(減圧化学的気相成長)法によりポリシ
リコンを堆積し、POCl3 により、ポリシリコン中に
燐を拡散する。次に通常のフォトリソグラフィー・エッ
チング工程により、ゲート電極5をパターニングして形
成する。全面にCVD法により酸化膜を堆積し、異方性
エッチングにより、ゲート側壁に側壁膜6を形成する。
その後、ソース・ドレイン部7をN+ 型イオン注入(A
+ イオン、加速電圧40keV、ドーズ量5×1015
cm-2)し、活性化アニール(900℃、1時間、窒素
雰囲気中)により形成する。
As shown in FIG. 1A, a Pwell 2 is formed on a P-type silicon substrate 1 by a conventional method as in the conventional method, and LOCOS is used.
The field oxide film 3 is formed by the method. After that, the gate oxide film 4 is formed by thermal oxidation of the silicon substrate. Further, polysilicon is deposited by LPCVD (Low Pressure Chemical Vapor Deposition) method, and phosphorus is diffused in the polysilicon by POCl 3 . Next, the gate electrode 5 is patterned and formed by a normal photolithography / etching process. An oxide film is deposited on the entire surface by the CVD method, and the sidewall film 6 is formed on the gate sidewall by anisotropic etching.
After that, the source / drain portion 7 is subjected to N + type ion implantation (A
s + ion, acceleration voltage 40 keV, dose 5 × 10 15
cm −2 ) and activated annealing (900 ° C., 1 hour, in a nitrogen atmosphere) to form.

【0013】図1(b)次に、希弗酸系で薬液による洗
浄し、スピン乾燥の後、加熱チャンバー内で、不活性ガ
スであるAr雰囲気中、200℃、1分間程度のランプ
加熱により、残留汚染物11を放出させる。
FIG. 1 (b) Next, after cleaning with a dilute hydrofluoric acid-based chemical solution and spin drying, by lamp heating at 200 ° C. for about 1 minute in an Ar atmosphere as an inert gas in a heating chamber. , Release residual contaminants 11.

【0014】図1(c)この後、真空を破らずに、エッ
チングチャンバーに基板を送り、酸化膜80Å換算のス
パッタエッチングをAr+ イオンプラズマ中で行い、ゲ
ート電極5およびソース・ドレイン部7上の自然酸化膜
8を除去する。
After that, the substrate is sent to the etching chamber without breaking the vacuum, and sputter etching corresponding to an oxide film of 80 Å is performed in Ar + ion plasma, so that the gate electrode 5 and the source / drain portion 7 are formed. The native oxide film 8 is removed.

【0015】図1(d)同じく真空を破らず、蒸着チャ
ンバーに基板を送り、チタニウム12を400Å蒸着堆
積させる。
Similarly, as shown in FIG. 1D, the substrate is sent to the vapor deposition chamber without breaking the vacuum, and titanium 12 is vapor-deposited at 400 Å.

【0016】図1(e)その後、通常の2段階ランプ加
熱法により、ゲート電極5、ソース・ドレイン7上にチ
タニウム珪化物13を自己整合的に生成させる。この
後、図示しないが、中間絶縁膜形成、Al等による配線
形成、最終保護膜形成等を行い完成させる。
After that, as shown in FIG. 1 (e), a titanium silicide 13 is generated in a self-aligned manner on the gate electrode 5 and the source / drain 7 by a normal two-step lamp heating method. After that, although not shown, formation of an intermediate insulating film, wiring of Al or the like, formation of a final protective film, and the like are completed.

【0017】図2に、本実施例による製造方法で形成し
た、ソース・ドレイン部(面積20μm×0.6μm)
の層抵抗分布を示す。従来方法では、層抵抗が10Ω/
□以上が60%を占めており、極めて、不均一なシリサ
イド層しか得られていなかったのに対し、本実施例によ
れば、85%が10Ω/□以下と極めて均一な層抵抗分
布を示している。また、図3に、本実施例による製造方
法により形成したN/P型接合の逆方向接合リーク電
流分布図を示す(接合面積が0.04mm、周辺長
が24mm、印加電圧5V)。やはり、従来方法に比
べ、接合リーク耐性の向上が図られている。
FIG. 2 shows the source / drain portions (area 20 μm × 0.6 μm) formed by the manufacturing method according to this embodiment.
3 shows the layer resistance distribution of. In the conventional method, the layer resistance is 10Ω /
□ or more accounted for 60%, and only an extremely non-uniform silicide layer was obtained, whereas according to this example, 85% showed an extremely uniform layer resistance distribution of 10 Ω / □ or less. ing. Further, FIG. 3 shows a reverse junction leakage current distribution diagram of the N + / P type junction formed by the manufacturing method according to this example (junction area 0.04 mm 2 , peripheral length 24 mm, applied voltage 5 V). After all, the junction leak resistance is improved as compared with the conventional method.

【0018】図4は、本発明の第2の実施例であり、以
下工程順に説明する。
FIG. 4 shows a second embodiment of the present invention, which will be described below in the order of steps.

【0019】図4(a)P型シリコン基板1にPwel
l2を形成し、LOCOS法により、フィールド酸化膜
3を形成する。その後シリコン基板の熱酸化によりゲー
ト酸化膜4を形成する。さらにLPCVD法によりポリ
シリコンを堆積し、POCl3 によりポリシリコン中に
燐を拡散する。次にフォトリソグラフィー・エッチング
工程によりゲート電極5をパターニングして形成する。
全面にCVD法により酸化膜を堆積し、異方性エッチン
グによりゲート側壁に側壁膜6を形成する。次に、弗酸
系の薬液による洗浄、スピン乾燥の後、加熱チャンバー
内で、Ar雰囲気中、200℃、1分程度のランプ加熱
により、残留汚染物11を放出させる。
In FIG. 4A, Pwel is formed on the P-type silicon substrate 1.
12 is formed, and the field oxide film 3 is formed by the LOCOS method. After that, the gate oxide film 4 is formed by thermal oxidation of the silicon substrate. Further, polysilicon is deposited by the LPCVD method, and phosphorus is diffused in the polysilicon by POCl 3 . Next, the gate electrode 5 is patterned and formed by a photolithography / etching process.
An oxide film is deposited on the entire surface by the CVD method, and a sidewall film 6 is formed on the gate sidewall by anisotropic etching. Next, after cleaning with a hydrofluoric acid-based chemical solution and spin drying, residual contaminants 11 are released by lamp heating in an Ar atmosphere at 200 ° C. for about 1 minute in a heating chamber.

【0020】図4(b)この後、真空を保持したままエ
ッチングチャンバーにシリコン基板を送り酸化膜80Å
換算のスパッタエッチングをAr+ イオンプラズマ中で
行い、ゲート電極5及び素子形成領域14の自然酸化膜
8を除去する。
After that, as shown in FIG. 4 (b), the silicon substrate is sent to the etching chamber while maintaining the vacuum, and the oxide film 80Å
The reduced sputter etching is performed in Ar + ion plasma to remove the gate electrode 5 and the natural oxide film 8 in the element formation region 14.

【0021】図4(c)続いて、真空を保持したまま、
蒸着チャンバーにシリコン基板を送り、チタニウム12
を400Å程度蒸着堆積させる。
Continuing with FIG. 4 (c), while maintaining the vacuum,
The silicon substrate is sent to the vapor deposition chamber and titanium 12
About 400Å is deposited by vapor deposition.

【0022】図4(d)その後、通常の2段階ランプ加
熱法により、ゲート電極5、素子形成領域14上にチタ
ニウム珪化物13を自己整合的に生成させる。
After that, as shown in FIG. 4 (d), the titanium silicide 13 is generated in a self-aligned manner on the gate electrode 5 and the element forming region 14 by a normal two-step lamp heating method.

【0023】図4(e)続いて、N+ 型イオン注入、及
び活性化アニールにより、素子形成領域14に、ソース
・ドレイン部7を形成する。この後、図示しないが、中
間絶縁膜形成、Al等による配線形成、最終保護膜形成
等を行う。
4E, the source / drain portions 7 are formed in the element forming region 14 by N + type ion implantation and activation annealing. After that, although not shown, an intermediate insulating film is formed, wiring is formed using Al or the like, and a final protective film is formed.

【0024】以上第1、第2の実施例は、NMOS型F
ETの製造方法について述べたが、いずれもNwell
形成、P+ 型イオン注入を行えば、PMOS型FETの
製造方法についても同様である。
The first and second embodiments described above are the NMOS type F
I have described the manufacturing method of ET, but all are Nwell
The same applies to the manufacturing method of the PMOS FET, if the formation and the P + type ion implantation are performed.

【0025】図5は、本発明の第3の実施例であり、以
下工程順に説明する。
FIG. 5 shows a third embodiment of the present invention, which will be described below in the order of steps.

【0026】図5(a)通常のMOSFETの製造方法
により、フィールド酸化膜3形成、ゲート酸化膜4、ポ
リシリコン電極5のパターニング、ゲート側壁膜6の形
成、ソース・ドレイン部7の形成を行った後、CVD法
による中間絶縁膜13を堆積し、所定部分にコンタクト
ホール15を開孔した後、加熱チャンバー内で残留汚染
物11の放出を行う。
FIG. 5A: The field oxide film 3, the gate oxide film 4, the polysilicon electrode 5 are patterned, the gate side wall film 6 is formed, and the source / drain portions 7 are formed by a normal MOSFET manufacturing method. After that, the intermediate insulating film 13 is deposited by the CVD method, and the contact hole 15 is opened at a predetermined portion, and then the residual contaminant 11 is released in the heating chamber.

【0027】図5(b)次に、基板を、真空を保持した
ままエッチングチャンバーに送り、酸化膜80Å換算の
スパッタエッチングをAr+ イオンプラズマ中で行い、
コンタクトホール15底部における自然酸化膜8を除去
する。
FIG. 5 (b) Next, the substrate is sent to an etching chamber while maintaining a vacuum, and sputter etching of oxide film 80Å conversion is performed in Ar + ion plasma.
The native oxide film 8 at the bottom of the contact hole 15 is removed.

【0028】図5(c)続いて、真空を保持したまま蒸
着チャンバーにシリコン基板を送り、チタニウム12を
400Å程度蒸着堆積させる。
Next, as shown in FIG. 5 (c), the silicon substrate is sent to the vapor deposition chamber while the vacuum is maintained, and titanium 12 is vapor-deposited to about 400 Å.

【0029】図5(d)その後、760℃、30s程度
のランプ加熱法により、コンタクトホール15底部にチ
タニウム珪化物13を自己整合的に生成させると同時
に、上層に、バリア金属層であるチタニウム窒化物18
を生成させる。
After that, as shown in FIG. 5 (d), the titanium silicide 13 is generated in a self-aligned manner at the bottom of the contact hole 15 by a lamp heating method at 760 ° C. for about 30 seconds, and at the same time, titanium nitride, which is a barrier metal layer, is formed on the upper layer. Object 18
Is generated.

【0030】図5(e)続いて、アルミニウム等の配線
金属16を堆積させ、通常のフォトリソグラフィー・エ
ッチング工程により配線層の形成を行い、最終保護膜1
7を堆積させる。
5 (e), a wiring metal 16 such as aluminum is deposited, and a wiring layer is formed by a normal photolithography / etching process, and the final protective film 1 is formed.
7 is deposited.

【0031】以上どの実施例でも、従来方法に比べて均
一で安定な金属珪化物層の生成が可能となり、良好なコ
ンタクト特性が得られ、MOS型集積回路の性能向上に
寄与する。
In any of the embodiments described above, a uniform and stable metal silicide layer can be formed as compared with the conventional method, good contact characteristics can be obtained, and the performance of the MOS integrated circuit can be improved.

【0032】[0032]

【発明の効果】以上のように、この発明の製造方法に依
れば、金属珪化物生成表面(ソース・ドレイン部及びゲ
ート電極、或いは、コンタクト底面)の自然酸化膜除去
工程であるAr+ イオンによるスパッタエッチングの前
に、当該表面残留汚染物を、ランプ加熱により放出した
ことにより、自然酸化膜除去工程中に、残留不純物がシ
リコン基板中に取り込まれることを防ぎ、安定した金属
珪化物層の形成が可能となり、当該表面層抵抗のばらつ
きを抑え、N+ /P型接合上においては、逆方向接合リ
ーク電流の低減をもたらし、安定で高速なMOS型集積
回路性能の実現をもたらすことが可能となる。
As described above, according to the manufacturing method of the present invention, the Ar + ion which is the step of removing the natural oxide film on the surface where the metal silicide is generated (source / drain portion and the gate electrode or the contact bottom surface) is obtained. Prior to the sputter etching by the method, the surface residual contaminants were released by lamp heating to prevent residual impurities from being taken into the silicon substrate during the natural oxide film removal step, and to stabilize the metal silicide layer. It is possible to form, suppress variations in the surface layer resistance, reduce reverse junction leakage current on the N + / P type junction, and achieve stable and high-speed MOS integrated circuit performance. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例FIG. 1 is a first embodiment of the present invention.

【図2】ソース・ドレイン部の層抵抗分布図[Fig. 2] Layer resistance distribution diagram of source / drain part

【図3】N+ /P型接合の逆方向接合リーク電流分布図FIG. 3 is a reverse junction leakage current distribution diagram of an N + / P type junction.

【図4】本発明の第2の実施例FIG. 4 is a second embodiment of the present invention.

【図5】本発明の第3の実施例FIG. 5 is a third embodiment of the present invention.

【図6】従来例FIG. 6 Conventional example

【符号の説明】[Explanation of symbols]

5 ゲート電極 7 ソース・ドレイン部 8 自然酸化膜 11 残留汚染物 12 チタニウム 13 チタニウム珪化物 5 Gate Electrode 7 Source / Drain 8 Natural Oxide Film 11 Residual Contaminant 12 Titanium 13 Titanium Silicide

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/336 29/784 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location H01L 21/336 29/784

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、金属珪化物層を形成す
る製造方法において、 (a)半導体基板上に、ゲート電極、ソース・ドレイン
層などの回路素子を形成した後、不活性ガス雰囲気中で
ランプ加熱して、前記回路素子を形成した際に生じた残
留汚染物を放出させる工程、 (b)前記工程後、前記基板を大気にさらすことなく、
続いて不活性ガスイオンプラズマ中でスパッタエッチン
グにより、前記回路素子形成の際に形成された自然酸化
膜を除去する工程、 (c)続いて、前記基板を大気にさらすことなく、高融
点金属を該基板上に堆積させ、金属珪化物層を形成する
工程、 以上の工程を含むことを特徴とする半導体素子の製造方
法。
1. A manufacturing method for forming a metal silicide layer on a semiconductor substrate, comprising: (a) forming a circuit element such as a gate electrode and a source / drain layer on the semiconductor substrate, and then in an inert gas atmosphere. Heating the lamp to discharge residual contaminants generated when the circuit element is formed, (b) after the step, without exposing the substrate to the atmosphere,
Then, a step of removing the natural oxide film formed at the time of forming the circuit element by sputter etching in an inert gas ion plasma, (c) subsequently, refractory metal is removed without exposing the substrate to the atmosphere. A method of manufacturing a semiconductor device, comprising the steps of depositing a metal silicide layer on the substrate and forming the metal silicide layer.
JP27872892A 1992-10-16 1992-10-16 Manufacture of semiconductor device Pending JPH06132243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27872892A JPH06132243A (en) 1992-10-16 1992-10-16 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27872892A JPH06132243A (en) 1992-10-16 1992-10-16 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH06132243A true JPH06132243A (en) 1994-05-13

Family

ID=17601376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27872892A Pending JPH06132243A (en) 1992-10-16 1992-10-16 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH06132243A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878361A (en) * 1994-07-05 1996-03-22 Nec Corp Manufacture of semiconductor device
JPH08274047A (en) * 1995-03-30 1996-10-18 Nec Corp Manufacture of semiconductor device
EP1156510A2 (en) * 2000-04-25 2001-11-21 Sharp Kabushiki Kaisha Ion implanter and its use for manufacturing a MOSFET
US6583059B2 (en) 2000-12-11 2003-06-24 Sharp Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US6630409B2 (en) 2000-03-29 2003-10-07 Nec Electronics Corporation Method of forming a polycide electrode in a semiconductor device
KR100714039B1 (en) * 2006-05-10 2007-05-04 주식회사 하이닉스반도체 Method for fabrication a semiconductor device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878361A (en) * 1994-07-05 1996-03-22 Nec Corp Manufacture of semiconductor device
JPH08274047A (en) * 1995-03-30 1996-10-18 Nec Corp Manufacture of semiconductor device
US6107096A (en) * 1995-03-30 2000-08-22 Nec Corporation Method of fabricating a salicide-structured MOS semiconductor device having a cobalt disilicied film
US6630409B2 (en) 2000-03-29 2003-10-07 Nec Electronics Corporation Method of forming a polycide electrode in a semiconductor device
EP1156510A2 (en) * 2000-04-25 2001-11-21 Sharp Kabushiki Kaisha Ion implanter and its use for manufacturing a MOSFET
EP1156510A3 (en) * 2000-04-25 2002-10-23 Sharp Kabushiki Kaisha Ion implanter and its use for manufacturing a MOSFET
US6566257B2 (en) 2000-04-25 2003-05-20 Sharp Kabushiki Kaisha Method for producing semiconductor device
KR100440904B1 (en) * 2000-04-25 2004-07-19 샤프 가부시키가이샤 Method for Producing Semiconductor Device
US6583059B2 (en) 2000-12-11 2003-06-24 Sharp Kabushiki Kaisha Semiconductor device and method of manufacturing the same
KR100462667B1 (en) * 2000-12-11 2004-12-20 샤프 가부시키가이샤 Semiconductor device and method of manufacturing the same
KR100714039B1 (en) * 2006-05-10 2007-05-04 주식회사 하이닉스반도체 Method for fabrication a semiconductor device

Similar Documents

Publication Publication Date Title
US6087234A (en) Method of forming a self-aligned silicide MOSFET with an extended ultra-shallow S/D junction
KR100302894B1 (en) Integrated circuit structure with dual thickness cobalt silicide layers and method for its manufacture
US20050130380A1 (en) Semiconductor device structures including metal silicide interconnects and dielectric layers at substantially the same fabrication level
JP3149414B2 (en) Method of fabricating a semiconductor device having a shallow junction
US5972761A (en) Method of making MOS transistors with a gate-side air-gap structure and an extension ultra-shallow S/D junction
US6855592B2 (en) Method for manufacturing semiconductor device
JP3093620B2 (en) Method for manufacturing semiconductor device
JPH06132243A (en) Manufacture of semiconductor device
JPH0897370A (en) Method of forming diffusion layer resistor
JP2930042B2 (en) Method for manufacturing semiconductor device
KR20040087527A (en) Method for manufacturing silicide and semiconductor with the silicide
KR100628225B1 (en) method for manufacturing of semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JPH11340424A (en) Manufacture of semiconductor device
KR100291276B1 (en) Silicide forming method of semiconductor devices
JP3765968B2 (en) Method for forming electrode structure and method for manufacturing semiconductor device
US6238958B1 (en) Method for forming a transistor with reduced source/drain series resistance
KR100289779B1 (en) Silicide forming method of semiconductor devices
JPH0831949A (en) Dual gate structure cmos semiconductor device and its manufacture
JPH06177067A (en) Manufacture of semiconductor integrated circuit device
JPH11186548A (en) Semiconductor device and manufacture thereof
JPH08306802A (en) Manufacture of semiconductor device
KR100546059B1 (en) Method for manufacturing semiconductor
JPS6068656A (en) Manufacture of semiconductor device
JPH1050636A (en) Manufacture of semiconductor device