JPH0612356B2 - Substrate concentration measurement method - Google Patents

Substrate concentration measurement method

Info

Publication number
JPH0612356B2
JPH0612356B2 JP60094720A JP9472085A JPH0612356B2 JP H0612356 B2 JPH0612356 B2 JP H0612356B2 JP 60094720 A JP60094720 A JP 60094720A JP 9472085 A JP9472085 A JP 9472085A JP H0612356 B2 JPH0612356 B2 JP H0612356B2
Authority
JP
Japan
Prior art keywords
temperature
concentration
electrode
substrate
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60094720A
Other languages
Japanese (ja)
Other versions
JPS61253454A (en
Inventor
真理子 河栗
史朗 南海
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60094720A priority Critical patent/JPH0612356B2/en
Publication of JPS61253454A publication Critical patent/JPS61253454A/en
Publication of JPH0612356B2 publication Critical patent/JPH0612356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、生体試料中の特定成分を検知する方法に関す
るもので、医療分野や食品工学などに幅広く応用できる
ものである。
TECHNICAL FIELD The present invention relates to a method for detecting a specific component in a biological sample, which can be widely applied to the medical field, food engineering and the like.

従来の技術 医療技術の進歩とともに、血液や尿中の特定成分を測定
することにより、健康のチェック、病気の状態,治療の
効果などがわかるようになった。しかし、従来は病院の
臨床検査室で大型の機械や複雑な手法で調べているた
め、時間や費用がかかるという問題があった。そこで、
もっと簡易にその場で測定できるセンサが望まれてい
る。その1つの試みとして、光を用いた簡易測定器が提
案されている。第5図にその測定用チップを示す。支持
体8の上に酵素および発色試薬を担持した試薬層9を積
層している。この試薬層9に血液を滴下すると試薬層9
において反応が進み、基質濃度に応じて発色する。一定
時間後に血球を除去して矢印の方向から光をあてて発色
の程度を調べて基質濃度を検知する方式である。このセ
ンサの場合、微量の血液を滴下することにより簡易に測
定ができるというメリットがある。この方式の較正法と
しては、既知濃度の基質の標準液を用いて試料液と同様
に操作し発色の度合と基質濃度から検量線を求めてい
る。又、簡易に較正するためには、色のついた較正用チ
ップを用いて測光し検量線を求めている。
Conventional technology With the advancement of medical technology, by measuring specific components in blood and urine, it has become possible to understand the effects of health check, disease state, and treatment. However, conventionally, there is a problem that it takes time and cost because the examination is performed in a clinical laboratory of a hospital with a large machine or a complicated method. Therefore,
There is a demand for a sensor that can more easily measure on the spot. As one of such attempts, a simple measuring instrument using light has been proposed. FIG. 5 shows the measuring chip. A reagent layer 9 carrying an enzyme and a coloring reagent is laminated on a support 8. When blood is dropped on the reagent layer 9, the reagent layer 9
In, the reaction proceeds and color develops depending on the substrate concentration. This is a method in which blood cells are removed after a certain period of time, light is applied from the direction of the arrow to examine the degree of color development, and the substrate concentration is detected. In the case of this sensor, there is an advantage that the measurement can be easily performed by dropping a small amount of blood. As a calibration method of this system, a standard solution of a substrate having a known concentration is used in the same manner as the sample solution, and a calibration curve is obtained from the degree of color development and the substrate concentration. Further, in order to calibrate easily, photometric measurement is performed using a colored calibration chip to obtain a calibration curve.

発明が解決しようとする問題点 従来例の較正方法において、既知濃度の基質の標準液を
用いる場合は、基質の標準液を冷蔵庫で低温保存し、測
定時に室温にもどさなくてはならないため手間がかかる
という欠点があった。又、色のついた較正用チップは簡
易に較正できるが、温度による影響で同じ温度でも発色
の程度が異なるため、一定の温度での測定が必要とな
る。
Problems to be Solved by the Invention In the calibration method of the conventional example, when a standard solution of a substrate having a known concentration is used, the standard solution of the substrate must be stored at a low temperature in a refrigerator and returned to room temperature at the time of measurement, which is troublesome. There was a drawback of this. Further, a colored calibration chip can be easily calibrated, but the degree of color development differs even at the same temperature due to the influence of temperature, so that measurement at a constant temperature is required.

そこで本発明は、簡易に温度補正ができ、高精度に測定
ができる方法を提供することを目的とする。
Therefore, it is an object of the present invention to provide a method capable of easily performing temperature correction and highly accurate measurement.

問題点を解決するための手段 本発明は、絶縁性の基板に設けた測定極と対極及び参照
極からなる電極系を用いるもので、酵素と酸化型の電子
受容体と試料液を反応させ、生成した還元型の電子受容
体の濃度を前記電極系で酸化電流として検知して基質濃
度を測定する方式で、既知濃度の前記電子受容体の酸化
型と還元型を含む溶液を較正液として用い、電極系に滴
下して還元型電子受容体の濃度に応じた酸化電流を測定
し、あらかじめ各温度で測定した較正液の酸化電流と比
較して測定時の温度を検出し、試料液で得られた値から
基質濃度を計算する際、温度補正をかけるのである。
Means for Solving the Problems The present invention uses an electrode system consisting of a measurement electrode, a counter electrode and a reference electrode provided on an insulating substrate, and reacts an enzyme with an oxidized electron acceptor and a sample solution, The concentration of the reduced electron acceptor produced is detected as an oxidation current in the electrode system to measure the substrate concentration, and a solution containing a known concentration of the oxidized and reduced electron acceptors is used as a calibration solution. , Dropping on the electrode system, measuring the oxidation current according to the concentration of the reduced electron acceptor, and comparing it with the oxidation current of the calibration solution measured at each temperature in advance, the temperature at the time of measurement was detected and obtained with the sample solution. When calculating the substrate concentration from the obtained values, temperature correction is applied.

作用 電子受容体の酸化型および還元型を一定量溶かした溶液
を較正液として電極上に滴下し電極反応を行なわせて酸
化電流を測定するので、サーミスタを用いなくても温度
が検出できる。さらに、酸化電流の波形から、電極表面
の状態もわかるようになる。
Action Since a solution in which a fixed amount of the oxidized and reduced forms of the electron acceptor is dissolved is dropped on the electrode as a calibration liquid to cause an electrode reaction to measure an oxidation current, the temperature can be detected without using a thermistor. Further, the state of the electrode surface can be understood from the waveform of the oxidation current.

実施例 バイオセンサの1つとして、グルコースセンサを例に説
明する。酸化還元酵素としてグルコースオキシダーゼ
を、電子受容体としてフェリシアン化カリウムを用い
た。第1図にグルコースセンサの一実施例の模式図を示
す。塩化ビニル樹脂からなる絶縁性の基板1に白金を埋
めこみ測定極2と対極3および参照極4からなる電極系
を構成し電極部とした。前記電極系を覆うようにレーヨ
ン紙からなる保液層5、孔径1μmのポリカーボネート
多孔体膜からなる過層6、パルプの不織布にグルコー
スオキシダーゼのフェリシアン化カリウムを高濃度に担
持した反応層7を設置した。
Example A glucose sensor will be described as an example of one of biosensors. Glucose oxidase was used as a redox enzyme, and potassium ferricyanide was used as an electron acceptor. FIG. 1 shows a schematic view of an embodiment of the glucose sensor. Platinum was embedded in an insulative substrate 1 made of vinyl chloride resin to form an electrode system consisting of a measurement electrode 2, a counter electrode 3 and a reference electrode 4 to form an electrode portion. A liquid-retaining layer 5 made of rayon paper, a superlayer 6 made of a polycarbonate porous film having a pore diameter of 1 μm, and a reaction layer 7 supporting a high concentration of potassium ferricyanide of glucose oxidase on a nonwoven fabric of pulp were provided so as to cover the electrode system. .

この反応層7に血液を添加すると、血液中のグルコース
がグルコースオキシダーゼにより酸化され、同時にフェ
リシアン化カリウムはフェロシアン化カリウムに還元さ
れる。続いて反応した血液が過層6において血球成分
が除去され、保液層5により過された血液(血漿)が
電極上に保持される。反応した血漿中のフェロシアン化
カリウムを、参照極を基準に測定極の電位を0〜+0.
1Vの間で鋸歯状に0.1V/秒で掃引することにより酸
化し、その時酸化電流が流れる。この酸化電流は、生成
したフェロシアン化カリウムの濃度に応じ、さらに基質
濃度に対応しているため、電流値を測定すると基質であ
るグルコースの濃度が検出できる。この時流れる酸化電
流のピーク値を応答電流として測定した。
When blood is added to this reaction layer 7, glucose in blood is oxidized by glucose oxidase, and at the same time potassium ferricyanide is reduced to potassium ferrocyanide. Subsequently, the reacted blood has a blood cell component removed in the overlayer 6, and the blood (plasma) passed by the liquid retaining layer 5 is retained on the electrode. With respect to potassium ferrocyanide in the reacted plasma, the potential of the measurement electrode was set to 0 to +0.
Oxidation is performed by sweeping in a sawtooth shape at 0.1 V / sec between 1 V, at which time an oxidation current flows. This oxidation current corresponds to the concentration of the produced potassium ferrocyanide and further corresponds to the concentration of the substrate. Therefore, the concentration of glucose as the substrate can be detected by measuring the current value. The peak value of the oxidation current flowing at this time was measured as the response current.

測定電流は、本グルコースセンサの場合、酵素反応の速
度および生成したフェロシアン化カリウムの電極への拡
散速度に影響する。反応層7に高濃度のグルコースオキ
シダーゼとフェリシアン化カリウムを担持することによ
り、酵素反応をすみやかに行なわせると、酵素反応にお
ける温度の影響を小さくすることができる。そこで、拡
散速度に対する温度の影響を調べるため、フェリシアン
化カリウムとフェロシアン化カリウムがそれぞれ0.0
2M含まれる溶液を較正液とし、各温度において、電極
部に滴下し血液と同様にして酸化電流を測定したとこ
ろ、第2図のように10℃〜40℃においては、応答電流
と温度の間に直線関係が得られた。それぞれの温度にお
ける応答電流は測定極2の面積が同じで、フェロシアン
化カリウムの濃度が同じならば再現性よく得られた。そ
のため測定温度がわからなくても、較正液を用いて測定
し第2図の直線Aから測定温度が検知できる。そこで、
血液を測定する場合、まず較正液の応答電流iを測定
する。25℃における較正液の応答電流をiとする。
実際に血液を滴下した得られた応答電流iにi2/i
乗ずると、25℃におけるその血液の応答電流に変換で
きる。25℃における血液のグルコース濃度と応答電流
の関係式においてその変換した応答電流から試料である
血液中のグルコース濃度が計算できる。グルコース標準
液200mg/dlを各温度で測定すると、応答電流は第3
図のBのようになるか、較正液によりそれぞれ温度補正
するとCのようにそろった値が得られ、温度の影響をな
くし精度よく測定できた。血液サンプルについても測定
し温度補正をすると、病院で分析した値と非常によい相
関が得られた。これにより、サーミスタをつけなくて
も、較正液のみで温度補正が可能となり、較正液はしゃ
光した容器で長期間室温で安定に保存できるため、取り
扱いも便利である。
In the case of the present glucose sensor, the measured current affects the rate of enzymatic reaction and the rate of diffusion of the produced potassium ferrocyanide to the electrode. When the reaction layer 7 is loaded with a high concentration of glucose oxidase and potassium ferricyanide to promptly carry out the enzymatic reaction, the influence of temperature on the enzymatic reaction can be reduced. Therefore, in order to investigate the effect of temperature on the diffusion rate, potassium ferricyanide and potassium ferrocyanide were each added to 0.0
A solution containing 2M was used as a calibration solution, and the oxidative current was measured at the same temperature as that of blood by dropping it on the electrode part at each temperature. As shown in FIG. A linear relationship was obtained. The response current at each temperature was obtained with good reproducibility if the area of the measuring electrode 2 was the same and the concentration of potassium ferrocyanide was the same. Therefore, even if the measurement temperature is unknown, the measurement temperature can be detected from the straight line A in FIG. Therefore,
When measuring blood, first, the response current i 1 of the calibration liquid is measured. The response current of the calibration solution at 25 ° C. is i 1 .
When the response current i obtained by actually dropping blood is multiplied by i 2 / i 1 , it can be converted into the response current of the blood at 25 ° C. The glucose concentration in blood as a sample can be calculated from the converted response current in the relational expression between the blood glucose concentration at 25 ° C. and the response current. When glucose standard solution 200mg / dl was measured at each temperature, the response current was 3rd
As shown in B of the figure, or when the temperature was corrected by the calibrating solution, the same values as in C were obtained, and the influence of temperature was eliminated and accurate measurement was possible. When the blood samples were also measured and temperature corrected, a very good correlation was obtained with the values analyzed in the hospital. As a result, even if the thermistor is not attached, the temperature can be corrected only by the calibration liquid, and the calibration liquid can be stored stably in the shielded container at room temperature for a long period of time, which is convenient for handling.

較正液による応答電流の波形は第4図のDのようにピー
クの位置やピーク電流の大きさが安定している。しか
し、電極の表面に過大電流が流れて酸化されたり、血液
中のタンパク質などが電極表面に付着してよごれると第
4図のEのようにピークの位置がずれ、応答電流の大き
さが小さくなった。そこで、電極を洗浄して再度較正液
で応答電流を測定したところ、もとの波形にもどった。
このことから、較正液で測定することにより、温度を検
知するだけでなく、電極表面の状態も知ることができ、
電極のよごれによる誤差をなくすことができた。
As for the waveform of the response current due to the calibration liquid, the position of the peak and the magnitude of the peak current are stable as shown by D in FIG. However, if an excessive current flows on the surface of the electrode and it is oxidized, or if proteins in the blood adhere to the surface of the electrode and become dirty, the peak position shifts as shown in E of FIG. 4, and the magnitude of the response current is small. became. Therefore, when the electrode was washed and the response current was measured again with the calibration solution, the original waveform was restored.
From this, it is possible to know not only the temperature but also the state of the electrode surface by measuring with the calibration liquid,
It was possible to eliminate the error caused by the contamination of the electrodes.

較正液として用いられる電子受容体としては、フェリシ
アン化カリウムが安定に反応するので適しているが、P
−ベンゾキノン、2,6−ジクロロフェノールインドフ
ェノール、メチレンブルー、フェナジンメトサルフェー
ト、β−ナフトキノン−4−スルホン酸カリウムなども
使用できる。
As an electron acceptor used as a calibration solution, potassium ferricyanide is suitable because it reacts stably.
-Benzoquinone, 2,6-dichlorophenolindophenol, methylene blue, phenazine methosulfate, β-naphthoquinone-4-potassium sulfonate and the like can also be used.

なお、上記実施例におけるセンサはグルコースに限ら
ず、アルコールセンサやコレステロールセンサなど、酸
化還元酵素の関与する系に用いることができる。
The sensor in the above-mentioned examples is not limited to glucose, but can be used in systems involving oxidoreductase such as alcohol sensor and cholesterol sensor.

発明の効果 本発明によれば、較正液により簡易に温度補正ができ、
さらに電極表面の状態も確認でき、高精度の測定が可能
となる。
EFFECTS OF THE INVENTION According to the present invention, temperature can be easily corrected with a calibration liquid,
Furthermore, the state of the electrode surface can be confirmed, and high-precision measurement becomes possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例のグルコースセンサの縦断面
図、第2図及び第4図は温度と応答電流の関係を示した
図、第3図は電流−電圧の関係を示す図、第5図は従来
のバイオセンサの縦断面図である。 1……基板、2……測定極、3……対極、4……参照
極、5……保液層、6……過層、7……反応層。
FIG. 1 is a longitudinal sectional view of a glucose sensor according to an embodiment of the present invention, FIGS. 2 and 4 are diagrams showing a relationship between temperature and response current, and FIG. 3 is a diagram showing a relationship between current and voltage. FIG. 5 is a vertical sectional view of a conventional biosensor. 1 ... Substrate, 2 ... Measurement electrode, 3 ... Counter electrode, 4 ... Reference electrode, 5 ... Liquid retaining layer, 6 ... Overlayer, 7 ... Reaction layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性の基板に設けた測定極と対極および
参照極からなる電極系を用い、酵素と酸化型の電子受容
体と試料液の反応により生成した還元型の電子受容体の
濃度を酸化電流として検知し、前記試料液の基質濃度を
測定する方法であって、既知濃度の前記電子受容体の酸
化型と還元型を含む溶液を較正液として用いて前記と同
様な方法で測定し、あらかじめ測定しておいた温度と較
正液の応答の関係式から測定時の温度を検知し、試料液
で得られた値から基質濃度を計算する際温度補正をかけ
ることを特徴とする基質濃度の測定方法。
1. A concentration of a reduced electron acceptor produced by a reaction between an enzyme, an oxidized electron acceptor and a sample solution, using an electrode system comprising a measuring electrode, a counter electrode and a reference electrode provided on an insulating substrate. Is detected as an oxidation current, and the substrate concentration of the sample solution is measured, which is measured in the same manner as above using a solution containing a known concentration of the oxidized and reduced forms of the electron acceptor as a calibration solution. However, the substrate is characterized in that the temperature at the time of measurement is detected from the relational expression between the temperature measured in advance and the response of the calibration liquid, and the temperature is corrected when the substrate concentration is calculated from the value obtained in the sample liquid. How to measure concentration.
JP60094720A 1985-05-02 1985-05-02 Substrate concentration measurement method Expired - Lifetime JPH0612356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094720A JPH0612356B2 (en) 1985-05-02 1985-05-02 Substrate concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094720A JPH0612356B2 (en) 1985-05-02 1985-05-02 Substrate concentration measurement method

Publications (2)

Publication Number Publication Date
JPS61253454A JPS61253454A (en) 1986-11-11
JPH0612356B2 true JPH0612356B2 (en) 1994-02-16

Family

ID=14117964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094720A Expired - Lifetime JPH0612356B2 (en) 1985-05-02 1985-05-02 Substrate concentration measurement method

Country Status (1)

Country Link
JP (1) JPH0612356B2 (en)

Also Published As

Publication number Publication date
JPS61253454A (en) 1986-11-11

Similar Documents

Publication Publication Date Title
US5312590A (en) Amperometric sensor for single and multicomponent analysis
RU2292841C2 (en) Metod of determining adequacy of sample's volume in biological detector devices
CN1975403B (en) Method and apparatus for rapid electrochemical analysis
TWI453401B (en) System and methods for determination of analyte concentration using time resolved amperometry
RU2238548C2 (en) Method for measuring concentration of analyzed substance (variants), measuring device for doing the same
US10352890B2 (en) Biosensor system, sensor chip, and method of measuring analyte concentration in blood sample
US4897173A (en) Biosensor and method for making the same
US6051392A (en) Method for quantitating a substrate and measurement device used therefor
EP0255291B1 (en) Method and apparatus for electrochemical measurements
JP5009897B2 (en) Oxidizable species as an internal reference in control solutions for biosensors
US6153069A (en) Apparatus for amperometric Diagnostic analysis
CN101849180B (en) Multizone analyte testing sensor
US9347910B2 (en) Systems and methods for improved stability of electrochemical sensors
JPH04357449A (en) Biosensor and measuring device thereof
IL153209A (en) Passive sample detection to initiate timing of an assay
JPH0640086B2 (en) Biosensor
US20070000777A1 (en) Test system
JPH022913A (en) Modified electrode
JPH046907B2 (en)
JPS6355025B2 (en)
JPH043500B2 (en)
JPH0612356B2 (en) Substrate concentration measurement method
JPH0643983B2 (en) Biosensor
JPS63317097A (en) Biosensor
JP2543057B2 (en) Biosensor manufacturing method and biosensor electrode plate manufacturing method