JPH06121920A - Hollow fiber membrane - Google Patents

Hollow fiber membrane

Info

Publication number
JPH06121920A
JPH06121920A JP4073308A JP7330892A JPH06121920A JP H06121920 A JPH06121920 A JP H06121920A JP 4073308 A JP4073308 A JP 4073308A JP 7330892 A JP7330892 A JP 7330892A JP H06121920 A JPH06121920 A JP H06121920A
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
oxygen
sec
stp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4073308A
Other languages
Japanese (ja)
Other versions
JPH07121340B2 (en
Inventor
Takanori Anazawa
孝典 穴沢
Kazutaka Murata
一高 村田
Hiroyuki Akasu
弘幸 赤須
Rishichi Mimura
理七 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP4073308A priority Critical patent/JPH07121340B2/en
Publication of JPH06121920A publication Critical patent/JPH06121920A/en
Publication of JPH07121340B2 publication Critical patent/JPH07121340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a hollow fiber membrane high in gas exchanging rate and used for a gas-liquid contact device or the like such as a deoxygen device for boiler supply water or the like. CONSTITUTION:The hollow fiber membrane has >=1X10<-6>[cm<3>(STP)/ cm<2>.sec.cmHg] oxygen permeating rate Q (O2), e.g. 2.0X10<-4>[cm<3>(STP)/ cm<2>.sec.cmHg), 0.94-1.15, e.g. 1.09, separation factor of oxygen/nitrogen, being substantially non-permeable to ethanol, 7-50%, e.g. 23.8%, in porosity, 10-500mum, e.g. 221mum, in inside diameter and 5-100mum, e.g. 24mum, in thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は特定の酸素/窒素の分離
係数を有する中空繊維膜に関するものであり、ボイラー
供給水脱酸素装置等用の気液接触装置、培養槽等に用い
られるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hollow fiber membrane having a specific oxygen / nitrogen separation coefficient, and is used for a gas-liquid contactor such as a boiler feed water deoxygenator, a culture tank and the like. is there.

【0002】[0002]

【従来の技術】気液接触用隔膜として用いられる中空繊
維膜としては、多孔質層と非多孔質層とからなり、酸素
/窒素の分離係数が1.2以上のものが知られている
(特開昭59−196706号)。
2. Description of the Related Art As a hollow fiber membrane used as a gas-liquid contacting membrane, one having a porous layer and a non-porous layer and having an oxygen / nitrogen separation coefficient of 1.2 or more is known ( JP-A-59-196706).

【0003】かかる中空繊維膜は、各種用途に用いられ
るが、よりガス交換速度が高い中空繊維膜が要望されて
いる。
Although such hollow fiber membranes are used for various purposes, there is a demand for hollow fiber membranes having a higher gas exchange rate.

【0004】[0004]

【発明が解決しようとする課題】本発明は、気液接触装
置に用いた場合、ガス交換速度がより向上した中空繊維
膜を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a hollow fiber membrane having a higher gas exchange rate when used in a gas-liquid contactor.

【0005】[0005]

【課題を解決するための手段】本発明は25℃における
酸素透過速度Q(O2)が1×10-6[cm3(STP)/cm
2・sec・cmHg]以上であり、酸素/窒素の分離係数が
0.94〜1.15であり、かつ実質的にエタノールを透
過せず、空孔率が7〜50%であり、主としてポリオレ
フィン系重合体からなり、内径が10〜500μmでか
つ厚さが5〜100μmであることを特徴とする中空繊
維膜、又、該膜が圧力差0.5kgf/cm2でのエタノール
透過量が300cm3/(min・m2)以下または/および空孔
率が7〜50%であるものに関する。
The present invention has an oxygen permeation rate Q (O 2 ) of 1 × 10 −6 [cm 3 (STP) / cm at 25 ° C.
2 · sec · cmHg] or more, the separation coefficient of oxygen / nitrogen is 0.94 to 1.15, it is substantially impermeable to ethanol, and the porosity is 7 to 50%. A hollow fiber membrane composed of a polymer, having an inner diameter of 10 to 500 μm and a thickness of 5 to 100 μm, and having a pressure difference of 0.5 kgf / cm 2 and an ethanol permeation amount of 300 cm. 3 / (min · m 2 ) or less and / or a porosity of 7 to 50%.

【0006】本発明の中空繊維膜は、膜内部に微細な細
孔(空隙)を有するものの、膜の表裏は実質上細孔によ
って連通していない、所謂非連通孔タイプの多孔質膜で
ある。膜内部に細孔が多く存在するほど酸素や二酸化炭
素等のガス透過速度が高くなり、気体−液体間のガス交
換速度が増す。しかしながら、空孔率を高くし過ぎると
細孔は互いに連結し、膜の表裏を連通する細孔(連通
孔)が発生する。そのため本発明の膜は、その空孔率
(体積空孔率)が7〜50%のものが好ましく、膜の製
造方法によって多少異なるが、10〜35%のものがよ
り好ましい。本発明での膜は、上記の様に実質上連通孔
を有しない多孔質膜、換言すると、部分的な連通孔およ
び独立気泡の一方または両方を複雑に保有する多孔質膜
であるが、さらにその構造について詳しく論じると、膜
の一方の側(中空繊維膜の外表面もしくは内表面)には
細孔が開孔しているが他の側に細孔が開孔していない場
合、膜の内部には細孔が存在するものの膜の内外両表面
には細孔が開孔していない場合、膜の内外両表面共に細
孔が開孔しているものの該細孔が膜内部で途切れてい
て、表裏を連通していない場合等があり、実際にはこれ
らの構造が混在する事が多い。膜表面における細孔の開
口状態は、走査型電子顕微鏡(SEM)による表面から
の観察で視認できる。本発明の膜は上記のいずれの構造
であっても良いが、膜の少なくとも一方の側に細孔が開
孔していない層を持つものが好ましい。細孔の大きさに
特に制限は無いが、酸素透過速度や膜強度等の点から、
直径0.005〜10μmが好ましく、0.03〜1μm
がさらに好ましい。
The hollow fiber membrane of the present invention is a so-called non-communicating pore type porous membrane having fine pores (voids) inside the membrane, but the front and back of the membrane are not substantially connected by pores. . The more pores are present inside the membrane, the higher the gas permeation rate of oxygen, carbon dioxide, etc., and the faster the gas-liquid gas exchange rate. However, if the porosity is too high, the pores are connected to each other, and pores (communication holes) that connect the front and back of the membrane are generated. Therefore, the membrane of the present invention preferably has a porosity (volume porosity) of 7 to 50%, and more preferably 10 to 35%, although it varies somewhat depending on the method of producing the membrane. The membrane in the present invention is a porous membrane having substantially no communication holes as described above, in other words, a porous membrane having one or both of the communication holes and the closed cells in a complicated manner. If we discuss the structure in detail, if there are pores on one side of the membrane (outer or inner surface of the hollow fiber membrane) but not on the other side, the membrane will be When there are pores in the interior but no pores are formed on both the inner and outer surfaces of the membrane, the pores are open on both the inner and outer surfaces of the membrane, but the pores are interrupted inside the membrane. Therefore, there are cases where the front and back are not connected, and in reality, these structures are often mixed. The opening state of the pores on the film surface can be visually confirmed by observation from the surface with a scanning electron microscope (SEM). The membrane of the present invention may have any of the above structures, but it is preferable that the membrane has a layer in which pores are not opened on at least one side of the membrane. The size of the pores is not particularly limited, but in terms of oxygen permeation rate and membrane strength,
The diameter is preferably 0.005 to 10 μm, and 0.03 to 1 μm
Is more preferable.

【0007】本発明の膜は酸素透過速度Q(O2)が1
×10-6[cm3(STP)/cm2・sec・cmHg]以上、好
ましくは7×10-6[cm3(STP)/ cm2・sec・cmH
g]以上、より好ましくは5×10-5〜1×10-3[cm
3(STP)/(cm2・sec・cmHg)]のものである。(酸素
透過速度はASTM D1434に準拠して測定され
る)酸素透過速度がこの値より低い場合は、気体−液体
間、例えば血液とのガス交換速度が遅くなる。本発明の
膜の場合、二酸化炭素の透過速度は酸素の透過速度ほぼ
同程度若しくは高くなるため、酸素透過速度が上記値で
あれば、例えば血液からの二酸化炭素除去量は十分であ
る。酸素透過速度は高い方が好ましいのは勿論である。
酸素透過速度を高めるには酸素透過係数の大きな素材を
選定すること、空孔率を高めること、気体が膜素材の重
合体中を溶解・拡散機構で透過すべき実質膜厚を薄くす
ること、といった方法をとる事ができる。しかし、その
達し得る酸素透過速度には自ずと限界はあろうが、高い
こと自体による不都合はないので、その意味から酸素透
過速度に上限を定めることを要しない。
The membrane of the present invention has an oxygen permeation rate Q (O 2 ) of 1
× 10 −6 [cm 3 (STP) / cm 2 · sec · cmHg] or more, preferably 7 × 10 −6 [cm 3 (STP) / cm 2 · sec · cmH]
g] or more, more preferably 5 × 10 −5 to 1 × 10 −3 [cm
3 (STP) / (cm 2 · sec · cmHg)]. If the oxygen permeation rate is lower than this value (the oxygen permeation rate is measured according to ASTM D1434), the gas exchange rate between gas and liquid, for example with blood, will be slow. In the case of the membrane of the present invention, the permeation rate of carbon dioxide is almost the same as or higher than the permeation rate of oxygen. Therefore, if the permeation rate of oxygen is the above value, for example, the amount of carbon dioxide removed from blood is sufficient. Of course, it is preferable that the oxygen transmission rate is high.
To increase the oxygen permeation rate, select a material with a large oxygen permeation coefficient, increase the porosity, and reduce the substantial film thickness that gas must permeate through the polymer of the membrane material by the dissolution / diffusion mechanism, You can take such a method. However, although there is a limit to the oxygen transmission rate that can be reached, there is no inconvenience due to the high value, and therefore it is not necessary to set an upper limit on the oxygen transmission rate.

【0008】膜の表裏を連通した細孔、所謂連通孔が存
在すると、酸素透過速度は高くなるものの、液体の漏出
が生じる場合があり好ましくない。連通孔の有無と存在
量は、エタノールの透過量で判定できる。エタノール
は、膜に連通孔が存在すれば、その内部に浸入して液状
のまま膜を透過する。例えば、多孔膜型人工肺に用いら
れる連通孔タイプのポリプロピレン膜の場合、膜の一方
の側より0.5kgf/cm2の加圧下に70%エタノールを
圧入すると、1000〜40000ml/(min・m2)の速
度でエタノールが透過してくるが、本発明の膜ではエタ
ノール透過量は著しく少なく、実質的に不透過である。
ここでいう「実質的に不透過」とは、同じ測定条件下で
エタノール透過量が30ml/(min・m2)以下であること
を意味する。エタノール透過量は、好ましくは10ml/
(min・m2)以下、さらに好ましくは2ml/(min・m2)以下
である。
The presence of so-called communicating pores in the front and back of the membrane is not preferable because the oxygen permeation rate increases but liquid leakage may occur. The presence or absence and the amount of the communication holes can be determined by the amount of permeation of ethanol. If the membrane has a communication hole, ethanol penetrates into the inside of the membrane and permeates the membrane in a liquid state. For example, in the case of a polypropylene membrane of a continuous pore type used for a porous membrane oxygenator, if 70% ethanol is pressed under 0.5 kgf / cm 2 of pressure from one side of the membrane, 1000 to 40,000 ml / (min · m) Although ethanol permeates at the rate of 2 ), the membrane of the present invention has a remarkably small amount of ethanol permeation and is substantially impermeable.
The term “substantially impermeable” as used herein means that the amount of ethanol permeation is 30 ml / (min · m 2 ) or less under the same measurement conditions. Ethanol permeation rate is preferably 10 ml /
(min · m 2 ) or less, more preferably 2 ml / (min · m 2 ) or less.

【0009】本発明の膜における連通していない部分、
即ちこのエタノールを「実質的に不透過」とするエタノ
ール遮断層が本発明の膜のどの位置に存在するかを特定
することは、本発明において必須ではなく、膜の表面の
片側または両側に存在しても良いことは勿論、膜の内部
に、単層、複層を問わず、複雑な形状で実質的に存在す
るのであっても良い。 特に中空繊維膜の内表面もしく
は外表面にエタノール遮断層を形成する事が好ましい。
さらに、遮断層の厚みを薄くする目的から、遮断層は1
層である事が好ましい。この様な遮断層(非多孔層)が膜
表面に形成されているかどうかは、走査型電子顕微鏡
(SEM)で確認する事ができる。
The non-communicating portion of the membrane of the present invention,
That is, it is not essential in the present invention to specify at which position of the membrane of the present invention the ethanol blocking layer that renders this ethanol "substantially impermeable" is not present in the present invention and is present on one side or both sides of the surface of the membrane. Of course, it may be a single layer or a multi-layer inside the film, and the film may substantially exist in a complicated shape. In particular, it is preferable to form an ethanol blocking layer on the inner or outer surface of the hollow fiber membrane.
Further, in order to reduce the thickness of the barrier layer, the barrier layer is 1
It is preferably a layer. Whether or not such a blocking layer (non-porous layer) is formed on the surface of the film is determined by a scanning electron microscope.
You can check with (SEM).

【0010】エタノール遮断層の膜全体に於る平均的な
全実質厚みは気体透過速度の実測値から計算により推定
する事ができる。即ち、膜を透過する気体は、膜中の遮
断層を溶解・拡散流れで透過する部分と膜の表裏を連結
する連通孔をクヌーセン流れで透過する部分の和である
として(並列構造)解いた式(1)を用い、酸素透過速度お
よび窒素透過速度の実測値から計算される。
The average total substantial thickness of the entire ethanol barrier layer can be estimated by calculation from the measured value of the gas permeation rate. That is, the gas that permeates the membrane is the sum of the part that permeates the barrier layer in the membrane by the dissolution / diffusion flow and the part that permeates the communication hole that connects the front and back of the membrane by the Knudsen flow (parallel structure). It is calculated from the measured values of the oxygen permeation rate and the nitrogen permeation rate using the equation (1).

【0011】[0011]

【数3】 但し[Equation 3] However

【0012】[0012]

【数4】 P(O2) [*1]:素材ポリマーの酸素透過係数 P(N2) [*1]:素材ポリマーの窒素透過係数 Q(O2) [*2]:膜の酸素透過速度(実測値) Q(N2) [*2]:膜の窒素透過速度(実測値) L[μm] :遮断層の平均厚み (注)[*1]:cm3(STP)・cm/(cm2・sec・cmHg) [*2]:cm3(STP)/(cm2・sec・cmHg) 本発明に於ける、(1)式で計算される中空繊維膜の遮断
層厚みは10μm以下、好ましくは2μm以下、さらに好
ましくは0.7μm以下である。しかしながら製造技術
上、遮断層厚みを0.01μm以下にする事は極めて困難
である。
[Equation 4] P (O 2 ) [* 1]: Oxygen permeability coefficient of the material polymer P (N 2 ) [* 1]: Nitrogen permeability coefficient of the material polymer Q (O 2 ) [* 2]: Oxygen permeability rate of the membrane (measured value) ) Q (N 2 ) [* 2]: Nitrogen permeation rate of the membrane (measured value) L [μm]: Average thickness of the barrier layer (Note) [* 1]: cm 3 (STP) · cm / (cm 2 · sec · cmHg) [* 2]: cm 3 (STP) / (cm 2 · sec · cmHg) In the present invention, the thickness of the blocking layer of the hollow fiber membrane calculated by the formula (1) is 10 μm or less, preferably It is 2 μm or less, and more preferably 0.7 μm or less. However, in terms of manufacturing technology, it is extremely difficult to reduce the thickness of the barrier layer to 0.01 μm or less.

【0013】上記(1)式で計算される遮断層の厚みはα
<1の場合には誤差が大きくなる。この様な場合には、
酸素/窒素の測定の代わりに二酸化炭素/窒素の測定か
ら求めることができる。
The thickness of the barrier layer calculated by the above equation (1) is α
When <1, the error becomes large. In this case,
Instead of the oxygen / nitrogen measurement, it can be determined from the carbon dioxide / nitrogen measurement.

【0014】又、本発明に用いられる膜としては、上述
のα(酸素/窒素の分離係数)が0.94〜1.15、好ま
しくは0.95〜1.09のものである。
The membrane used in the present invention has the above-mentioned α (oxygen / nitrogen separation coefficient) of 0.94 to 1.15, preferably 0.95 to 1.09.

【0015】而して、中空繊維膜は、25℃における酸
素透過速度Q(O2)が1×10-6以上、酸素/窒素の分
離係数αが0.94〜1.15、酸素透過速度と窒素透過
速度から計算される遮断層(非多孔層)の厚みが2μm以
下であり、かつ圧力差0.5kgf/cm2でのエタノール透
過量が300cm3/(min・m2)以下、空孔率が7〜50%
であり、内径が10〜500μmで、且つ厚さが5〜1
00μmであるものが好適である。かかる膜は、特開昭
59−196706号に開示されている、多孔質層と非
多孔質層とからなり、酸素/窒素の分離係数αが1.2
以上の中空繊維膜に比べて、一般の膜型気液接触装置、
例えばボイラー供給水の脱酸素、培養槽等に於いて、ガ
ス交換速度が高く、装置がコンパクトにできるメリツト
を有する。即ち、特開昭59−196706号の膜でも
気液接触装置に用いて有効であるが、より優れた性能を
指向して止まない市場要求からすれば、上記の好適な中
空繊維膜が要望に応じ得るものである。
Thus, the hollow fiber membrane has an oxygen permeation rate Q (O 2 ) at 25 ° C. of 1 × 10 −6 or more, an oxygen / nitrogen separation coefficient α of 0.94 to 1.15, and an oxygen permeation rate. The thickness of the barrier layer (non-porous layer) calculated from the above and the nitrogen permeation rate is 2 μm or less, and the amount of ethanol permeation at a pressure difference of 0.5 kgf / cm 2 is 300 cm 3 / (min · m 2 ) or less, Porosity 7 to 50%
With an inner diameter of 10 to 500 μm and a thickness of 5 to 1
A thickness of 00 μm is suitable. Such a membrane comprises a porous layer and a non-porous layer disclosed in JP-A-59-196706 and has an oxygen / nitrogen separation coefficient α of 1.2.
Compared to the above hollow fiber membranes, general membrane gas-liquid contactor,
For example, in the deoxidation of boiler feed water, a culture tank, etc., the gas exchange rate is high and the device can be made compact. That is, although the membrane of JP-A-59-196706 is also effective for use in a gas-liquid contactor, the above-mentioned suitable hollow fiber membranes are demanded from the market demands for better performance. You can accept.

【0016】尚、上記中空繊維膜は、前述する如く、一
般の膜型気液接触装置、即ち膜を介して液体と気体を接
触せしめ、液体中への気体の溶解若しくは液体中に含溶
存する気体の放出若しくはこれらの溶解と放出とを同時
に行わしめることを目的としたもの、例えばボイラー供
給水の脱酸素装置、培養槽、生物廃水処理における酸素
供給装置等に利用できる。一般の気液接触装置において
は、特に素材がポリ-4-メチルペンテン-1の場合、親
水化されるような事態は生じない。この為、一般の気液
接触装置用ガス交換膜として用い得る膜のエタノール透
過量は300cm3/(min・m2)以下である。
As mentioned above, the hollow fiber membrane is brought into contact with a liquid and a gas through a general membrane-type gas-liquid contact device, that is, a membrane, and the gas is dissolved in the liquid or is dissolved in the liquid. It can be used for the purpose of releasing gas or simultaneously dissolving and releasing these, for example, a deoxygenation device for boiler feed water, a culture tank, an oxygen supply device for biological wastewater treatment, and the like. In a general gas-liquid contactor, especially when the material is poly-4-methylpentene-1, there is no occurrence of hydrophilicity. Therefore, the amount of ethanol permeation of a membrane that can be used as a gas exchange membrane for a general gas-liquid contactor is 300 cm 3 / (min · m 2 ) or less.

【0017】本発明の膜を構成する重合体はポリオレフ
ィンが好適である。ポリオレフィン系重合体は、素材と
しての酸素および二酸化炭素の透過係数が大きいこと、
非連通孔形多孔質膜に成形し易いこと、残留溶剤の恐れ
の無い溶融法で膜を成形できること、機械的強度が強く
て膜厚を小さく出来るため装置がコンパクトになるこ
と、有害な不純物を含有しにくいこと、吸水性が無く取
扱いが容易なこと、耐薬品性があり滅菌が容易なこと、
安価であること、といった特長を有している。本発明に
用いるポリオレフィン系重合体としては、例えばポリ−
4−メチルペンテン−1、ポリプロピレン、ポリエチレ
ン、ポリブテン−1およびこれらの共重合体等を例示す
ることができるが、これらの中でポリ−4−メチルペン
テン−1が気体透過係数が大きいことにより酸素透過速
度Q(O2)を高くして遮断層厚みLを薄くする事がで
き、かつ膜表面に遮断層を形成し易いので特に好まし
い。また、ポリ−4−メチルペンテン−1は、その表面
エネルギーが前記例示の各ポリオレフィン系重合体の中
で最も小さいため、膜表面に凝縮した水蒸気が膜を濡ら
して広がり、ガス交換面積を低下させる現象が起こりに
くいなどから、本発明において好適な素材である。
The polymer forming the membrane of the present invention is preferably polyolefin. The polyolefin-based polymer has a large permeability coefficient of oxygen and carbon dioxide as materials,
It is easy to form a non-communicatable porous membrane, can be formed by a melting method without the risk of residual solvent, has a strong mechanical strength and can reduce the film thickness, thus making the device compact, and removing harmful impurities. Difficult to contain, easy to handle with no water absorption, chemical resistant and easy to sterilize,
It has the features of being inexpensive. Examples of the polyolefin-based polymer used in the present invention include poly-
Examples thereof include 4-methylpentene-1, polypropylene, polyethylene, polybutene-1, and copolymers thereof. Among these, poly-4-methylpentene-1 has a large gas permeability coefficient, and thus oxygen It is particularly preferable because the barrier layer thickness L can be reduced by increasing the permeation rate Q (O 2 ) and the barrier layer can be easily formed on the film surface. Further, since the surface energy of poly-4-methylpentene-1 is the smallest among the polyolefin polymers exemplified above, the water vapor condensed on the surface of the membrane wets and spreads the membrane, reducing the gas exchange area. It is a suitable material in the present invention because it hardly causes a phenomenon.

【0018】本発明で用いられる主としてポリオレフィ
ン系重合体から成る素材は、ポリオレフィンの1種以上
を主要成分とするものであればよく、他の物質を含有す
ることも可能である。例えば、架橋剤や抗菌剤等を含有
しても良いし、他のポリマーとブレンドする事もでき
る。また、プラズマ処理等の表面処理や放射線架橋等の
処理を行なう事も可能である。
The material mainly composed of a polyolefin polymer used in the present invention may be one having at least one kind of polyolefin as a main component, and may contain other substances. For example, it may contain a crosslinking agent, an antibacterial agent, or the like, or may be blended with another polymer. It is also possible to perform surface treatment such as plasma treatment or treatment such as radiation crosslinking.

【0019】本発明に用いる膜の形状は、中空繊維状も
しくは管状であり、内径は10〜500μm、好ましく
は100〜300μm、膜厚は5〜100μm、好まし
くは10〜40μmである。本発明の膜はシリコン均質
膜に比べて、内径に対する膜厚が小さい。又、本発明の
膜は、中空繊維を簾状のシートとして用いるのが好まし
い。かかる簾状シートは中空繊維に対して垂直方向に縦
糸又は粘着テープで中空繊維を編組するか、接着剤が付
着した糸で中空接着剤を接着する等によつて得たものが
使用できる。勿論、該簾状シートは上記のもののみに限
定されるものではない。
The shape of the membrane used in the present invention is hollow fiber or tubular, the inner diameter is 10 to 500 μm, preferably 100 to 300 μm, and the film thickness is 5 to 100 μm, preferably 10 to 40 μm. The film of the present invention has a smaller film thickness with respect to the inner diameter than the silicon homogeneous film. Further, in the membrane of the present invention, it is preferable to use hollow fibers as a blind-shaped sheet. As such a cord-like sheet, one obtained by braiding the hollow fiber in the direction perpendicular to the hollow fiber with a warp or an adhesive tape, or by adhering the hollow adhesive with a thread having an adhesive attached thereto can be used. Of course, the blind-shaped sheet is not limited to the above.

【0020】本発明に用いる膜は、その製法については
特に限定はないが、一般には溶融法、乾式法および乾湿
式法が適しており(中でも溶融法が膜の性能および生産
性の両面に於て特に好適であり)、例えば、特開昭59
−196706、特開昭59−229320、特開昭6
1−101206、特開昭61−101227に開示さ
れている方法で製造する事ができる。
The production method of the membrane used in the present invention is not particularly limited, but in general, a melting method, a dry method and a dry-wet method are suitable (among others, the melting method is effective in terms of both performance and productivity of the membrane). Are particularly preferable), for example, JP-A-59
196706, JP-A-59-229320, JP-A-6-
It can be produced by the method disclosed in JP-A-1-101206 or JP-A-61-101227.

【0021】特に、次の様な条件で製造するのが好まし
い。即ち、溶融温度を(Tm+15)〜(Tm+65)℃
(但し、Tmはポリマーの結晶融点)、非晶延伸のDRを
1.0〜1.1熱処理の温度を(Tm−35)〜(Tm−1
0)℃、熱処理時間を2〜30秒、DRを1.0〜1.
2、冷延伸DRを1.1〜1.6、熱延伸DRを1.3〜
2.0の範囲で製造する。又、到達結晶化度20%以上
のポリオレフィン重合体を中空繊維状に溶融押出成形
し、これを必要に応じ配向延伸と熱処理を行ない、冷延
伸と熱固定を行なう事により中空繊維膜の少なくとも一
方の側に平滑な遮断層を有する多孔質膜を製造する事が
できる。この方法で製造した膜は、その生成機構に由来
して膜中の細孔が膜表面に対して垂直方向に長い構造を
持つためか、比較的低い空孔率で十分に高い酸素透過速
度と実質的にアルコール不透過性を示し、しかも高い機
械的強度を持ち膜厚を小さくできる事、溶剤等を一切使
用しないので有害物の溶出が無い事、生産性が高く複合
膜に比べてはるかに低コストの膜を製造できる事、とい
った特徴を持つ。
In particular, it is preferable to manufacture under the following conditions. That is, the melting temperature is (Tm + 15) to (Tm + 65) ° C.
(However, Tm is a crystalline melting point of the polymer), DR of the amorphous stretching is 1.0 to 1.1, and the temperature of the heat treatment is (Tm-35) to (Tm-1).
0) ° C., heat treatment time 2 to 30 seconds, DR 1.0 to 1.
2. Cold stretching DR 1.1-1.6, hot stretching DR 1.3-
Manufactured in the range of 2.0. At least one of the hollow fiber membranes is obtained by melt-extruding a polyolefin polymer having an ultimate crystallinity of 20% or more into a hollow fiber shape, and subjecting this to oriented stretching and heat treatment, and cold stretching and heat setting. It is possible to produce a porous membrane having a smooth barrier layer on the side of the. The membrane produced by this method may have a sufficiently high oxygen permeation rate with a relatively low porosity, probably because the pores in the membrane have a structure that is long in the direction perpendicular to the membrane surface due to its generation mechanism. It is substantially impermeable to alcohol, has high mechanical strength and can reduce the film thickness, does not elute harmful substances because it does not use solvents at all, has high productivity, and is far superior to the composite film. It has the feature of being able to manufacture low-cost membranes.

【0022】[0022]

【実施例】以下実施例等によって本発明をさらに具体的
に説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0023】(実施例1)メルトインデックス(AST
M D1238による)26のポリ−4−メチルペンテ
ン−1を、直径6mmの円環型中空繊維用ノズルを用い
て、紡糸温度290℃、引取速度300m/分、ドラフ
ト380で溶融紡糸し、中空繊維を得た。この時ノズル
口下3〜35cmの範囲を温度25℃、風速1.5m/秒
の風で冷却した。得られた中空繊維を温度35℃、延伸
倍率(DR)1.05で、ローラー系を用いて連続的に
非晶延伸し、次いで220℃、DR 1.1で熱風循環
型恒温槽中に導入して5秒間滞留させる事により熱処理
を行ない、引続き35℃、DR1.2の冷延伸、150
℃、DR1.4の熱延伸、および200℃、DR0.93
の熱固定を行なって、外径246μm、膜厚25μmの
中空繊維膜を得た。この膜の内外表面を12,000倍
のSEMで観察したところ、中空糸内表面には孔径約
0.1μmの細孔が1cm2当り約50×109個開口してい
るのが観測されるのに対し、外表面にはその1/50程
度の開口しか存在しなかつた。この膜の気体透過性はQ
(O2)=2.0×10-4cm3(STP)/(cm2・sec・cmH
g)、α=1.09、であり、第(1)式およびポリ4-メ
チルペンテン-1の特性値P(O2)=2.0×10-9cm
3(STP)/(cm2・sec・cmHg)、α1=4.1、を用
いて計算した遮断層厚みは0.53μmであつた。
Example 1 Melt Index (AST
M.D. 1238) 26 poly-4-methylpentene-1 was melt-spun at a spinning temperature of 290 ° C., a take-up speed of 300 m / min and a draft of 380 using a circular ring-shaped hollow fiber nozzle having a diameter of 6 mm to give a hollow fiber. Got At this time, the range of 3 to 35 cm below the nozzle mouth was cooled with a wind at a temperature of 25 ° C. and a wind speed of 1.5 m / sec. The obtained hollow fiber was continuously amorphously drawn using a roller system at a temperature of 35 ° C. and a draw ratio (DR) of 1.05, and then introduced into a hot air circulation type thermostat at 220 ° C. and DR 1.1. Then, heat treatment is carried out by allowing it to stay for 5 seconds, followed by cold stretching at 35 ° C and DR 1.2, 150
C, DR 1.4 hot stretch, and 200 C, DR 0.93
Was heat-fixed to obtain a hollow fiber membrane having an outer diameter of 246 μm and a film thickness of 25 μm. When the inner and outer surfaces of this membrane were observed with a SEM of 12,000 times, it was observed that about 50 × 10 9 pores having a pore diameter of about 0.1 μm were opened per cm 2 on the inner surface of the hollow fiber. On the other hand, only about 1/50 of the openings were present on the outer surface. The gas permeability of this membrane is Q
(O 2 ) = 2.0 × 10 -4 cm 3 (STP) / (cm 2 · sec · cmH
g), α = 1.09, and the characteristic value P (O 2 ) of the formula (1) and poly-4-methylpentene-1 = 2.0 × 10 −9 cm.
The barrier layer thickness calculated using 3 (STP) / (cm 2 · sec · cmHg), α 1 = 4.1 was 0.53 μm.

【0024】この中空繊維膜0.5gを長さ約10mmに
切って比重びんに詰め、真空ポンプで1×10-2torr以
下に脱気したのち水銀を充填し、重量を計ったところ2
5℃における中空繊維膜の体積は0.800cm3であっ
た。ポリ−4−メチルペンテン−1の真比重0.82を
用いて計算すると、この中空繊維膜の空孔率は23.8
%であつた。
0.5 g of this hollow fiber membrane was cut into a length of about 10 mm, packed in a specific gravity bottle, degassed to 1 × 10 -2 torr or less by a vacuum pump, filled with mercury, and then weighed.
The volume of the hollow fiber membrane at 5 ° C. was 0.800 cm 3 . Calculated using the true specific gravity of poly-4-methylpentene-1 of 0.82, the porosity of this hollow fiber membrane is 23.8.
It was in%.

【0025】上記中空糸膜20本(実効長10cm)を図3
に示した装置に組込み、液体が中空糸膜の外表面に接す
る系での酸素の溶解速度を測定した。図3において、液
体(水)を満すケース(8)は、バルブ(16)(17)が付さ
れた液体導入口(12)および液体排出口(13)が設けら
れており、磁気撹拌機(9)上に配置されている。(10)
は撹拌子であり、(11)は酸素センサーである。繊維束
状の中空糸膜(18)は両端付近で樹脂封止部(20)によ
り束ねられており、主体部分が液体中に浸漬され、ゴム
栓(19)を介してケース(8)外にその開口端が出てお
り、気体導入口(14)および気体排気口(15)に接続さ
れている。
The above 20 hollow fiber membranes (effective length 10 cm) are shown in FIG.
It was incorporated into the device shown in 1 above and the dissolution rate of oxygen was measured in the system in which the liquid was in contact with the outer surface of the hollow fiber membrane. In FIG. 3, a case (8) filled with a liquid (water) is provided with a liquid inlet (12) provided with valves (16) and (17) and a liquid outlet (13), and a magnetic stirrer. (9) Located above. (10)
Is an agitator, and (11) is an oxygen sensor. The fiber bundle-shaped hollow fiber membrane (18) is bundled by the resin sealing parts (20) near both ends, and the main body part is immersed in the liquid, and is put out of the case (8) through the rubber stopper (19). Its open end is exposed and connected to the gas inlet (14) and the gas outlet (15).

【0026】測定に当つては、中空糸膜の中空部に酸素
を通じ、水中の酸素濃度を酸素センサー(11)により測
定した。測定及び解析はYASUDA等;J.Appl.Po
lym.Sci.,16、595(1972)に記載されている
方法によつた。測定は25℃恒温室内で行ない溶存酸素
濃度計として電気化学計器(株)社製DOC−10型を用
いた。また膜面積の計算に当つては、中空糸外表面積を
膜面積とした。 測定で得た気液系での酸素透過速度Q
1(O2)は1.29×10-5cm3(STP)/(cm2・sec・c
mHg)であつた。
In the measurement, oxygen was passed through the hollow portion of the hollow fiber membrane and the oxygen concentration in water was measured by an oxygen sensor (11). Measurement and analysis is YASUDA, etc .; J. Appl. Po
lym. Sci., 16 , 595 (1972). The measurement was carried out in a constant temperature chamber at 25 ° C. and a DOC-10 model manufactured by Electrochemical Instruments Co., Ltd. was used as a dissolved oxygen concentration meter. Further, in calculating the membrane area, the outer surface area of the hollow fiber was defined as the membrane area. Oxygen transmission rate Q in gas-liquid system obtained by measurement
1 (O 2 ) is 1.29 × 10 -5 cm 3 (STP) / (cm 2 · sec · c
mHg).

【0027】(実施例2)紡糸ドラフトが390、熱処
理条件が220℃、DR1.05、熱延伸DRが1.4、
熱固定のDRが0.93であること以外には実施例1と
同条件で製造した中空繊維膜は、外径245μm、膜厚
24μmであつた。SEMにより観察すると、中空糸内
表面には孔径約0.1μmの細孔が1cm2当り約50×1
9個開口しているのが観測されるのに対し、外表面に
はその1/50程度の開口しか存在しなかつた。この膜
の気体透過性はQ(O2)=8.7×10-4cm3(STP)
/(cm2・sec・cmHg)、α=0.960、であり、第
(1)式およびポリ-4メチルペンテン-1の特性値P
(O2)=2.0×10-9cm3(STP)・cm/(cm2・sec・
cmHg)、α1=4.1、を用いて計算した遮断層厚みは
0.68μmであつた。実施例1と同様にして測定したこ
の中空糸の空孔率は24.3%であつた。
Example 2 A spinning draft of 390, a heat treatment condition of 220 ° C., a DR of 1.05, and a hot drawing DR of 1.4,
The hollow fiber membrane produced under the same conditions as in Example 1 except that the DR for heat setting was 0.93 had an outer diameter of 245 μm and a thickness of 24 μm. Observed by SEM, the inner surface of the hollow fibers had pores with a pore size of about 0.1 μm, about 50 × 1 per cm 2.
Although it was observed that there were 09 openings, only about 1/50 of the openings were present on the outer surface. The gas permeability of this membrane is Q (O 2 ) = 8.7 × 10 −4 cm 3 (STP)
/ (Cm 2 · sec · cmHg), α = 0.960,
Formula (1) and characteristic value P of poly-4-methylpentene-1
(O 2 ) = 2.0 × 10 -9 cm 3 (STP) ・ cm / (cm 2・ sec ・
cmHg), α 1 = 4.1, the barrier layer thickness calculated was 0.68 μm. The porosity of this hollow fiber measured in the same manner as in Example 1 was 24.3%.

【0028】上記中空糸膜を用いて実施例1と同様にし
て測定を行なつたところ気液系での酸素透過速度Q1(O
2)は9.05×10-6cm3(STP)/(cm2・sec・cmH
g)であつた。
Using the above hollow fiber membrane, the measurement was carried out in the same manner as in Example 1. As a result, the oxygen permeation rate Q 1 (O
2 ) is 9.05 × 10 -6 cm 3 (STP) / (cm 2 · sec · cmH
g).

【0029】(比較例1)紡糸ドラフトが270、熱処
理条件が200℃、DR1.3、熱延伸DRが1.2、熱
固定のDRが0.9であること以外には実施例1と同条
件で製造した中空繊維膜は、外径272μm、膜厚27
μmであつた。SEMによると、図1に見られる様に、
内表面は平滑で、細孔がほとんど認められず、又、図2
に見られるように外表面には0.2μm程度の微細孔が
多数認められた。実施例1と同様にして測定したこの中
空糸の空孔率は18.0%であつた。
(Comparative Example 1) The same as Example 1 except that the spinning draft was 270, the heat treatment conditions were 200 ° C., DR 1.3, the hot drawing DR was 1.2, and the heat setting DR was 0.9. The hollow fiber membrane manufactured under the conditions has an outer diameter of 272 μm and a thickness of 27
It was μm. According to SEM, as seen in Figure 1,
The inner surface was smooth, few pores were observed, and Fig. 2
As can be seen from the above, many fine pores of about 0.2 μm were recognized on the outer surface. The porosity of this hollow fiber measured in the same manner as in Example 1 was 18.0%.

【0030】またこの中空膜をガラス管に封入し、AS
TM D1434圧力法に準拠して25℃にて気体透過
速度を測定したところの、Q(O2)=4.5×10-5cm
3(STP)/(cm2・sec・cmHg)、Q(CO2)=3.
4×10-5(cm3(STP)/(cm2・sec・cmHg)、α
(O2/N2)=1.2、L(遮断層)=1.3μmであつ
た。
The hollow membrane was sealed in a glass tube and
When the gas permeation rate was measured at 25 ° C. according to the TM D1434 pressure method, Q (O 2 ) = 4.5 × 10 −5 cm
3 (STP) / (cm 2 · sec · cmHg), Q (CO 2 ) = 3.
4 × 10 -5 (cm 3 (STP) / (cm 2 · sec · cmHg), α
(O 2 / N 2 ) = 1.2 and L (blocking layer) = 1.3 μm.

【0031】上記膜を用いて実施例1と同様にして測定
を行なったところ、この膜の気液系での酸素透過速度Q
1(O2)は6.6×10-6cm3(STP)/(cm2・sec・
cmHg)であつた。
When the measurement was performed using the above membrane in the same manner as in Example 1, the oxygen permeation rate Q of this membrane in the gas-liquid system was measured.
1 (O 2 ) is 6.6 × 10 -6 cm 3 (STP) / (cm 2 · sec ·
cmHg).

【0032】(比較例2)紡糸温度が300℃である事
および非晶延伸の延伸倍率が1.2である事以外は比較
例1と全く同様にして中空繊維膜を製造した。この中空
繊維膜には、SEM観察によれば、内表面、外表面共に
SEMの解像力(約30Å)以上の孔径の細孔は全く認
められなかつた。また、この膜の外径は250μm、膜
厚は25μm、空孔率は11%、酸素透過速度Q
(O2)は8×10-6cm3(STP)/(cm2・sec・cmH
g)、αは4.1、Lは2.5μm、Q(CO2)は3.9
×10-5cm3(STP)/cm2・sec・cmHg)であつた。
(Comparative Example 2) A hollow fiber membrane was produced in exactly the same manner as Comparative Example 1 except that the spinning temperature was 300 ° C and the draw ratio of the amorphous stretching was 1.2. According to SEM observation, no pores having a pore size equal to or larger than the resolution of SEM (about 30 Å) were observed in this hollow fiber membrane by SEM observation. The outer diameter of this film is 250 μm, the film thickness is 25 μm, the porosity is 11%, and the oxygen permeation rate Q is
(O 2 ) is 8 × 10 -6 cm 3 (STP) / (cm 2 · sec · cmH
g), α is 4.1, L is 2.5 μm, and Q (CO 2 ) is 3.9.
× 10 −5 cm 3 (STP) / cm 2 · sec · cmHg).

【0033】上記膜を用いて実施例1と同様にして測定
を行なったところ、この膜の気液系での酸素透過速度Q
1(O2)は4.6×10-6cm3(STP)/(cm2・sec・
cmHg)であつた。
When the measurement was performed in the same manner as in Example 1 using the above membrane, the oxygen permeation rate Q of this membrane in the gas-liquid system was measured.
1 (O 2 ) is 4.6 × 10 -6 cm 3 (STP) / (cm 2 · sec ・
cmHg).

【0034】(実施例3)メルトインデックス(AST
M D1238による)3.5のポリプロピレンを、直
径6mmの円環型中空繊維用ノズルを用いて、紡糸温度2
50℃、引取速度300m/分、ドラフト270で溶融
紡糸し、外径345μm、膜厚34μmの中空繊維を得
た。この時ノズル口下3〜35cmの範囲を温度8℃、風
速1.5m/秒の風で冷却した。得られた中空繊維を温
度35℃、延伸倍率(DR)1.2で、ローラー系を用
いて連続的に非晶延伸し、次いで140℃、DR1.3
で熱風循環型恒温槽中に導入して5秒間滞留させる事に
より熱処理を行ない、引続き10℃、DR1.2の冷延
伸、140℃、DR1.2の熱延伸、および140℃、
DR0.9の熱固定を行なって、外径257μm、内径
205μm、膜厚26μmの中空繊維膜を得た。この膜
の内外表面を12,000倍のSEMで観察したとこ
ろ、内表面には微細孔がほとんど認められず、外表面に
は0.1μm程度の微細孔が多数存在した。この膜の空
孔率は31%、酸素透過速度Q(O2)は3.4×10-4cm
3(STP)/(cm2・sec・cmHg)、αは0.94、Lは
1.6μm、Q(CO2)は2.92×10-4cm3(STP)
/(cm2・sec・cmHg)であった。尚、Lの計算はQ
(O2)を用いた場合は誤差が大きいため、Q(CO2)に基
づいた。
(Example 3) Melt index (AST
Polypropylene of 3.5) (according to MD 1238) is spun at a spinning temperature of 2 by using a ring type hollow fiber nozzle having a diameter of 6 mm.
Melt spinning was performed at 50 ° C., a take-up speed of 300 m / min, and a draft 270 to obtain a hollow fiber having an outer diameter of 345 μm and a film thickness of 34 μm. At this time, a range of 3 to 35 cm below the nozzle mouth was cooled with a wind at a temperature of 8 ° C and a wind speed of 1.5 m / sec. The resulting hollow fiber was continuously amorphously drawn using a roller system at a temperature of 35 ° C. and a draw ratio (DR) of 1.2, and then at 140 ° C. and DR 1.3.
Then, heat treatment is performed by introducing it into a hot-air circulation type constant temperature bath and allowing it to stay for 5 seconds, followed by 10 ° C., cold stretching at DR 1.2, 140 ° C., hot stretching at DR 1.2, and 140 ° C.
DR0.9 was heat-set to obtain a hollow fiber membrane having an outer diameter of 257 μm, an inner diameter of 205 μm and a film thickness of 26 μm. When the inner and outer surfaces of this film were observed with a SEM of 12,000 times, almost no micropores were observed on the inner surface, and many micropores of about 0.1 μm were present on the outer surface. This membrane has a porosity of 31% and an oxygen permeation rate Q (O 2 ) of 3.4 × 10 −4 cm.
3 (STP) / (cm 2 · sec · cmHg), α is 0.94, L is 1.6 μm, and Q (CO 2 ) is 2.92 × 10 −4 cm 3 (STP)
It was / (cm 2 · sec · cmHg). The calculation of L is Q
Since the error is large when (O 2 ) is used, it is based on Q (CO 2 ).

【0035】(実施例4)メルトインデックス1.8、
密度0.96のポリエチレンを、直径10mmの円環型中
空繊維用ノズルを用いて、紡糸温度230℃、ドラフト
700、冷却風温12℃、冷却風速1.5m/sで溶融
紡糸した。得られた中空繊維を、ローラー系にて連続的
に、20℃、DR1.2で非晶延伸し、80℃、DR1.
2、滞留時間5秒で熱処理し、20℃、DR1.3で冷
延伸し、60℃、DR1.2で熱延伸し、80℃、DR
1.0で熱固定して、内径200μm、膜厚24μmの
中空繊維膜を得た。SEM観察によれば、この膜は、内
外両表面共に細孔は認められず、膜断面の内外表面間は
孔径約1μmの細孔から成る多孔質層であった。またこ
の膜の空孔率は25%、酸素透過速度Q(O2)は1.5×
10-4cm3(STP)/(cm2・sec・cmHg)、αは0.9
5、Lは0.6μm、Q(CO2)は1.33×10-4cm
3(STP)/(cm2・sec・cmHg)であった。尚、Lは実
施例3と同様にして算出した。
Example 4 Melt index 1.8,
Polyethylene having a density of 0.96 was melt-spun at a spinning temperature of 230 ° C., a draft 700, a cooling air temperature of 12 ° C., and a cooling air speed of 1.5 m / s using a circular ring type hollow fiber nozzle having a diameter of 10 mm. The obtained hollow fiber was continuously drawn amorphously at 20 ° C. and DR1.2 by a roller system, and then at 80 ° C. and DR1.2.
2. Heat treatment with residence time of 5 seconds, cold drawing at 20 ℃, DR1.3, hot drawing at 60 ℃, DR1.2, 80 ℃, DR
It was heat-fixed at 1.0 to obtain a hollow fiber membrane having an inner diameter of 200 μm and a film thickness of 24 μm. According to SEM observation, no pores were observed on both the inner and outer surfaces of this membrane, and the membrane was a porous layer composed of pores having a pore diameter of about 1 μm between the inner and outer surfaces. The porosity of this membrane is 25%, and the oxygen permeation rate Q (O 2 ) is 1.5 ×.
10 -4 cm 3 (STP) / (cm 2 · sec · cmHg), α is 0.9
5, L is 0.6 μm, Q (CO 2 ) is 1.33 × 10 −4 cm
It was 3 (STP) / (cm 2 · sec · cmHg). Incidentally, L was calculated in the same manner as in Example 3.

【0036】(実施例5)紡糸ドラフトが350、熱処
理条件が220℃、DR1.1、熱延伸DRが1.4であ
ること以外には実施例1と同条件で製造した中空繊維膜
は、外径255μm、膜厚26μmであつた。SEMによ
り観察すると、中空糸内表面には孔径約0.1μmの細孔
が1cm2当り約50×109個開口しているのが観測され
るのに対し、外表面にはその1/50程度の開口しか存
在しなかつた。この膜の気体透過性はQ(O2)=3×1
-4cm3(STP)/(cm2・sec・cmHg)、α=1.0
2、Q(CO2)=3.4×10-4cm3(STP)/(cm2・s
ec・cmHg)であり、第(1)式およびポリ4メチルペンテ
ン-1の特性値P(O2)=2.0×10-9cm3(STP)/
(cm2・sec・cmHg)、α1=4.1、を用いて計算した遮
断層厚みLは0.6μmであつた。製造例1と同様にして
測定したこの中空糸の空孔率は23.5%であつた。
(Example 5) A hollow fiber membrane produced under the same conditions as in Example 1 except that the spinning draft was 350, the heat treatment conditions were 220 ° C, the DR1.1 and the hot drawing DR were 1.4, The outer diameter was 255 μm and the film thickness was 26 μm. When observed by SEM, it was observed that about 50 × 10 9 pores having a pore size of about 0.1 μm were opened per cm 2 on the inner surface of the hollow fiber, whereas 1/50 of the pores were opened on the outer surface. There was only a small opening. The gas permeability of this membrane is Q (O 2 ) = 3 × 1
0 -4 cm 3 (STP) / (cm 2 · sec · cmHg), α = 1.0
2, Q (CO 2 ) = 3.4 × 10 -4 cm 3 (STP) / (cm 2 · s
ec · cmHg), and the characteristic value P (O 2 ) of the formula (1) and poly (4-methylpentene-1) = 2.0 × 10 −9 cm 3 (STP) /
The barrier layer thickness L calculated using (cm 2 · sec · cmHg) and α 1 = 4.1 was 0.6 μm. The porosity of this hollow fiber measured in the same manner as in Production Example 1 was 23.5%.

【0037】(実施例6)熱処理の時間が10秒、冷延
伸倍率が1.3、熱延伸倍率が1.8であること以外は実
施例5と同様の方法で製造した中空繊維膜の特性はQ
(O2)=3.0×10-4cm3(STP)/(cm2・sec・cmH
g)、α=0.98、L=1.1μm、Q(CO2)=3.0×
10-4cm3(STP)/(cm2・sec・cmHg)、空孔率=2
7%であつた。
(Example 6) Characteristics of a hollow fiber membrane produced in the same manner as in Example 5 except that the heat treatment time was 10 seconds, the cold draw ratio was 1.3, and the hot draw ratio was 1.8. Is Q
(O 2 ) = 3.0 × 10 -4 cm 3 (STP) / (cm 2 · sec · cmH
g), α = 0.98, L = 1.1 μm, Q (CO 2 ) = 3.0 ×
10 -4 cm 3 (STP) / (cm 2 · sec · cmHg), porosity = 2
It was 7%.

【0038】[0038]

【発明の効果】本発明の中空繊維膜は、従来の中空繊維
膜に比べてガス交換速度が向上したものであり、気液接
触装置等のガス交換膜として有用なものである。
INDUSTRIAL APPLICABILITY The hollow fiber membrane of the present invention has an improved gas exchange rate as compared with conventional hollow fiber membranes, and is useful as a gas exchange membrane for gas-liquid contactors and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】比較例1の中空繊維の内表面を走査型電子顕微
鏡写真である。
FIG. 1 is a scanning electron micrograph of the inner surface of a hollow fiber of Comparative Example 1.

【図2】比較例1の中空繊維の外表面を走査型電子顕微
鏡写真である。
2 is a scanning electron micrograph of the outer surface of the hollow fiber of Comparative Example 1. FIG.

【図3】実施例1〜2及び比較例1で用いられる気液接
触装置の概略図である。
FIG. 3 is a schematic diagram of a gas-liquid contact device used in Examples 1 and 2 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1 ケース 2 磁気撹拌機 3 撹拌子 4 酸素センサー 5 液体導入口 6 液体排出口 7 気体導入口 8 気体排出口 9 バルブ 10 中空糸膜 11 ゴム栓、 12 樹脂封止部 1 Case 2 Magnetic Stirrer 3 Stirrer 4 Oxygen Sensor 5 Liquid Inlet 6 Liquid Outlet 7 Gas Inlet 8 Gas Outlet 9 Valve 10 Hollow Fiber Membrane 11 Rubber Plug, 12 Resin Sealing Part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 25℃における酸素透過速度Q(O2)が
1×10-6[cm3(STP)/cm2・sec・cmHg]以上であ
り、酸素/窒素の分離係数が0.94〜1.15であり、
かつ実質的にエタノールを透過せず、空孔率が7〜50
%であり、主としてポリオレフィン系重合体からなり、
内径が10〜500μmでかつ厚さが5〜100μmで
あることを特徴とする中空繊維膜。
1. The oxygen permeation rate Q (O 2 ) at 25 ° C. is 1 × 10 −6 [cm 3 (STP) / cm 2 · sec · cmHg] or more, and the oxygen / nitrogen separation coefficient is 0.94. ~ 1.15,
And it is substantially impermeable to ethanol and has a porosity of 7 to 50.
%, Mainly composed of a polyolefin-based polymer,
A hollow fiber membrane having an inner diameter of 10 to 500 μm and a thickness of 5 to 100 μm.
【請求項2】 圧力差0.5kgf/cm2でのエタノール透
過量が300cm3/(min・m2)以下であることを特徴とす
る請求項1記載の中空繊維膜。
2. The hollow fiber membrane according to claim 1, which has an ethanol permeation amount of 300 cm 3 / (min · m 2 ) or less at a pressure difference of 0.5 kgf / cm 2 .
【請求項3】 下記式(1)で計算される非多孔層の厚
みが2μm以下である請求項1記載の中空繊維膜。記 【数1】 但し 【数2】 P(O2) [*1]:素材ポリマーの酸素透過係数 P(N2) [*1]:素材ポリマーの窒素透過係数 Q(O2) [*2]:膜の酸素透過速度(実測値) Q(N2) [*2]:膜の窒素透過速度(実測値) L[μm] :非多孔層(遮断層)の平均厚み (注)[*1]:cm3(STP)・cm/(cm2・sec・cmHg) [*2]:cm3(STP)/(cm2・sec・cmHg)
3. The hollow fiber membrane according to claim 1, wherein the thickness of the non-porous layer calculated by the following formula (1) is 2 μm or less. Note [Equation 1] However, [Equation 2] P (O 2 ) [* 1]: Oxygen permeability coefficient of the material polymer P (N 2 ) [* 1]: Nitrogen permeability coefficient of the material polymer Q (O 2 ) [* 2]: Oxygen permeability rate of the membrane (measured value) ) Q (N 2 ) [* 2]: Nitrogen permeation rate of membrane (measured value) L [μm]: Average thickness of non-porous layer (blocking layer) (Note) [* 1]: cm 3 (STP) ・ cm / (Cm 2 · sec · cmHg) [* 2]: cm 3 (STP) / (cm 2 · sec · cmHg)
JP4073308A 1987-07-11 1992-02-25 Hollow fiber membrane Expired - Fee Related JPH07121340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073308A JPH07121340B2 (en) 1987-07-11 1992-02-25 Hollow fiber membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17206787 1987-07-11
JP62-172067 1987-07-11
JP4073308A JPH07121340B2 (en) 1987-07-11 1992-02-25 Hollow fiber membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63170783A Division JP2700170B2 (en) 1987-07-11 1988-07-11 Membrane oxygenator

Publications (2)

Publication Number Publication Date
JPH06121920A true JPH06121920A (en) 1994-05-06
JPH07121340B2 JPH07121340B2 (en) 1995-12-25

Family

ID=26414460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073308A Expired - Fee Related JPH07121340B2 (en) 1987-07-11 1992-02-25 Hollow fiber membrane

Country Status (1)

Country Link
JP (1) JPH07121340B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298907A (en) * 2008-06-12 2009-12-24 Shin Etsu Polymer Co Ltd Selectively permeable material for house and house air conditioning system
JP2011036743A (en) * 2009-08-06 2011-02-24 Nomura Unison Co Ltd Hollow fiber membrane for degassing
US9005343B2 (en) 2010-05-05 2015-04-14 New Health Sciences, Inc. Integrated leukocyte, oxygen and/or CO2 depletion, and plasma separation filter device
US9067004B2 (en) 2011-03-28 2015-06-30 New Health Sciences, Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
US9095662B2 (en) 2009-10-12 2015-08-04 New Health Sciences, Inc. Blood storage bag system and depletion devices with oxygen and carbon dioxide depletion capabilities
US9199016B2 (en) 2009-10-12 2015-12-01 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
US9296990B2 (en) 2009-10-12 2016-03-29 New Health Sciences, Inc. Oxygen depletion devices and methods for removing oxygen from red blood cells
US9339025B2 (en) 2010-08-25 2016-05-17 New Health Sciences, Inc. Method for enhancing red blood cell quality and survival during storage
US9877476B2 (en) 2013-02-28 2018-01-30 New Health Sciences, Inc. Gas depletion and gas addition devices for blood treatment
US10058091B2 (en) 2015-03-10 2018-08-28 New Health Sciences, Inc. Oxygen reduction disposable kits, devices and methods of use thereof
US10136635B2 (en) 2010-05-05 2018-11-27 New Health Sciences, Inc. Irradiation of red blood cells and anaerobic storage
US10583192B2 (en) 2016-05-27 2020-03-10 New Health Sciences, Inc. Anaerobic blood storage and pathogen inactivation method
US10849824B2 (en) 2015-04-23 2020-12-01 Hemanext Inc. Anaerobic blood storage containers
US11013771B2 (en) 2015-05-18 2021-05-25 Hemanext Inc. Methods for the storage of whole blood, and compositions thereof
US11284616B2 (en) 2010-05-05 2022-03-29 Hemanext Inc. Irradiation of red blood cells and anaerobic storage
WO2023027052A1 (en) 2021-08-23 2023-03-02 東レ株式会社 Hollow fiber microporous membrane, and gas separation membrane module with same built thereinto

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106770A (en) * 1985-07-16 1987-05-18 テルモ株式会社 Hollow yarn membrane for artificial lang, its production andartificial lang using said hollow yarn membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62106770A (en) * 1985-07-16 1987-05-18 テルモ株式会社 Hollow yarn membrane for artificial lang, its production andartificial lang using said hollow yarn membrane

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298907A (en) * 2008-06-12 2009-12-24 Shin Etsu Polymer Co Ltd Selectively permeable material for house and house air conditioning system
JP2011036743A (en) * 2009-08-06 2011-02-24 Nomura Unison Co Ltd Hollow fiber membrane for degassing
US9296990B2 (en) 2009-10-12 2016-03-29 New Health Sciences, Inc. Oxygen depletion devices and methods for removing oxygen from red blood cells
US11433164B2 (en) 2009-10-12 2022-09-06 Hemanext Inc. System for extended storage of red blood cells and methods of use
US9095662B2 (en) 2009-10-12 2015-08-04 New Health Sciences, Inc. Blood storage bag system and depletion devices with oxygen and carbon dioxide depletion capabilities
US9199016B2 (en) 2009-10-12 2015-12-01 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
US9844615B2 (en) 2009-10-12 2017-12-19 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
US10603417B2 (en) 2009-10-12 2020-03-31 Hemanext Inc. System for extended storage of red blood cells and methods of use
US10065134B2 (en) 2010-05-05 2018-09-04 New Health Sciences, Inc. Integrated leukocyte, oxygen and/or CO2 depletion, and plasma separation filter device
US9005343B2 (en) 2010-05-05 2015-04-14 New Health Sciences, Inc. Integrated leukocyte, oxygen and/or CO2 depletion, and plasma separation filter device
US9539375B2 (en) 2010-05-05 2017-01-10 New Health Sciences, Inc. Integrated leukocyte, oxygen and/or CO2 depletion, and plasma separation filter device
US11284616B2 (en) 2010-05-05 2022-03-29 Hemanext Inc. Irradiation of red blood cells and anaerobic storage
US10136635B2 (en) 2010-05-05 2018-11-27 New Health Sciences, Inc. Irradiation of red blood cells and anaerobic storage
US9339025B2 (en) 2010-08-25 2016-05-17 New Health Sciences, Inc. Method for enhancing red blood cell quality and survival during storage
US10251387B2 (en) 2010-08-25 2019-04-09 New Health Sciences, Inc. Method for enhancing red blood cell quality and survival during storage
US9067004B2 (en) 2011-03-28 2015-06-30 New Health Sciences, Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
US9968718B2 (en) 2011-03-28 2018-05-15 New Health Sciences, Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
US9877476B2 (en) 2013-02-28 2018-01-30 New Health Sciences, Inc. Gas depletion and gas addition devices for blood treatment
US10687526B2 (en) 2013-02-28 2020-06-23 Hemanext Inc. Gas depletion and gas addition devices for blood treatment
US11350626B2 (en) 2015-03-10 2022-06-07 Hemanext Inc. Oxygen reduction disposable kits, devices and methods of use thereof (ORDKit)
US10058091B2 (en) 2015-03-10 2018-08-28 New Health Sciences, Inc. Oxygen reduction disposable kits, devices and methods of use thereof
US11375709B2 (en) 2015-03-10 2022-07-05 Hemanext Inc. Oxygen reduction disposable kits, devices and methods of use thereof
US11638421B2 (en) 2015-03-10 2023-05-02 Hemanext Inc. Oxygen reduction disposable kits, devices and methods of use thereof
US10849824B2 (en) 2015-04-23 2020-12-01 Hemanext Inc. Anaerobic blood storage containers
US11013771B2 (en) 2015-05-18 2021-05-25 Hemanext Inc. Methods for the storage of whole blood, and compositions thereof
US11147876B2 (en) 2016-05-27 2021-10-19 Hemanext Inc. Anaerobic blood storage and pathogen inactivation method
US10583192B2 (en) 2016-05-27 2020-03-10 New Health Sciences, Inc. Anaerobic blood storage and pathogen inactivation method
US11911471B2 (en) 2016-05-27 2024-02-27 Hemanext Inc. Anaerobic blood storage and pathogen inactivation method
WO2023027052A1 (en) 2021-08-23 2023-03-02 東レ株式会社 Hollow fiber microporous membrane, and gas separation membrane module with same built thereinto

Also Published As

Publication number Publication date
JPH07121340B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
EP0299381B2 (en) Membrane-type artificial lung and method of using it
US5192320A (en) Artificial lung and method of using it
JPH06121920A (en) Hollow fiber membrane
US5254143A (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
US10898858B2 (en) Membrane distillation apparatus and hydrophobic porous membrane
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
AU2006345112B2 (en) Polymer separation membrane and process for producing the same
AU771197B2 (en) Heat-resistant microporous film
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
JP2700170B2 (en) Membrane oxygenator
GB2053792A (en) Preparing microporous hollow fibres
GB2041821A (en) Process for Preparing Hollow Microporous Polypropylene Fibers
JP2512937B2 (en) Membrane type gas-liquid contactor
EP0470377B1 (en) Diaphragm for gas-liquid contact, gas-liquid contact apparatus and process for producing liquid containing gas dissolved therein
JP2725312B2 (en) Porous hollow fiber membrane type gas-liquid contactor
JP2725311B2 (en) Hollow fiber membrane type gas-liquid contactor
JPS63264127A (en) Porous membrane type gas-liquid contact device
US20010047959A1 (en) Polyacrylonitrile-based filtration membrane in a hollow fiber state
JPH0760082A (en) Method and apparatus for adjusting specific resistance of ultrapure water
JPS6342006B2 (en)
US11161069B2 (en) Porous membrane
US11617991B2 (en) Separation film
JPH0751505A (en) Method and apparatus for removal of gal dissolved in aqueous solution
JPH0788304A (en) Module for removing dissolved gas and supplying gas
JPH06142468A (en) Production of surface hydrophilic film having pores

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees