JPH06120556A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH06120556A
JPH06120556A JP3020934A JP2093491A JPH06120556A JP H06120556 A JPH06120556 A JP H06120556A JP 3020934 A JP3020934 A JP 3020934A JP 2093491 A JP2093491 A JP 2093491A JP H06120556 A JPH06120556 A JP H06120556A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
selenium
receiving element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3020934A
Other languages
Japanese (ja)
Inventor
Shinichiro Takatani
信一郎 高谷
Takaro Kuroda
崇郎 黒田
Kazutaka Tsuji
和隆 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3020934A priority Critical patent/JPH06120556A/en
Publication of JPH06120556A publication Critical patent/JPH06120556A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To realize a photodetector, provided with a small excess multiplying noise factor F, a large S/N ratio, high quantum efficiency same as an APD so far and sensibility in a desired wave-length band. CONSTITUTION:A photodetector is provided with a transforming layer 24, formed on a III-V compound semiconductor 1, a solid layer 2, laminated on the transforming layer 24 and mainly constituted of selenium, and voltage impressing means 3, 4, generating an electric field on the solid layer mainly constituted of selenium, while avalanche multiplication is caused by pouring a positive hole 6 generated in the compound semiconductor 1 into the solid layer 2. According to this method, a photodetector, provided with a large excess multiplying noise factor F and a high sensibility in a desired wave length band, can be realized by the large coefficient of ionization rate of selenium, the prevention of recombination effected by the transforming layer 24 and the high quantum efficiency of the III-V compound semiconductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は受光素子、更に詳しく言
えば、アバランシェ増倍によって光の信号を電気的信号
に変換する受光素子に関するものでる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light receiving element, and more particularly to a light receiving element which converts an optical signal into an electrical signal by avalanche multiplication.

【0002】[0002]

【従来の技術】光が半導体中で吸収されると、半導体中
に導電キャリアである電子や正孔が形成される。このキ
ャリアによる電流を外部にとりだし、電気的信号に変換
するのがいわゆる受光素子である。なかでも、発生した
導電キャリアを素子中に形成された高電界領域で衝突イ
オン化によりなだれ増倍(アバランシェ増倍)させるよ
うにしたものはアバランシェホトダイオード(以下AP
D)と呼ばれ、高感度、高速応答性を有する。特に、I
nGaAs、InGaAsP等の化合物半導体を光吸収
層に用いるAPDでは、光ファイバ−の伝送損失の小さ
い長波長(1.0〜1.6μm)帯域で動作可能なため
光通信用受光素子に用いられている。図2にその一例で
ある従来のAPDの断面図を示す(ヒロアキ アンドウ
他、アイイー イー イー ジャーナル オブ クォン
タム エレクトロニクス 巻QE−17 2番、第25
0乃至254頁(1981年)“、Hiroaki A
ndo et al., IEEE Journal
ofQuantum Electronics, Vo
lume QE−17, Number 2,p.25
0〜254(1981)”)。 これはIII−V族化
合物半導体であるInP基板11、12上に、III−
V族化合物半導体であるInGaAs13を成長させた
APDであり、波長1.3〜1.6μmの長波長帯の受
光素子である。素子上面より入射した光5はバンドギャ
ップの小さいn−InGaAs層13で吸収され、n−
InGaAs層13で電子・正孔対が形成される。一方
オーミック電極であるAu−Zn層17とAu−Ge−
Ni層18間に印加した逆バイアスにより、n−InP
層14とp(+)−InP領域15((+)は高濃度で
あることを示す。以下同様)のp−n接合部に高電界領
域が形成される。生成した電子・正孔対のうち正孔がこ
の高電界領域に注入されアバランシェ増倍される。In
GaAsの代わりにInGaAsPを用いたAPDもあ
る(カツヒコ他、アプライド フィジックス レターズ
第3巻 3号第251頁、1979年“Katsuh
iko Nishida et al, Applie
d Physics Letters, Volume
35,Number3,p.251(197
9)”)。
2. Description of the Related Art When light is absorbed in a semiconductor, electrons or holes which are conductive carriers are formed in the semiconductor. The so-called light receiving element takes out the electric current by the carrier to the outside and converts it into an electric signal. Among them, avalanche photodiodes (hereinafter referred to as “AP”), which have avalanche multiplication (avalanche multiplication) by collision ionization of generated conductive carriers in a high electric field region formed in the device,
It is called D) and has high sensitivity and high-speed response. In particular, I
APDs that use compound semiconductors such as nGaAs and InGaAsP for the light absorption layer can be used in the light receiving element for optical communication because they can operate in the long wavelength (1.0 to 1.6 μm) band where the transmission loss of the optical fiber is small. There is. Fig. 2 shows a cross-sectional view of a conventional APD, which is an example of this (Hiroaki Ando et al., AIE Journal of Quantum Electronics Volume QE-17 No. 2, No. 25).
Pp. 0-254 (1981) ", Hiroaki A
ndo et al. , IEEE Journal
ofQuantum Electronics, Vo
lume QE-17, Number 2, p. 25
0-254 (1981) ”), which is formed on the InP substrates 11 and 12 which are III-V group compound semiconductors by III-.
It is an APD obtained by growing InGaAs 13, which is a group V compound semiconductor, and is a light receiving element in the long wavelength band of wavelength 1.3 to 1.6 μm. The light 5 incident from the upper surface of the element is absorbed by the n-InGaAs layer 13 having a small band gap, and n-
Electron-hole pairs are formed in the InGaAs layer 13. On the other hand, the Au-Zn layer 17, which is an ohmic electrode, and Au-Ge-
By the reverse bias applied between the Ni layers 18, n-InP
A high electric field region is formed at the pn junction of the layer 14 and the p (+)-InP region 15 (which indicates that the concentration is high ((+); the same applies hereinafter). Holes of the generated electron-hole pairs are injected into this high electric field region and avalanche multiplication is performed. In
There is also an APD that uses InGaAsP instead of GaAs (Katsuhiko et al., Applied Physics Letters, Vol. 3, No. 3, page 251, 1979, "Katsuh.
iko Nishida et al, Applie
d Physics Letters, Volume
35, Number 3, p. 251 (197
9) ”).

【0003】化合物半導体APDでは、化合物半導体の
光吸収係数が大きく、高い量子効率が得られ、また異な
る化合物半導体を混合させた混晶やヘテロ接合を用いて
バンドギャップ等のバンド構造を変更し、動作させる波
長帯を自由に設計できる等の特徴がある。特に化合物半
導体APDでは上記従来例のように、光通信で重要な
1.0〜1.6μmの長波長帯に感度を有するAPDが
得られる。
In the compound semiconductor APD, the light absorption coefficient of the compound semiconductor is large, high quantum efficiency is obtained, and the band structure such as the band gap is changed by using a mixed crystal or heterojunction in which different compound semiconductors are mixed, It has the feature that the operating wavelength band can be freely designed. In particular, with the compound semiconductor APD, an APD having sensitivity in a long wavelength band of 1.0 to 1.6 μm, which is important in optical communication, can be obtained as in the above-mentioned conventional example.

【0004】[0004]

【発明が解決しようとする課題】APDの性能を示す重
要なパラメータとして過剰増倍雑音係数Fがある。これ
はアバランシェ増倍過程で起こる統計的なゆらぎにより
通常の雑音の増倍に付け加わる雑音の程度を示すもので
ある。Fの値が小さいほど付加される雑音が小さくな
り、よりS/N比が高く高感度のAPDが得られる。高
電界領域に正孔が注入される場合の過剰増倍雑音係数F
は、以下のMcIntyreの式で表わされる。 F=M{1−(1−1/k)(1−1/M)2} ここでkは正孔のイオン化係数βと電子のイオン化係数
αの比β/αである。イオン化係数α、βは電子や正孔
が単位距離進む間に衝突イオン化を起こす回数である。
またMはアバランシエ増倍における増倍率であり、イオ
ン化係数や増倍領域の厚さの関数である。上式よりイオ
ン化係数比kが小さいほどFが大きくなることがわか
る。これは次のように説明できる。k〜1、すなわち電
子と正孔の衝突イオン化が同程度に起こる場合、注入さ
れた正孔の衝突イオン化で生成された電子・正孔対のう
ちの電子が逆方向に加速され再び衝突イオン化を引き起
こす。このため増倍の時間が長くなるとともに増倍過程
における統計的ゆらぎが大きくなり過剰増倍雑音の発生
が大きくなる。逆にk>>1、すなわち電子の衝突イオ
ン化が正孔の衝突イオン化に比べ小さい場合、電子によ
るイオン化がないため増倍過程が速やかに完了し雑音の
発生も少ない。
The over-multiplication noise factor F is an important parameter indicating the performance of the APD. This shows the degree of noise added to the normal noise multiplication due to the statistical fluctuation that occurs in the avalanche multiplication process. The smaller the value of F, the smaller the added noise, and the APD having a higher S / N ratio and high sensitivity can be obtained. Excess multiplication noise factor F when holes are injected into a high electric field region
Is represented by the following McIntyre formula. F = M {1- (1-1 / k) (1-1 / M) 2 } where k is the ratio β / α of the ionization coefficient β of holes and the ionization coefficient α of electrons. The ionization coefficients α and β are the number of times that electrons and holes cause impact ionization while traveling a unit distance.
M is a multiplication factor in avalanche multiplication and is a function of the ionization coefficient and the thickness of the multiplication region. From the above equation, it can be seen that F becomes larger as the ionization coefficient ratio k becomes smaller. This can be explained as follows. k to 1, that is, when the collision ionization of electrons and holes occurs to the same degree, the electrons of the electron-hole pairs generated by the collision ionization of the injected holes are accelerated in the opposite direction and collision ionization is performed again. cause. For this reason, the multiplication time becomes long and the statistical fluctuation in the multiplication process becomes large, resulting in a large generation of excessive multiplication noise. On the contrary, when k >> 1, that is, the impact ionization of electrons is smaller than the impact ionization of holes, the multiplication process is completed promptly and there is little noise generation because there is no ionization by electrons.

【0005】図2に示す従来のAPDでは、InP14
中でアバランシェ増倍を行なっているので、S/N比は
InP14におけるイオン化係数比kで決まる。しか
し、InPのkは2程度と小さく、このため過剰増倍雑
音係数Fが大きくなりAPDのS/N比が小さくなる問
題がある。InP以外の化合物半導体を用いる場合も同
様であり、化合物半導体のイオン化係数比kは2程度と
小さいため、化合物半導体中でのアバランシェ増倍を用
いる従来のAPDでは、十分なS/N比が得られない問
題があった。本発明の目的は上記従来の問題点を解決
し、過剰増倍雑音係数Fが小さく、S/N比が大きく、
しかも、同時に従来のAPDと同様に量子効率が高く、
所望の波長帯に感度を持つ受光素子を実現ことである。
In the conventional APD shown in FIG. 2, InP14
Since the avalanche multiplication is performed therein, the S / N ratio is determined by the ionization coefficient ratio k of InP14. However, the k of InP is as small as about 2, which causes a problem that the excessive multiplication noise coefficient F increases and the S / N ratio of APD decreases. The same is true when a compound semiconductor other than InP is used, and since the ionization coefficient ratio k of the compound semiconductor is as small as about 2, a sufficient A / N ratio can be obtained in the conventional APD that uses avalanche multiplication in the compound semiconductor. There was a problem that can not be. The object of the present invention is to solve the above-mentioned conventional problems, to have a small excess multiplication noise factor F and a large S / N ratio,
Moreover, at the same time, the quantum efficiency is high as in the conventional APD,
It is to realize a light receiving element having a sensitivity in a desired wavelength band.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明による受光素子は、光吸収層である化合物半
導体と、上記化合物半導体上に変性層を介して積層され
たセレンを主体とする固体層と、上記セレンを主体とす
る固体層に高電界を発生させる電界印加手段を有する。
上記変性層はIII族元素とカルコゲンの化合物及びV族
元素とカルコゲン(本明細書では、セレン、テルル、硫
黄をカルコゲンと称する)の化合物の単独もしくは両者
からなり、好ましい実施形態としては、変性層の厚さは
1原子層以上数原子層以下の厚さを有する。上記化合物
半導体は従来のAPDと同様にインジウムガリウムヒ素
(InGaAs)、インジウムガリウムヒ素リン(In
GaAsP)ガリウムヒ素アンチモン(GaAsS
b)、アルミニウムガリウムヒ素アンチモン(AlGa
AsSb)等のIII−V族化合物が使用される。また
上記化合物半導体の種類によっては、化合物半導体との
接合部近傍のセレン層中にテルル等のバンドギャップを
小さくする効果のある材料を添加し、障壁を小さくす
る。更に、上記セレンを主体とする固体層に砒素等の電
気的性質や膜の熱安定性を改善する物質を添加する。
In order to achieve the above object, a light receiving element according to the present invention is mainly composed of a compound semiconductor as a light absorption layer and selenium laminated on the compound semiconductor via a modified layer. It has an electric field applying means for generating a high electric field in the solid layer and the solid layer mainly containing selenium.
The modified layer is composed of a compound of a group III element and chalcogen and a compound of a group V element and chalcogen (in the present specification, selenium, tellurium and sulfur are referred to as chalcogen) alone or both, and a preferable embodiment is a modified layer. Has a thickness of 1 atomic layer or more and several atomic layers or less. The compound semiconductor is made of indium gallium arsenide (InGaAs) or indium gallium arsenide phosphide (In) as in the conventional APD.
GaAsP) gallium arsenide antimony (GaAsS)
b), aluminum gallium arsenide antimony (AlGa
Group III-V compounds such as AsSb) are used. Further, depending on the type of the compound semiconductor, a material such as tellurium which has an effect of reducing the band gap is added to the selenium layer near the junction with the compound semiconductor to reduce the barrier. Further, a substance that improves electrical properties such as arsenic and thermal stability of the film is added to the solid layer containing selenium as a main component.

【0007】[0007]

【作用】図1は本発明の原理説明のための本発明の受光
素子の構成図を示す。光吸収層である化合物半導体1上
に変性層24を介してセレンを主体とする固体層2が堆
積されており、化合物半導体1及び固体層2にはそれぞ
れ電極3及び4が設けられている。電極3及び4の間に
バイアス電圧を加えることによって、セレンを主体とす
る固体層2に高電界(E)7が生じる。外部からの光5
は化合物半導体1で吸収され、電子、正孔の電流担体を
生じる。高電界(E)7によって、電流担体の正孔6は
変性層24を通過して、セレンを主体とする固体層2に
注入され、アバランシェ増倍が行なわれる。
1 is a block diagram of a light receiving element of the present invention for explaining the principle of the present invention. A solid layer 2 containing selenium as a main component is deposited on a compound semiconductor 1 which is a light absorbing layer via a modified layer 24, and electrodes 3 and 4 are provided on the compound semiconductor 1 and the solid layer 2, respectively. By applying a bias voltage between the electrodes 3 and 4, a high electric field (E) 7 is generated in the solid layer 2 mainly composed of selenium. Light from the outside 5
Are absorbed by the compound semiconductor 1 to generate electron and hole current carriers. Due to the high electric field (E) 7, the holes 6 of the current carrier pass through the modified layer 24 and are injected into the solid layer 2 mainly composed of selenium, and avalanche multiplication is performed.

【0008】上記受光素子において、セレンの正孔のイ
オン化係数は電子に比べ著しく大きく、イオン化係数比
kは10〜100と従来の化合物半導体に比べ数倍以上
である。このため本発明の受光素子によれば過剰増倍雑
音係数Fが小さくS/N比の高い高感度のAPDが得ら
れる。しかも本発明による受光素子では、光の吸収を化
合物半導体層で行なうため量子効率が高く、また異なる
化合物半導体を混合させた混晶やヘテロ接合を用いてバ
ンドギャップ等のバンド構造を変更し、所望の波長帯に
感度を持った素子を設計することができる。またセレン
のバンドギャップは2eVと大きいためトンネリングに
よるリーク電流の発生なく高電界を印加できる特徴もあ
る。
In the above light-receiving element, the ionization coefficient of holes of selenium is remarkably larger than that of electrons, and the ionization coefficient ratio k is 10 to 100, which is several times or more that of conventional compound semiconductors. Therefore, according to the light receiving element of the present invention, a highly sensitive APD having a small excess multiplication noise coefficient F and a high S / N ratio can be obtained. In addition, in the light receiving element according to the present invention, since the compound semiconductor layer absorbs light, the quantum efficiency is high, and the band structure such as the band gap is changed by using a mixed crystal or a heterojunction in which different compound semiconductors are mixed, It is possible to design an element having sensitivity in the wavelength band of. Further, since the band gap of selenium is as large as 2 eV, there is a feature that a high electric field can be applied without the generation of leak current due to tunneling.

【0009】本発明の受光素子において良好な動作を得
るためには、化合物半導体層とセレン層の界面での界面
準位密度が小さいことが必要である。界面に高密度の界
面準位が存在すると、正孔がセレン層に注入される前に
上記界面準位を介して電子と再結合してしまい量子効率
が低下する問題が生ずる。特に、界面に化合物半導体の
自然酸化膜が存在する場合、界面準位密度が大きくなり
良好な動作は得られない。しかし変性層を形成すれば、
界面準位の少ないきわめて良好な接合が得られる。従っ
てこの場合正孔の再結合による問題はほとんどない。一
般に異種の半導体のヘテロ接合界面では価電子帯上端の
不連続があり、これが正孔に対するポテンシャル障壁と
なる恐れがある。しかし本発明の受光素子を評価した結
果、化合物半導体としてGaAsを用いた場合、GaA
sとセレンの接合界面でのGaAs側から見た正孔に対
する障壁はほとんどないことがわかった。又、GaAs
以外の化合物半導体の場合も障壁は小さい。従って本発
明の受光素子では、化合物半導体中に発生した正孔は障
壁に阻止されることなくアバランシェ領域であるセレン
層に注入される。化合物半導体の界面に生じる障壁が問
題となる場合、化合物半導体との接合部近傍のセレン層
中にテルル等のバンドギャップを小さくする効果のある
材料を添加し、障壁を小さくすればよい。
In order to obtain good operation in the light receiving device of the present invention, it is necessary that the interface state density at the interface between the compound semiconductor layer and the selenium layer is small. When a high-density interface state exists at the interface, holes are recombined with electrons through the interface state before being injected into the selenium layer, which causes a problem of lowering quantum efficiency. In particular, when a natural oxide film of a compound semiconductor is present at the interface, the interface state density increases and good operation cannot be obtained. However, if a modified layer is formed,
A very good bond with few interface states can be obtained. Therefore, in this case, there is almost no problem due to recombination of holes. Generally, there is a discontinuity at the top of the valence band at the heterojunction interface between different kinds of semiconductors, which may serve as a potential barrier for holes. However, as a result of evaluating the light receiving element of the present invention, when GaAs is used as the compound semiconductor, GaA
It was found that there was almost no barrier to holes seen from the GaAs side at the junction interface between s and selenium. Also, GaAs
Other compound semiconductors also have small barriers. Therefore, in the light receiving element of the present invention, the holes generated in the compound semiconductor are injected into the selenium layer which is the avalanche region without being blocked by the barrier. When the barrier generated at the interface of the compound semiconductor becomes a problem, a material having an effect of reducing the band gap such as tellurium may be added to the selenium layer near the junction with the compound semiconductor to reduce the barrier.

【0010】増倍領域に用いるセレン層としては通常ア
モルファス状または微結晶状の膜を用いるが、この場合
均一な膜が得やすく、電界集中による局所的な破壊が起
こりにくい特徴がある。また成膜条件によっては単結晶
状とすることが可能である。この場合アモルファス状ま
たは微結晶状の膜に比べ特性の熱的劣化が小さくなるほ
か、電流担体の移動度が高くなり素子のより高速な動作
が可能となる。また純粋なセレンによる膜を使用する用
いる代わりに、例えばヒ素等の他の材料を副成分として
含ませ、膜の電気的性質や熱安定性を改善してもよい。
As the selenium layer used in the multiplication region, an amorphous or microcrystalline film is usually used. In this case, however, it is easy to obtain a uniform film, and local breakdown due to electric field concentration is unlikely to occur. Further, depending on the film forming conditions, it may be in a single crystal form. In this case, the thermal deterioration of the characteristics is smaller than that of the amorphous or microcrystalline film, and the mobility of the current carrier is increased, so that the device can operate at higher speed. Also, instead of using a pure selenium film, other materials such as arsenic may be included as an accessory component to improve the electrical properties and thermal stability of the film.

【0011】[0011]

【実施例】次に本発明の受光素子の実施例を製造方法と
共に図面を用いて説明する。図3は本発明による受光素
子(APD)の1実施例の製造工程の要部を示す。分子
線エピタキシー法により、n(+)−InP基板21上
にバッファ層としてn−InP層22を成長し、引続き
n−InGaAs層23を成長した(図3(a))。n
−InGaAs層23の混晶比、すなわちInxGa1_x
Asと表わした場合のxは0.53とした。この場合I
nGaAs23は基板のInP21と格子整合する。次
に、InGaAs層23の表面にセレンを反応させてセ
レン化物からなる変性層24を形成し、次いで、変成層
24上にアモルファス状のセレン層2を形成した(図3
(b))。引き続いて基板温度を室温にしてアモルファ
スセレン層24を堆積した。次いで、セレン層2上にA
uからなる電極3、n(+)−InP基板21の裏面
に、Au−Ge−Niからなる電極4を形成した。上記
実施例は分子線エピタキシー法を用いたが化学気相成長
法、液相成長法等を用いても良い本実施例では真空中に
おいて基板温度300℃でInGaAs23表面にセレ
ン分子線を照射することにより変性層を形成したが、基
板温度200℃以上でセレン分子線を照射する場合、表
面に厚さ数原子層以下のセレン化物からなる変成層が形
成され、余分なセレンは蒸発してしまう。一方室温でセ
レン分子線を照射すれば厚いセレン膜を堆積できる。基
板温度を室温とした場合膜はアモルファス状となるが、
基板温度70〜80℃程度でセレン分子線を照射すれば
単結晶状のセレン膜を形成することも可能である。以上
ではセレン層堆積前の処理としてセレン分子線照射を行
っているが、以下の方法で表面を処理してもよい。
Embodiments of the light receiving element of the present invention will now be described with reference to the drawings together with a manufacturing method. FIG. 3 shows an essential part of a manufacturing process of one embodiment of a light receiving element (APD) according to the present invention. The n-InP layer 22 was grown as a buffer layer on the n (+)-InP substrate 21 by the molecular beam epitaxy method, and then the n-InGaAs layer 23 was grown (FIG. 3A). n
Mole fraction -InGaAs layer 23, i.e. In x Ga 1 _ x
When expressed as As, x was 0.53. In this case I
The nGaAs 23 lattice-matches the InP 21 of the substrate. Next, selenium was reacted with the surface of the InGaAs layer 23 to form a modified layer 24 made of selenide, and then the amorphous selenium layer 2 was formed on the metamorphic layer 24 (FIG. 3).
(B)). Subsequently, the substrate temperature was raised to room temperature and the amorphous selenium layer 24 was deposited. Next, A on the selenium layer 2
An electrode 3 made of u and an electrode 4 made of Au—Ge—Ni were formed on the back surface of the n (+)-InP substrate 21. Although the molecular beam epitaxy method is used in the above embodiment, chemical vapor deposition method, liquid phase growth method or the like may be used. In this embodiment, the surface of InGaAs 23 is irradiated with a selenium molecular beam at a substrate temperature of 300 ° C. in a vacuum. Although the modified layer was formed by the method, when the selenium molecular beam is irradiated at a substrate temperature of 200 ° C. or higher, a modified layer of selenide having a thickness of several atomic layers or less is formed on the surface, and excess selenium is evaporated. On the other hand, if a selenium molecular beam is irradiated at room temperature, a thick selenium film can be deposited. When the substrate temperature is room temperature, the film becomes amorphous,
It is also possible to form a single crystal selenium film by irradiating a selenium molecular beam at a substrate temperature of about 70 to 80 ° C. In the above, the selenium molecular beam irradiation is performed as the treatment before the selenium layer deposition, but the surface may be treated by the following method.

【0012】化合物半導体の表面を、例えば硫化アン
モニウムなど、カルコゲンを含む溶液で処理して表面に
変性層を形成した後、真空中においてセレンを主体とす
る固体層を堆積する。この場合上記溶液は、自然酸化膜
を除去する作用と、これにより得られる清浄表面に変性
層を形成する作用をする。 化合物半導体層を形成後、上記化合物半導体層表面の
自然酸化膜を除去し清浄表面とし、上記化合物半導体層
表面とカルコゲンとを反応させて変性層を形成する。 化合物半導体層を形成後、上記化合物半導体層表面の
自然酸化膜を除去し清浄表面とし、直接セレンを主体と
する固体層を堆積する。この場合もセレンと化合物半導
体の界面に変性層が形成される。 上記いずれの方法でも、自然酸化膜を実質的に除去した
表面に変性層を形成しているため、本実施例のように分
子線エピタキシー法により形成した自然酸化膜の実質的
に存在しない表面に変性層を形成した場合と同等の良好
な界面が作られる。
After the surface of the compound semiconductor is treated with a solution containing chalcogen such as ammonium sulfide to form a modified layer on the surface, a solid layer containing selenium as a main component is deposited in a vacuum. In this case, the solution has a function of removing the natural oxide film and a function of forming a modified layer on the clean surface thus obtained. After the compound semiconductor layer is formed, the natural oxide film on the surface of the compound semiconductor layer is removed to form a clean surface, and the surface of the compound semiconductor layer is reacted with chalcogen to form a modified layer. After forming the compound semiconductor layer, the natural oxide film on the surface of the compound semiconductor layer is removed to form a clean surface, and a solid layer mainly containing selenium is directly deposited. Also in this case, a modified layer is formed at the interface between selenium and the compound semiconductor. In any of the above methods, since the modified layer is formed on the surface from which the natural oxide film is substantially removed, the natural oxide film formed by the molecular beam epitaxy method on the surface where substantially no natural oxide film is present as in this example. The same good interface as when the modified layer is formed is created.

【0013】本実施例による受光素子を動作させるに
は、まず電極4に対し負のバイアスを電極3に印加して
セレン層2に高電界を発生させる。n(+)−InP基板
21の下面より入射した波長1.0〜1.6μmの光は
InP基板21、バッファ層22を透過し、バンドギャ
ップがInPより小さいn−InGaAs層23で吸収
される。その際形成される電子・正孔対のうち正孔がセ
レン層2に注入され高電界でアバランシェ増倍される。
これにより光の信号が電気的信号として外部に取り出さ
れる。本実施例の受光素子では、アバランシェ増倍をセ
レン層で行なっているため過剰増倍雑音係数Fが小さ
く、高いS/N比が得られる。またセレン層を形成する
前に、n−InGaAs層表面にセレンを反応させセレ
ン化物からなる変成層24を形成したため、電子・正孔
対の再結合を起こさせる有害な界面準位の発生はセレン
層とn−InGaAs層の界面で殆ど起こらない。この
ため光の信号の変換効率の高いAPDが得られる。セレ
ン層2をアモルファス状とした場合、ヒ素を添加すれば
膜の結晶化による特性の変化が抑えられ、耐熱性を向上
させることができる。
In order to operate the light receiving element according to this embodiment, first, a negative bias is applied to the electrode 3 with respect to the electrode 4 to generate a high electric field in the selenium layer 2. Light having a wavelength of 1.0 to 1.6 μm incident from the lower surface of the n (+)-InP substrate 21 passes through the InP substrate 21 and the buffer layer 22, and is absorbed by the n-InGaAs layer 23 having a band gap smaller than InP. . Of the electron-hole pairs formed at that time, holes are injected into the selenium layer 2 and avalanche multiplication is performed in a high electric field.
As a result, the optical signal is extracted as an electrical signal to the outside. In the light receiving element of this embodiment, since the avalanche multiplication is performed in the selenium layer, the excess multiplication noise coefficient F is small and a high S / N ratio can be obtained. Further, since the metamorphic layer 24 made of selenide is formed by reacting selenium on the surface of the n-InGaAs layer before forming the selenium layer, the generation of harmful interface states that cause recombination of electron-hole pairs occurs. It hardly occurs at the interface between the layer and the n-InGaAs layer. Therefore, it is possible to obtain an APD with high conversion efficiency of a light signal. When the selenium layer 2 is made amorphous, the addition of arsenic suppresses the change in characteristics due to the crystallization of the film and improves the heat resistance.

【0014】以上に説明した実施例では、光の吸収層と
してInGaAsを用いているが、この他の化合物半導
体、例えばInGaAsP、GaAsSb、AlGaA
sSb等を用いてもよく、バンドギャップの違いにより
動作する波長帯域を変更することができる。用いる基板
の種類は吸収層として用いる化合物半導体の格子定数等
を考慮して選択する。また基板としてバンドギャップが
検出する光の波長に対応するエネルギーより大きい材料
を用いれば本実施例のように光を基板裏面から入射させ
ることができる。ただし、電極3に検出する光を透過し
得る材料を用いれば上面から入射することも可能であ
る。光のエネルギーが2eV以下(波長が0.6μm以
上)であれば光はセレン層で吸収されずに化合物半導体
からなる吸収層に到達する。またこの場合用いる基板材
料のバンドギャップに制限はなくなる。
In the embodiment described above, InGaAs is used as the light absorption layer, but other compound semiconductors such as InGaAsP, GaAsSb, AlGaA are used.
sSb or the like may be used, and the operating wavelength band can be changed depending on the difference in band gap. The type of substrate used is selected in consideration of the lattice constant of the compound semiconductor used as the absorption layer. Further, if a material whose band gap is larger than the energy corresponding to the wavelength of light to be detected is used for the substrate, light can be incident from the back surface of the substrate as in this embodiment. However, if a material capable of transmitting the light to be detected is used for the electrode 3, the light can be incident from the upper surface. When the energy of light is 2 eV or less (wavelength is 0.6 μm or more), the light reaches the absorption layer made of a compound semiconductor without being absorbed by the selenium layer. Further, there is no limitation on the band gap of the substrate material used in this case.

【0015】[0015]

【発明の効果】本発明によれば過剰増倍雑音係数が小さ
いためS/N比が大きく、特に、変性層を設けることに
よって、界面準位によるキャリアの再結合がなく量子効
率の高い高感度のアバランシェホトダイオードが得られ
る。また光の吸収領域の材料を変えて動作波長帯域を変
更することが可能である。特に光通信で重要な1.0〜
1.6μmの波長帯に感度を有し、光通信用受光素子と
して特に有用である高感度、高速のアバランシェホトダ
イオードが得られる。
According to the present invention, the S / N ratio is large because the excess multiplication noise coefficient is small, and in particular, by providing the modified layer, carrier recombination due to the interface state does not occur and high quantum efficiency and high sensitivity are achieved. The avalanche photodiode of is obtained. Further, it is possible to change the operating wavelength band by changing the material of the light absorption region. Especially important for optical communication
It is possible to obtain a high-sensitivity, high-speed avalanche photodiode that has sensitivity in the wavelength band of 1.6 μm and is particularly useful as a light-receiving element for optical communication.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明のための本発明の受光素子の
構成図である。
FIG. 1 is a configuration diagram of a light receiving element of the present invention for explaining the principle of the present invention.

【図2】従来のアバランシェホトダイオードの断面図で
ある。
FIG. 2 is a cross-sectional view of a conventional avalanche photodiode.

【図3】本発明による受光素子の実施例の構造及び製造
工程を示す。
FIG. 3 shows a structure and a manufacturing process of an embodiment of a light receiving element according to the present invention.

【符号の説明】[Explanation of symbols]

1…化合物半導体、 2…セレンを主体とする固体層、 3、4…電極、 5…入射光、 6…正孔を表す記号、 7…電界を表す記号、 11、21…n(+)−InP基板、 12、22…n−InP層、 13、23…n−InGaAs層、 14…n−InP層、 15…p(+)−InP領域、 16…SiO2膜、 17…Au−Zn層、 18…Au−Ge−Ni層、 24…変性層。DESCRIPTION OF SYMBOLS 1 ... Compound semiconductor, 2 ... Solid layer mainly containing selenium, 3, 4 ... Electrode, 5 ... Incident light, 6 ... Symbol representing a hole, 7 ... Symbol representing an electric field, 11, 21 ... n (+)- InP substrate, 12, 22 ... n-InP layer, 13,23 ... n-InGaAs layer, 14 ... n-InP layer, 15 ... p (+)-InP region, 16 ... SiO 2 film, 17 ... Au-Zn layer , 18 ... Au-Ge-Ni layer, 24 ... Modified layer.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体上に形成された変性層と、
上記変性層上に積層されたセレンを主体とする固体層
と、上記セレンを主体とする固体層に電界を発生させる
電圧印加手段とをもち、上記化合物半導体中での光の吸
収により生じる電流担体を上記セレンを主体とする固体
層に注入しアバランシェ増倍させることを特徴とする受
光素子。
1. A modified layer formed on a compound semiconductor,
A selenium-based solid layer laminated on the modified layer, and a voltage applying means for generating an electric field in the selenium-based solid layer, and a current carrier generated by absorption of light in the compound semiconductor. Is injected into the solid layer containing selenium as a main component and avalanche multiplication is performed.
【請求項2】 上記変性層の厚さが化合物半導体とセレ
ンを主体とする固体層の界面に少なくとも1原子層以上
数原子層以下であることを特徴とする請求項1記載の受
光素子。
2. The light-receiving element according to claim 1, wherein the thickness of the modified layer is at least one atomic layer and several atomic layers or less at the interface between the compound semiconductor and the solid layer mainly containing selenium.
【請求項3】 上記化合物半導体がIII−V族化合物
半導体であることを特徴とする請求項1又は2記載の受
光素子。
3. The light receiving element according to claim 1, wherein the compound semiconductor is a III-V group compound semiconductor.
【請求項4】 上記化合物半導体層がインジウムガリウ
ムヒ素(InGaAs)あるいはインジウムガリウムヒ
素リン(InGaAsP)ガリウムヒ素アンチモン(G
aAsSb)、アルミニウムガリウムヒ素アンチモン
(AlGaAsSb)からなる群から選ばれることを特
徴とする請求項1又は2記載の受光素子
4. The compound semiconductor layer comprises indium gallium arsenide (InGaAs) or indium gallium arsenide phosphide (InGaAsP) gallium arsenide antimony (G).
3. The light receiving element according to claim 1, wherein the light receiving element is selected from the group consisting of aAsSb) and aluminum gallium arsenide antimony (AlGaAsSb).
【請求項5】 上記セレンを主体とする固体層にテルル
が添加されたことを特徴とする請求項1乃至4記載のい
ずれかの受光素子。
5. The light-receiving element according to claim 1, wherein tellurium is added to the solid layer containing selenium as a main component.
【請求項6】 上記セレンを主体とする固体層に砒素が
添加されたことを特徴とする請求項1乃至4記載のいず
れかの受光素子。
6. The light-receiving element according to claim 1, wherein arsenic is added to the solid layer containing selenium as a main component.
JP3020934A 1991-02-14 1991-02-14 Photodetector Pending JPH06120556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3020934A JPH06120556A (en) 1991-02-14 1991-02-14 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020934A JPH06120556A (en) 1991-02-14 1991-02-14 Photodetector

Publications (1)

Publication Number Publication Date
JPH06120556A true JPH06120556A (en) 1994-04-28

Family

ID=12041040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020934A Pending JPH06120556A (en) 1991-02-14 1991-02-14 Photodetector

Country Status (1)

Country Link
JP (1) JPH06120556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731953A (en) * 2017-10-24 2018-02-23 江门市奥伦德光电有限公司 A kind of photodetector and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731953A (en) * 2017-10-24 2018-02-23 江门市奥伦德光电有限公司 A kind of photodetector and preparation method thereof
CN107731953B (en) * 2017-10-24 2023-10-31 江门市奥伦德光电有限公司 Photoelectric detector and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS6328506B2 (en)
KR20040094418A (en) Charge controlled avalanche photodiode and method of making the same
Forrest et al. Performance of In 0.53 Ga 0.47 As/InP avalanche photodiodes
JPH05160426A (en) Semiconductor light receiving element
JPH0821727B2 (en) Avalanche photodiode
US5942771A (en) Semiconductor photodetector
US20030089958A1 (en) Low dark current photodiode
WO2023248367A1 (en) Semiconductor light-receiving element and method for manufacturing semiconductor light-receiving element
JP4154293B2 (en) Avalanche photodiode, optical module and optical receiver
JPH05211344A (en) Avalanche photodiode
WO1981000488A1 (en) Multistage avalanche photodetector
Jang et al. Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction PiIN photodiodes
JPS582077A (en) Semiconductor device
JP2002231992A (en) Semiconductor light receiving element
JPH06232442A (en) Semiconductor photodetector
JPH0656900B2 (en) Semiconductor optical device
JPH0493088A (en) Avalanche photodiode
JPH06120556A (en) Photodetector
JP2932059B2 (en) Solar cell
JPH051629B2 (en)
JPH04241473A (en) Avalanche photo diode
JP7422955B1 (en) Semiconductor photodetector and method for manufacturing semiconductor photodetector
JPH06232443A (en) Superlattice avalanche photodiode and manufacture thereof
JPH0832104A (en) Photoelectric conversion device
JP2977164B2 (en) Photoelectric conversion device