JPH06118062A - Defect recording and regenerating method for nondestructive inspection - Google Patents

Defect recording and regenerating method for nondestructive inspection

Info

Publication number
JPH06118062A
JPH06118062A JP26566992A JP26566992A JPH06118062A JP H06118062 A JPH06118062 A JP H06118062A JP 26566992 A JP26566992 A JP 26566992A JP 26566992 A JP26566992 A JP 26566992A JP H06118062 A JPH06118062 A JP H06118062A
Authority
JP
Japan
Prior art keywords
defect
inspection
pattern
scale
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26566992A
Other languages
Japanese (ja)
Inventor
Kuniharu Uchida
邦治 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26566992A priority Critical patent/JPH06118062A/en
Publication of JPH06118062A publication Critical patent/JPH06118062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To provide a defect recording and regenerating method in which a defect indicating pattern can be easily and surely recorded and regenerated with high efficiency by remote control, to a test body having a curved inspection surface for nondestructive test, without requiring an inspector to directly enter an inspection part to record it. CONSTITUTION:At the nondestructive inspection of a test body 1 having a curved inspection surface, a scale 12 showing a two-dimensional coordinate is arranged on the inspection surface of the test body 1. A visually confirmable defect indicating pattern 3 is formed on the inspection surface, and the scale 12 and the defect indicating pattern 3 are recorded as the same camera image together with photographing information such as photographing angle and distance. At defect judgment, the recorded image is regenerated to extract the defect indicating pattern 3 to be judged, and the position, dimension and distribution of the extracted defect indicating pattern 3 are provided as three- dimensional information by the operation based on the scale indicating value and the photographing information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば水車ランナの羽
根等を浸透探傷試験または磁粉探傷試験等により非破壊
検査する場合に適用される非破壊検査用欠陥記録・再生
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive inspection defect recording / reproducing method applied to non-destructive inspection of blades of a water turbine runner, for example, by a penetrant inspection test or a magnetic particle test.

【0002】[0002]

【従来の技術】従来よく知られているように、水車発電
機部品である水車ランナ等の探傷試験として、浸透探傷
試験や磁粉探傷試験等の非破壊検査が行われている。こ
れらの試験方法では、試験体の検査面に目視観察が可能
な欠陥指示模様が形成され、この欠陥指示模様の位置、
寸法および分布等に基づいて欠陥判定が行われる。
2. Description of the Related Art As is well known in the art, non-destructive tests such as a penetrant flaw test and a magnetic particle flaw test have been carried out as flaw detection tests for turbine runners, which are parts of turbine generators. In these test methods, a defect indicating pattern that can be visually observed is formed on the inspection surface of the test piece, and the position of this defect indicating pattern,
Defect determination is performed based on dimensions, distribution, and the like.

【0003】従来このような水車ランナの羽根の欠陥検
査に際しては、検査員が流水面に入り込み、検査面に形
成された欠陥指示模様を目視観察して、予め定めた基準
点または基準線からスケールを用いて曲面上の欠陥位置
を求めるのが一般的であった。
Conventionally, in such a defect inspection of a blade of a water turbine runner, an inspector enters the running water surface and visually observes a defect indicating pattern formed on the inspection surface, and scales from a predetermined reference point or reference line. It was general to find the defect position on the curved surface using.

【0004】[0004]

【発明が解決しようとする課題】ところが、水車ランナ
の羽根表面は三次元的に捩じれた曲面形状となっている
ため、欠陥指示模様に基づいて欠陥位置と寸法を記録す
るには多大の時間と労力を要する。特に、水車ランナが
鋳鋼材で製作されている場合等には、欠陥指示模様が不
規則に分布する傾向があり、さらに多くの時間や労力が
必要となり、欠陥測定精度にもバラツキが生じ易い。
However, since the blade surface of the turbine runner has a three-dimensionally twisted curved surface shape, it takes a lot of time to record the defect position and size based on the defect indication pattern. It takes labor. In particular, when the water turbine runner is made of cast steel, the defect indicating pattern tends to be irregularly distributed, more time and labor are required, and the defect measurement accuracy tends to vary.

【0005】また、水車ランナの流水面は狭隘部である
ため、流水面内での測定作業は面倒であり、非破壊検査
による欠陥指示模様を損うこともある。特に高落差の水
車ランナにあっては作業空間がさらに狭くなり、検査員
がランナ流水面に入り込むことさえ困難な場合がある。
Further, since the running water surface of the water turbine runner is a narrow portion, the measurement work on the running water surface is troublesome, and the defect indication pattern by the nondestructive inspection may be spoiled. Especially in a water turbine runner with a high head, the working space becomes even smaller, and it may be difficult for an inspector to even enter the runner running surface.

【0006】本発明はこのような事情にに鑑みてなされ
たもので、非破壊試験用の検査面が曲面をなす試験体に
対し、検査員が直接的に検査部位に立入って記録する必
要なく、遠隔的操作により容易かつ高能率で確実に欠陥
指示模様の記録および再生が行える非破壊検査用欠陥記
録・再生方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is necessary for an inspector to directly enter and record on a test body for a non-destructive test surface having a curved test surface. It is an object of the present invention to provide a non-destructive inspection defect recording / reproducing method capable of easily and efficiently recording / reproducing a defect indication pattern by remote operation.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る非破壊検査用欠陥記録・再生方法は、
試験体の検査面上に二次元座標を示すスケールを配する
とともに、その検査面上に目視可能な欠陥指示模様を形
成し、これらスケールと欠陥指示模様とを同一カメラ映
像として撮影角度および距離等の撮影情報とともに収録
しておき、欠陥判定の際には、収録した前記映像を再生
して判定すべき欠陥指示模様を抽出するとともに、抽出
した欠陥指示模様の位置、寸法および分布を、前記スケ
ール指示値および前記撮影情報に基づく演算により、三
次元情報として得ることを特徴とする。
In order to achieve the above object, a defect recording / reproducing method for non-destructive inspection according to the present invention comprises:
A scale showing two-dimensional coordinates is arranged on the inspection surface of the test body, and a visible defect indicating pattern is formed on the inspection surface, and the scale and the defect indicating pattern are taken as the same camera image. When the defect is judged, the recorded image is reproduced to extract the defect design pattern to be judged, and the position, size and distribution of the extracted defect design pattern are recorded on the scale. It is characterized in that it is obtained as three-dimensional information by a calculation based on an instruction value and the photographing information.

【0008】[0008]

【作用】本発明によれば、カメラを試験体付近に配置し
ておくだけで、任意の操作位置で遠隔操作により欠陥指
示模様の記録および再生等が行えるので、従来のように
検査員が検査部位に入り込んで直接に指示模様の位置や
寸法等を測定する必要がない。したがって、狭隘な検査
空間でも余分な時間や労力を費やしたり、欠陥指示模様
に触れて模様を損うようなこともなく、欠陥指示模様を
適確、かつ見落しなく、また高精度に、短時間に記録・
再生することができ、信頼性向上も図れるようになる。
According to the present invention, the defect indicating pattern can be recorded and reproduced by remote control at any operation position by simply disposing the camera near the test body. It is not necessary to go into the part and directly measure the position, size, etc. of the design pattern. Therefore, even in a narrow inspection space, extra time and labor are not required, and the defect indication pattern is not touched to damage the pattern, and the defect indication pattern is accurately and not overlooked, and highly accurate and short. Record on time
It can be reproduced and the reliability can be improved.

【0009】また、検査面が三次元的に捩じれた曲面形
状であっても、検査面上に配するスケールの指示値と、
カメラ撮影角度および距離等の撮影情報とに基づく演算
によって、欠陥指示模様を三次元的に変換するので、高
精度の検査結果を得ることができる。
Further, even if the inspection surface has a curved shape which is three-dimensionally twisted, the indication value of the scale arranged on the inspection surface,
Since the defect indicating pattern is three-dimensionally converted by the calculation based on the photographing information such as the camera photographing angle and the distance, it is possible to obtain a highly accurate inspection result.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。なお、本実施例は試験体として水車ランナを対
象とし、そのランナの羽根部または羽根付け根部に生じ
た浸透探傷試験法または磁粉探傷試験法等による欠陥指
示模様の位置、寸法、分布等の記録・再生を行うもので
ある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In this example, a turbine runner is used as a test body, and the recording of the position, size, distribution, etc. of the defect indication pattern generated by the penetrant flaw detection test method or the magnetic particle flaw detection test method or the like on the blade portion or the blade root portion of the runner is recorded.・ Playback is performed.

【0011】図1は本発明を実施するための装置構成を
示している。図1において、試験体であるランナ1の羽
根部2または羽根付け根部に、欠陥指示模様3が形成さ
れている。この欠陥指示模様3を撮影するためのビデオ
カメラ4が備えられ、このカメラ3で撮影された画像
は、ビデオテープレコーダ5で記録・再生可能となって
いる。
FIG. 1 shows an apparatus configuration for carrying out the present invention. In FIG. 1, a defect indicating pattern 3 is formed on a blade portion 2 or a blade root portion of a runner 1 which is a test body. A video camera 4 for shooting the defect indication pattern 3 is provided, and an image taken by the camera 3 can be recorded / played back by the video tape recorder 5.

【0012】ビデオテープレコーダ5で再生される欠陥
画像は、テレビモニタ6で観察できるようになってい
る。そして、必要に応じて画像を固定してテレビ画面に
表示させるためのフレームフリーズ7と、この静止画像
を精度よく画像ブレの生じないようビデオ画像信号とし
て送り出す位相調整器8と、この画像信号をテレビモニ
タ6上に固定したままテレビ画面上にライトペンを走査
させるカーソル作成器9と、このカーソル作成器9で走
査された部分を画像信号として形成し、前記静止画像と
重ね合せてテレビモニタ上に表示するとともに、外部の
コンピュータ10へ画面上にライトペンで作成された画
像データを送信出力する画像合成器11とが備えられて
いる。
The defective image reproduced by the video tape recorder 5 can be observed on the television monitor 6. Then, a frame freeze 7 for fixing the image to be displayed on the TV screen as needed, a phase adjuster 8 for sending this still image as a video image signal with high precision so as not to cause image blur, and this image signal A cursor creator 9 for scanning a light pen on the TV screen while fixed on the TV monitor 6, and a portion scanned by the cursor creator 9 is formed as an image signal, and is superimposed on the still image to be displayed on the TV monitor. And an image synthesizer 11 for transmitting and outputting the image data created by the light pen on the screen to the external computer 10.

【0013】そして、図1に示すように、ビデオカメラ
記録時には、ランナ表面にスケール12が上下左右方向
に配置される。また、ランナ表面には、少くとも3点の
基準となるマーカ点13が画面に写し込まれるようにな
っており、これにより欠陥指示模様の記録が取られる。
Then, as shown in FIG. 1, at the time of recording by the video camera, the scale 12 is arranged in the vertical and horizontal directions on the surface of the runner. At least three reference marker points 13 are imprinted on the screen on the surface of the runner, whereby a defect indicating pattern is recorded.

【0014】検査時ににおいては、水車ランナ1の羽根
部2に生じた欠陥指示模様3は、ビデオカメラ4で撮影
され、ビデオテープレコーダ5で記録・再生され、所望
の欠陥分布画像が抽出される。この抽出された画像は、
テレビ画面6上のライトペン14による画像データ書込
み時のデータ取込みのバラツキを抑えるために、位相調
整器8を介し、画像合成器11へ送信される。
At the time of inspection, the defect indicating pattern 3 generated on the blade portion 2 of the water turbine runner 1 is photographed by the video camera 4 and recorded / reproduced by the video tape recorder 5 to extract a desired defect distribution image. . This extracted image is
In order to suppress variations in data fetching at the time of writing image data by the light pen 14 on the television screen 6, it is transmitted to the image synthesizer 11 via the phase adjuster 8.

【0015】また、上記のようにしてテレビ画面6上に
表示された試験体の欠陥指示模様分布の上からライトペ
ン14によって欠陥部位置を走査し、試験体表面に配置
されたスケールの所定の長さ間隔を指示することによっ
て、これらの結果がカーソル作成器9から画像合成器1
1に入力される。このようにして、ライトペン14によ
る走査結果は、抽出された画像データとともにテレビ画
面上に表示されるが、このライトペンによる画像データ
だけが外部のコンピュータ10に送信出力される。この
コンピュータ10に入力された画像データはコンピュー
タ10に入力され、コンピュータ10に付属するディス
プレイ15に表示される。
The position of the defective portion is scanned by the light pen 14 on the defect indicating pattern distribution of the test body displayed on the television screen 6 as described above, and the predetermined scale of the scale arranged on the surface of the test body is scanned. By designating the length interval, these results are transferred from the cursor creator 9 to the image synthesizer 1.
Input to 1. In this way, the scanning result by the light pen 14 is displayed on the television screen together with the extracted image data, but only the image data by the light pen is transmitted and output to the external computer 10. The image data input to the computer 10 is input to the computer 10 and displayed on the display 15 attached to the computer 10.

【0016】また、コンピュータ10は画像データとし
て入力された画面上の寸法とコンピュータ端末等から入
力される。この画面上の寸法の実寸法長さの値から画像
データを実長に換算し、実長でのディスプレイ表示も行
なう。ここで、一般に三次元画面を二次元画面に試験体
の曲面に沿った座標系を用いて画像展開するために、本
実施例では以下の手法を使用している。
Further, the computer 10 is input from the size of the screen input as image data and a computer terminal or the like. The image data is converted into the actual length from the value of the actual dimension length of the dimension on this screen, and the display in the actual length is also performed. Here, generally, in order to develop an image of a three-dimensional screen on a two-dimensional screen using a coordinate system along the curved surface of the test body, the following method is used in this embodiment.

【0017】すなわち、水車ランナ羽根形状は一般に三
次元形状を有しており、部分的には二次曲面形状である
と考えられる。すなわち、ビデオテープレコーダ5の記
録視野内に含まれる検査面の形状は、二次曲面で表現で
きると考えれば、これらの形状は下式によって表現され
る。
That is, the water turbine runner blade shape generally has a three-dimensional shape, and is considered to be partially a quadric surface shape. That is, assuming that the shape of the inspection surface included in the recording visual field of the video tape recorder 5 can be expressed by a quadric surface, these shapes are expressed by the following equations.

【0018】[0018]

【数1】 ここで、x,y,zは三次元の直交座標系であり、aij
は定数である。さらに、ビデオテープレコーダの記録画
像はテレビ画面上に二次元平面として表示されるため、
画面上では下式で三次元形状が表わされる。
[Equation 1] Here, x, y, and z are three-dimensional orthogonal coordinate systems, and aij
Is a constant. Furthermore, since the recorded image of the video tape recorder is displayed as a two-dimensional plane on the TV screen,
A three-dimensional shape is represented by the following formula on the screen.

【0019】[0019]

【数2】 [Equation 2]

【0020】ここで、ランナ羽根面をより単純化するた
めに円筒側形状であると見做せば、曲面形状は下式とな
る。なお、x′,y′は二次元直交座標系であり、bij
は定数である。
Here, in order to make the runner blade surface simpler, the curved surface shape is expressed by the following equation. Note that x ′ and y ′ are two-dimensional orthogonal coordinate systems, and bij
Is a constant.

【0021】[0021]

【数3】 すなわち、図2に示すようにランナ1の羽根面を円筒面
16と見做し、ビデオカメラに収録される領域は半径R
の円筒面の一部であると考える。
[Equation 3] That is, as shown in FIG. 2, the blade surface of the runner 1 is regarded as a cylindrical surface 16, and the area recorded by the video camera has a radius R.
It is considered to be a part of the cylindrical surface of.

【0022】したがって、テレビ画面上にはx−z面へ
の投影象が表示されるが、一般に、x−z面内で画像を
回転させた後、羽根面の傾きを補正することで、欠陥指
示模様3の座標値を概略求めるものである。
Therefore, the projected image on the xz plane is displayed on the television screen. Generally, after the image is rotated in the xz plane, the inclination of the blade surface is corrected to make a defect. The coordinate values of the instruction pattern 3 are roughly obtained.

【0023】以下には、上記に従った座標地の算出手順
を示す。すなわち、欠陥指示模様3が記録される場合は
一般に、羽根面に傾き、モデル化した円柱形状に対して
も傾いた方向から収録される。
The procedure for calculating the coordinate place according to the above will be described below. That is, when the defect designating pattern 3 is recorded, it is generally recorded from a direction inclined to the blade surface and also to the modeled cylindrical shape.

【0024】例えば図3(A)に示すように、バンド流
水面に対し角度αだけ傾き、また羽根部視野範囲を半径
Rの円柱で模擬した場合に円柱中心にカメラ中心が一致
せず、さらにランナ中心軸を含む面に傾いて録画された
ときは、図3(B)の収録画面例のように記録される。
For example, as shown in FIG. 3A, when the band visual field range is tilted by an angle α, and when the field of view of the blade is simulated by a cylinder having a radius R, the center of the camera does not coincide with the center of the cylinder. When the recording is performed by inclining to the plane including the runner center axis, the recording is performed as in the recording screen example of FIG.

【0025】すなわち、収録された画面は実座標系x,
y,zに対し、座標変換された図3(B)中のz′−
x′座標系で表わされ、さらに、画面固有の座標系z−
xで位置寸法が測定されることとなる。このため、本実
施例では羽根円筒軸への傾き角αの補正と、曲面録画に
対する補正とを実施するものである。
That is, the recorded screen is the real coordinate system x,
z′- in FIG. 3 (B), which is coordinate-converted for y and z
x ′ coordinate system, and a screen-specific coordinate system z−
The position dimension will be measured at x. Therefore, in the present embodiment, the correction of the inclination angle α with respect to the blade cylinder axis and the correction for the curved surface recording are performed.

【0026】第1に傾き角αの補正は以下による。な
お、収録画面上でのz′−x′座標系とz−x座標系は
座標軸方向が一致するよう座標回転させ、画面のz軸は
羽根円筒面のz′軸と方向を一致させた上で下記の処理
が実施される。すなわち、図4を参照に画面上で長さh
と計測された場合、実長aは下式となる。但し、画面上
に写し込まれたスケールでh1 と計測された値は実長て
a1 の長さを有することを既知としている。
First, the inclination angle α is corrected as follows. The z'-x 'coordinate system and the zx coordinate system on the recording screen are rotated so that the coordinate axis directions coincide with each other, and the z axis on the screen coincides with the z'axis of the blade cylindrical surface. The following processing is carried out. That is, referring to FIG. 4, the length h on the screen
When measured as, the actual length a is expressed by the following equation. However, it is known that the value measured as h1 on the scale imprinted on the screen has an actual length of a1.

【0027】[0027]

【数4】 ここでbは図4に示すようにカメラ位置Sから試験体測
定部までの距離である。また特別な例として、ここでは
h1 =h2 としている。
[Equation 4] Here, b is the distance from the camera position S to the test body measuring unit as shown in FIG. As a special example, h1 = h2 is set here.

【0028】上式からbおよびαを知れば、画面上の高
さhからの実長aの換算が可能であるが、画面上の数値
h1 とa1 およびh2 ,a2 とは既知であることから、
下式によってαとbを求めることができる。
If b and α are known from the above equation, the actual length a can be converted from the height h on the screen, but the numerical values h1 and a1 and h2, a2 on the screen are known. ,
Α and b can be obtained by the following equation.

【0029】[0029]

【数5】 次に、円筒曲面については図5に従い、以下のような計
算式が成立する。
[Equation 5] Next, regarding the cylindrical curved surface, the following calculation formula is established according to FIG.

【0030】[0030]

【数6】 から、a1 ,a2 を用いた式と同様にθ′1 とθ′2 の
関係が求まり、b,θ′1 とθ′2 の三変数に対し、3
つの式が成立し、b,θ′1 とθ′2 を決定できる。し
たがって、上図A,B,Cの三点は円周上に位置するこ
とから、座標系u,vの減点をBとすると、円の方程式
について下式が成立する。
[Equation 6] From the above, the relation between θ'1 and θ'2 is obtained in the same way as the equation using a1 and a2.
Two equations hold, and b, θ′1 and θ′2 can be determined. Therefore, since the three points in the above figures A, B, and C are located on the circumference of the circle, if the deduction of the coordinate systems u and v is B, the following equation holds for the equation of the circle.

【0031】[0031]

【数7】 となり、(2),(3)式からk1 ,k2 が求まり、
(1)式からRが求まり、さらに既に記した式からθ0
も求まる。したがって、実長lは以上の式を用い、hの
読取りからb,R,θ0 を知り、
[Equation 7] And k1 and k2 can be obtained from the equations (2) and (3),
R can be obtained from the equation (1), and θ0 can be obtained from the equation already described.
Can also be obtained. Therefore, for the actual length l, using the above equation, knowing b, R, θ0 from the reading of h,

【0032】[0032]

【数8】 から、lが求まる。次に、画像の連結方式を図6を用い
て説明する。
[Equation 8] From, l can be obtained. Next, a method of connecting images will be described with reference to FIG.

【0033】図6のそれぞれの画面17,18は前記の
手法で画像を変換されたものであるが、互いに共通する
任意の3点の羽根面上のマーカ13位置をA,B,C点
とし、例えばA,B間の距離a,a′と、C点からAB
線上までの距離をb,b′としそれぞれ測定し、AB方
向およびそれと直交方向に縮小、拡大し、両画面17,
18のA,B,C点が重なるようにすることで、両画面
の連結が行なわれる。以上のように、本実施例では、ラ
ンナ羽根面を円筒面に近似し、円筒面の表現式に従い画
面上の寸法と実寸法の比率を求め、画面の任意位置にお
ける実寸法を求めることができる。勿論、本発明は円筒
面に限らず算術式で表現できる三次元曲面形状であれば
同様の考えに従い、画面上の寸法計測値から実寸法を知
ることができる。
The respective screens 17 and 18 in FIG. 6 are obtained by converting the image by the above-mentioned method, and the positions of the markers 13 on the blade surface at arbitrary three points common to each other are set to points A, B and C. , For example, distances a and a'between A and B, and AB from point C
The distances up to the line are measured as b and b ', respectively, and are reduced and expanded in the AB direction and the direction orthogonal thereto, and both screens 17,
By connecting points A, B, and C of 18 to each other, both screens are connected. As described above, in the present embodiment, the runner blade surface is approximated to a cylindrical surface, and the ratio between the size on the screen and the actual size can be calculated according to the expression of the cylindrical surface to determine the actual size at any position on the screen. . Of course, according to the present invention, the actual dimension can be known from the dimension measurement value on the screen according to the same idea as long as it is a three-dimensional curved surface shape that can be expressed by an arithmetic expression, not limited to the cylindrical surface.

【0034】また、画面に写し込むスケールと欠陥指示
模様を測定する位置基準との関連を予め知っていれば、
欠陥位置を所望座標系で求めることができることは勿論
である。
If the relationship between the scale projected on the screen and the position reference for measuring the defect design pattern is known in advance,
Of course, the defect position can be obtained in the desired coordinate system.

【0035】以上の本実施例によれば、水車ランナ上に
発生した欠陥指示模様は、ビデオカメラ4により撮影さ
れた画像の記録・再生により、水車ランナ1上に現われ
た欠陥指示模様3を各種方向から観察することができ、
これらのモニタテレビ6上に現われた欠陥指示模様のう
ち、記録観察上最も適当と思われる位置で任意の画面を
抽出し、抽出された画面上で試験体の形状および欠陥位
置をモニタテレビ画面上でライトペン14によって指示
することができる。
According to the present embodiment described above, various defect indication patterns 3 appearing on the water turbine runner 1 can be obtained by recording / reproducing images taken by the video camera 4 as the defect indication patterns 3 generated on the water turbine runner. Can be observed from any direction,
Of these defect indication patterns appearing on the monitor television 6, an arbitrary screen is extracted at a position that is most suitable for recording and observation, and the shape of the test body and the defect position are displayed on the extracted screen on the monitor TV screen. Can be instructed by the light pen 14.

【0036】これにより、欠陥の位置と試験体の形状と
の相対関係を記録でき、さらに欠陥の位置寸法を正確に
測定するため、欠陥測定部にスケール12を配置し、画
像に写し込むことで欠陥位置算出基準値として用いるこ
とができる。したがって、欠陥の位置寸法を算出するに
当たり、試験体形状を円筒形状、平板等の比較的単純な
形状にモデル化しておくことにより、前記スケールの縮
尺換算が容易となる。また、試験体の探傷領域が大き
く、1つの画面内に探傷領域を充分に包含し得ない場合
には、画像の連結処理をすることによって、所定の領域
全体の記録が作成可能となる。この場合には画像中に含
まれる少なくとも3点のマーク点が連結を必要とする他
の画像内にも含まれるように画像記録をとることによ
り、両画像を座標変換し、上記3点を完全に重ね合せる
ことで確実な画像連結を満足させることができる。
By this, the relative relationship between the position of the defect and the shape of the test piece can be recorded, and in order to measure the position dimension of the defect accurately, the scale 12 is arranged in the defect measuring section and is imprinted on the image. It can be used as a defect position calculation reference value. Therefore, in calculating the position dimension of the defect, the scale of the scale can be easily converted by modeling the shape of the test body into a relatively simple shape such as a cylindrical shape or a flat plate. Further, when the flaw detection area of the test body is large and the flaw detection area cannot be sufficiently included in one screen, it is possible to create a record of the entire predetermined area by connecting the images. In this case, by performing image recording so that at least three mark points included in the image are included in other images that need to be connected, the coordinates of both images are transformed, and the above three points are completely converted. It is possible to satisfy the reliable image connection by superimposing them on.

【0037】以上のようにして、目視観察される欠陥指
示模様の位置、寸法分布状況を、ランナ設置現場でな
く、ビデオカメラ記録を再生可能な場所で、容易に精度
よく記録表示することが可能となる。
As described above, it is possible to easily and accurately record and display the position and the size distribution of the visually inspected defect indicating pattern at a place where the video camera record can be reproduced, not at the runner installation site. Becomes

【0038】なお、前記実施例ではランナ羽根形状を円
筒形状に部分近似しているが、ビデオカメラにより録画
された各種画面について同一欠陥の位置寸法を測定し、
複数枚の画面結果を平均化することにより高精度な位置
寸法算定が可能となる。
Although the runner blade shape is partially approximated to a cylindrical shape in the above embodiment, the position dimensions of the same defect are measured on various screens recorded by a video camera,
By averaging the results of multiple screens, it is possible to calculate the position dimensions with high accuracy.

【0039】[0039]

【発明の効果】以上のように、本発明によれば、非破壊
試験用の検査面が曲面をなす試験体に対し、検査員が直
接的に検査部位に立入って記録する必要なく、遠隔的操
作により容易かつ高能率で確実に欠陥指示模様の記録お
よび再生が行える。すなわち、試験体の検査面の欠陥指
示模様を、試験体表面上に配置されたスケールと一緒に
カメラ映像として記録するので、従来のように個々の欠
陥について寸法、位置をスケールで測定する必要がな
く、また画像再生によって欠陥の位置寸法を求めること
ができる。したがって、検査のために試験体を占有する
時間は大幅に短かくなり、検査精度も向上する。なお、
収録した複数の画面に互いに共通なマークまたは目印点
を録画しておけば、画面の連結および平均化による検査
精度の向上が得られる。
As described above, according to the present invention, it is not necessary for an inspector to directly enter an inspection site and record on a test object having a curved inspection surface for non-destructive testing, and remote inspection is possible. It is possible to record and reproduce the defect indication pattern easily and with high efficiency and reliability by a manual operation. That is, since the defect indication pattern on the inspection surface of the test body is recorded as a camera image together with the scale arranged on the surface of the test body, it is necessary to measure the size and position of each defect on the scale as in the conventional case. In addition, the position dimension of the defect can be obtained without image reproduction. Therefore, the time for occupying the test body for the inspection is significantly shortened, and the inspection accuracy is improved. In addition,
By recording common marks or landmarks on multiple recorded screens, the inspection accuracy can be improved by connecting and averaging the screens.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による記録・再生方法を実施
するための装置構成を示す図。
FIG. 1 is a diagram showing an apparatus configuration for implementing a recording / reproducing method according to an embodiment of the present invention.

【図2】同実施例の試験体形状モデル化を示す図。FIG. 2 is a diagram showing modeling of a test object shape in the example.

【図3】(A),(B)は同実施例の画像収録による画
像表示を説明する図。
3A and 3B are views for explaining image display by image recording of the same embodiment.

【図4】ランナ軸方向の画像の傾き補正を説明する図。FIG. 4 is a diagram for explaining image tilt correction in the runner axis direction.

【図5】円筒曲面の画像の歪みの補正を説明する図。FIG. 5 is a diagram illustrating correction of image distortion of a cylindrical curved surface.

【図6】画面の連結方法を説明する図。FIG. 6 is a diagram illustrating a method of connecting screens.

【符号の説明】[Explanation of symbols]

1 試験体(ランナ) 2 検査面(羽根) 3 欠陥指示模様 4 カメラ(ビデオカメラ) 5 ビデオテ−プレコーダ 6 モニタテレビ 9 カーソル作成器 10 コンピュータ 12 スケール 1 Specimen (runner) 2 Inspection surface (blade) 3 Defect indication pattern 4 Camera (video camera) 5 Video tape recorder 6 Monitor TV 9 Cursor creator 10 Computer 12 Scale

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検査面が曲面をなす試験体の非破壊検査
に際し、前記試験体の検査面上に二次元座標を示すスケ
ールを配するとともに、その検査面上に目視可能な欠陥
指示模様を形成し、これらスケールと欠陥指示模様とを
同一カメラ映像として撮影角度および距離等の撮影情報
とともに収録しておき、欠陥判定の際には、収録した前
記映像を再生して判定すべき欠陥指示模様を抽出すると
ともに、抽出した欠陥指示模様の位置、寸法および分布
を、前記スケール指示値および前記撮影情報に基づく演
算により、三次元情報として得ることを特徴とする非破
壊検査用欠陥記録・再生方法。
1. A non-destructive inspection of a test object having a curved inspection surface, a scale showing two-dimensional coordinates is arranged on the inspection surface of the test object, and a visible defect indicating pattern is provided on the inspection surface. The scale and the defect indication pattern are recorded as the same camera image together with the photographing information such as the photographing angle and the distance, and at the time of defect determination, the recorded image is reproduced and the defect instruction pattern to be determined. The defect recording / reproducing method for nondestructive inspection, characterized in that the position, size and distribution of the extracted defect indicating pattern are obtained as three-dimensional information by calculation based on the scale indicating value and the photographing information. .
JP26566992A 1992-10-05 1992-10-05 Defect recording and regenerating method for nondestructive inspection Pending JPH06118062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26566992A JPH06118062A (en) 1992-10-05 1992-10-05 Defect recording and regenerating method for nondestructive inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26566992A JPH06118062A (en) 1992-10-05 1992-10-05 Defect recording and regenerating method for nondestructive inspection

Publications (1)

Publication Number Publication Date
JPH06118062A true JPH06118062A (en) 1994-04-28

Family

ID=17420346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26566992A Pending JPH06118062A (en) 1992-10-05 1992-10-05 Defect recording and regenerating method for nondestructive inspection

Country Status (1)

Country Link
JP (1) JPH06118062A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060344A1 (en) * 1999-03-31 2000-10-12 Hitachi, Ltd. Method and apparatus for non destructive testing
JP2001194316A (en) * 1999-10-26 2001-07-19 Hitachi Ltd Method and device for non-destructive inspection
US6950545B1 (en) 1999-10-26 2005-09-27 Hitachi, Ltd. Nondestructive inspection method and apparatus
JP2005351910A (en) * 1999-10-26 2005-12-22 Hitachi Ltd Defect inspection method and its apparatus
JPWO2004036197A1 (en) * 2002-10-18 2006-02-16 株式会社キリンテクノシステム Glass bottle inspection equipment
US7272253B2 (en) 2001-02-09 2007-09-18 Hitachi, Ltd. Method for non-destructive inspection, apparatus thereof and digital camera system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060344A1 (en) * 1999-03-31 2000-10-12 Hitachi, Ltd. Method and apparatus for non destructive testing
US7462827B2 (en) 1999-03-31 2008-12-09 Hitachi-Ge Nuclear Energy, Ltd. Non-destructive inspection method and apparatus therefor
JP2001194316A (en) * 1999-10-26 2001-07-19 Hitachi Ltd Method and device for non-destructive inspection
US6950545B1 (en) 1999-10-26 2005-09-27 Hitachi, Ltd. Nondestructive inspection method and apparatus
JP2005351910A (en) * 1999-10-26 2005-12-22 Hitachi Ltd Defect inspection method and its apparatus
US7272253B2 (en) 2001-02-09 2007-09-18 Hitachi, Ltd. Method for non-destructive inspection, apparatus thereof and digital camera system
JPWO2004036197A1 (en) * 2002-10-18 2006-02-16 株式会社キリンテクノシステム Glass bottle inspection equipment

Similar Documents

Publication Publication Date Title
US7693325B2 (en) Transprojection of geometry data
JP4811272B2 (en) Image processing apparatus and image processing method for performing three-dimensional measurement
US5412569A (en) Augmented reality maintenance system with archive and comparison device
US20090154293A1 (en) System and method for augmented reality inspection and data visualization
US10958843B2 (en) Multi-camera system for simultaneous registration and zoomed imagery
CN102016565A (en) System, program product, and related methods for registering three-dimensional models to point data representing the pose of a part
JP2009150883A6 (en) Augmented reality inspection and data visualization system and method
US20090063093A1 (en) Method and apparatus for surveying actual measurement data of a component
JP5030953B2 (en) Method and system for determining the relative position of a first object with respect to a second object, a corresponding computer program and a corresponding computer-readable recording medium
EP0674976A1 (en) Maintenance system
JP2003065812A (en) System for forming numeral data based on image information in measuring instrument display
CN112540089A (en) Application method of digital imaging system in concrete bridge crack detection and analysis
JP2724300B2 (en) Non-destructive inspection method of surface especially in bad environment
JP3282516B2 (en) 3D image measurement method
JP4170469B2 (en) Inspection point position acquisition method and apparatus
JPH06118062A (en) Defect recording and regenerating method for nondestructive inspection
JP2011044130A (en) Image processing system and image processing method
JP2006275984A (en) Method of measuring displacement of high-voltage tower
EP0674977A1 (en) Maintenance system
JP4673517B2 (en) Sound diagnosis result display system
JP5375239B2 (en) Image processing apparatus, inspection apparatus for long objects, and computer program
JPH06327647A (en) Method for automatic determination of slice surface in mri, and method for measuring blood flow rate using the method
JP2001153652A (en) On-site inspection method by image processing
JPH0259604A (en) Inspecting device for reflection strain of glass material
JPH03222102A (en) Method for measuring displacement of track and device for measuring displacement