JPH0611780B2 - Method for producing aromatic methylene resin - Google Patents

Method for producing aromatic methylene resin

Info

Publication number
JPH0611780B2
JPH0611780B2 JP60054357A JP5435785A JPH0611780B2 JP H0611780 B2 JPH0611780 B2 JP H0611780B2 JP 60054357 A JP60054357 A JP 60054357A JP 5435785 A JP5435785 A JP 5435785A JP H0611780 B2 JPH0611780 B2 JP H0611780B2
Authority
JP
Japan
Prior art keywords
resin
aromatic
formaldehyde
methylene
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60054357A
Other languages
Japanese (ja)
Other versions
JPS61213216A (en
Inventor
肇 吉田
忠夫 深山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP60054357A priority Critical patent/JPH0611780B2/en
Publication of JPS61213216A publication Critical patent/JPS61213216A/en
Publication of JPH0611780B2 publication Critical patent/JPH0611780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は芳香族化合物とホルムアルデヒドから芳香族メ
チレン樹脂を製造する方法に関するものである。更に詳
しくは、芳香族化合物とホルムアルデヒドの三量体であ
るトリオキサンを強酸性陽イオン交換樹脂触媒の存在下
で重縮合させ、全くあるいは実質的に酸素原子を含ま
ず、2〜10個程度の芳香族核がメチレン基で結合した
化学構造を有する芳香族メチレン樹脂を製造する方法に
関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an aromatic methylene resin from an aromatic compound and formaldehyde. More specifically, trioxane, which is a trimer of an aromatic compound and formaldehyde, is polycondensed in the presence of a strongly acidic cation exchange resin catalyst, and contains no or substantially no oxygen atom, and about 2 to 10 aromatics. The present invention relates to a method for producing an aromatic methylene resin having a chemical structure in which a group nucleus is bonded with a methylene group.

(従来の技術) 周知のように、ある種の芳香族化合物は酸触媒の存在下
でホルムアルデヒドと反応させると、メチレン、エーテ
ル、アセタール基等で結合した芳香族ホルムアルデヒド
樹脂を生成する(例えば、高分子化学、12巻335頁
(1955))。このホルムアルデヒド樹脂はエーテ
ル、アセタール基等の酸素を含んだ官能基を有するほ
か、芳香族核にメチロール基等の含酸素置換基を有する
点に特徴がある。芳香族化合物としてメタキシレン、メ
チレン等を用いて製造されたホルムアルデヒド樹脂はキ
シレン樹脂、メシチレン樹脂等と称して既に市販されて
おり、フェノール樹脂の改質剤、またはエポキシ樹脂、
アクリル樹脂、ポリウレタン等に混入されて接着剤、粘
着剤等に利用されている。また、このホルムアルデヒド
樹脂の製造条件を更に過酷にすると、ジアラルキルメタ
ンおよび数個の芳香族核がメチレン基によって結合した
芳香族メチレン樹脂が生成することも知られている(例
えば山本為親著「ホルムアルデヒド」342頁(196
0))。しかし、従来よく用いられている硫酸等の触媒
では装置の腐食が激しいほかにスルホン化等の副反応が
避けられず芳香族メチレン樹脂を触媒と分離して単離す
ることは極めて困難であり、未だ工業化された例はな
い。
(Prior Art) As is well known, when certain aromatic compounds are reacted with formaldehyde in the presence of an acid catalyst, an aromatic formaldehyde resin bonded with a methylene group, an ether group, an acetal group or the like is produced (for example, Molecular Chemistry, 12: 335 (1955)). This formaldehyde resin is characterized in that it has an oxygen-containing functional group such as an ether or acetal group and also has an oxygen-containing substituent such as a methylol group in the aromatic nucleus. Meta-xylene as an aromatic compound, formaldehyde resin produced using methylene and the like is already marketed as xylene resin, mesitylene resin and the like, a phenolic resin modifier, or an epoxy resin,
It is mixed with acrylic resin, polyurethane, etc. and used as an adhesive, an adhesive, etc. It is also known that if the production conditions of this formaldehyde resin are further severed, an aromatic methylene resin in which diaaralkylmethane and several aromatic nuclei are bonded by a methylene group is produced (for example, by Tadashi Yamamoto " Formaldehyde ”p. 342 (196
0)). However, in the case of a catalyst such as sulfuric acid that has been often used conventionally, the corrosion of the equipment is severe and side reactions such as sulfonation are unavoidable, and it is extremely difficult to separate and isolate the aromatic methylene resin from the catalyst, There is no industrialized case yet.

(発明が解決しようとする問題点) 上記のホルムアルデヒド樹脂は反応性の高い含酸素官能
基を有するゆえに他樹脂との相溶性に優れた性能を示す
反面、反応性が高いゆえに熱安定性に劣るという欠点が
ある。
(Problems to be Solved by the Invention) The above-mentioned formaldehyde resin has excellent compatibility with other resins because it has highly reactive oxygen-containing functional groups, but has poor thermal stability because it has high reactivity. There is a drawback that.

本発明の目的はホルムアルデヒド樹脂とほぼ同等の他樹
脂に対する相溶性を有しながら熱安定性の高い芳香族メ
チレン樹脂を容易に製造する方法の提供にある。
An object of the present invention is to provide a method for easily producing an aromatic methylene resin having high thermal stability while having compatibility with other resins which is almost the same as formaldehyde resin.

(問題点を解決するための条件) 本発明はホルムアルデヒド樹脂と同様の原料である芳香
族化合物とトリオキサンを用いながら、触媒に固体の強
酸性陽イオン交換樹脂を使用し、芳香族化合物に対して
ホルムアルデヒドに換算して過少のトリオキサンを使用
することにより、全てあるいは実質的に酸素原子を含ま
ない、すなわち熱不安定性の原因となる含酸素官能基を
含まず、すべてメチレン基で結合した芳香族メチレン樹
脂を製造する方法である。
(Conditions for Solving Problems) The present invention uses a solid strong acid cation exchange resin as a catalyst while using an aromatic compound and trioxane, which are raw materials similar to the formaldehyde resin, with respect to the aromatic compound. By using trioxane in an excessively small amount in terms of formaldehyde, aromatic methylene containing all or substantially no oxygen atoms, that is, containing no oxygen-containing functional group that causes thermal instability, is bonded with a methylene group. It is a method for producing a resin.

一般に芳香族化合物とホルムアルデヒドとの重縮合反応
はメチロール、エーテル、アセタール基等の含酸素官能
基を有する中間体を経て酸素を含まないメチレン結合に
至る逐次反応であるため、通常の液相触媒では一部はメ
チレン結合のみからなる芳香族メチレン樹脂が生成して
も全部をメチレン結合のみからなる芳香族メチレン樹脂
として回収することは極めて困難である。
In general, the polycondensation reaction between an aromatic compound and formaldehyde is a sequential reaction that leads to an oxygen-free methylene bond through an intermediate having an oxygen-containing functional group such as methylol, ether, or acetal group, and therefore, in a normal liquid-phase catalyst, Even if a part of the aromatic methylene resin consisting only of methylene bonds is produced, it is extremely difficult to recover the whole as an aromatic methylene resin consisting only of methylene bonds.

ところが、固体の強酸性陽イオン交換樹脂を触媒に用い
ると、重縮合反応が固体表面で進行するため、脱酸素化
が容易に進行することを見出した。そこで、強酸性陽イ
オン交換樹脂触媒による芳香族化合物とトリオキサンの
重縮合反応を鋭意研究した結果本発明に到達した。すな
わち、強酸性陽イオン交換樹脂を触媒とし芳香族化合物
とトリオキサンを芳香族化合物/ホルムアルデヒドのモ
ル比1以上の条件下で反応させると、比較的温和な条件
下での反応にもかかわらず、全くあるいは実質的に酸素
原子を含まず、2〜10個程度の芳香族核がメチレン基
で結合した芳香族メチレン樹脂が得られた。また、この
触媒は固体であるため生成した樹脂との分離は極めて容
易であり、反応条件が温和であるから装置の腐食も認め
られない。また、生成した芳香族メチレン樹脂は、通常
の含酸素ホルムアルデヒド樹脂と比べ、熱安定性に優れ
ており、しかも他樹脂との相溶性試験においては、通常
のホルムアルデヒド樹脂と同等の相溶性を示すことを確
認した。
However, it has been found that when a solid strong acid cation exchange resin is used as a catalyst, the polycondensation reaction proceeds on the solid surface, so that deoxygenation easily proceeds. Then, as a result of intensive studies on the polycondensation reaction of an aromatic compound and trioxane using a strongly acidic cation exchange resin catalyst, the present invention has been accomplished. That is, when the aromatic compound and the trioxane are reacted under the condition of the aromatic compound / formaldehyde molar ratio of 1 or more using the strongly acidic cation exchange resin as a catalyst, it is possible to obtain no reaction even under the relatively mild condition. Alternatively, an aromatic methylene resin containing substantially no oxygen atoms and about 2 to 10 aromatic nuclei bonded by a methylene group was obtained. Further, since this catalyst is a solid, it is extremely easy to separate it from the produced resin, and since the reaction conditions are mild, no corrosion of the equipment is observed. In addition, the produced aromatic methylene resin is superior in thermal stability to ordinary oxygen-containing formaldehyde resins, and exhibits the same compatibility as ordinary formaldehyde resins in compatibility tests with other resins. It was confirmed.

(作用) 本発明に係わる芳香族化合物とはベンゼン、トルエン、
キシレン、メチルエチルベンゼン、トリメチルベンゼン
等のベンゼン誘導体を始め、ナフタリン、アントラセン
等の多環芳香族化合物ならびにその誘導体等を用いるこ
とができる。また、これらの化合物が任意に混り合った
混合物を用いることもできる。ただし、各化合物の反応
性は自ら差違があり、同一条件下で反応しても得られる
樹脂の収率が異ることは当然の結果であり、混合物を原
料とした場合には各構成化合物の反応性の差違により、
原料と同一混合比の芳香族核を持つ芳香族メチレン樹脂
とはならない。
(Function) The aromatic compound according to the present invention means benzene, toluene,
In addition to benzene derivatives such as xylene, methylethylbenzene and trimethylbenzene, polycyclic aromatic compounds such as naphthalene and anthracene and derivatives thereof can be used. It is also possible to use a mixture in which these compounds are arbitrarily mixed. However, it is a natural result that the respective compounds have different reactivities, and the yields of the obtained resins are different even if they are reacted under the same conditions. Due to the difference in reactivity,
It does not become an aromatic methylene resin having an aromatic nucleus in the same mixing ratio as the raw material.

本発明に係わるホルムアルデヒドは、理論的には反応中
に単量体のホルムアルデヒドを発生するものであれば形
態を問わず、必要ならば別途ホルムアルデヒドを発生さ
せて、これを原料の芳香族化合物に溶解させて用いるこ
ともできる。しかしながら、通常ホルムアルデヒド単量
体は極めて不安定な物質であり、脱酸素化をより促進す
る非水系でしかも原料の芳香族化合物に容易に溶解する
トリオキサンを用いる方法が最も優れている。トリオキ
サンはホルムアルデヒドの三量体であり、室温、空気中
で安定な結晶性固体であるが、反応系内では強酸性陽イ
オン交換樹脂の接触作用でホルムアルデヒド単量体に解
離して作用する。
The formaldehyde according to the present invention theoretically takes any form as long as it forms a monomeric formaldehyde during the reaction. If necessary, formaldehyde is separately generated and dissolved in the aromatic compound as a raw material. It can also be used. However, the formaldehyde monomer is usually an extremely unstable substance, and the method using trioxane, which is a non-aqueous system that further promotes deoxygenation and is easily dissolved in the starting aromatic compound, is the best method. Trioxane, which is a trimer of formaldehyde, is a crystalline solid that is stable in air at room temperature, but it dissociates into formaldehyde monomer by the action of a strongly acidic cation exchange resin in the reaction system.

本発明の触媒に用いる強酸性陽イオン交換樹脂は、官能
基に強酸基を有するものであれば特に制約はないが、望
ましくは、20〜110m2/gの比表面積、150〜1
200Åの平均孔径を有し非水溶液系で化学的、物理的
に安定なイオン交換樹脂がよい。一例を上げれば、アン
バーリスト15(ローム・アンド・ハース社)が優れて
いる。
The strong acid cation exchange resin used in the catalyst of the present invention is not particularly limited as long as it has a strong acid group as a functional group, but preferably has a specific surface area of 20 to 110 m 2 / g and 150 to 1
An ion exchange resin having an average pore size of 200Å and chemically and physically stable in a non-aqueous solution is preferable. For example, Amberlyst 15 (Rohm and Haas Company) is superior.

本反応を実施するための芳香族メチレン樹脂製造装置
は、特に形状を問わず、通常のバッチ式、流通式等のい
ずれの形式を用いてもよい。
The aromatic methylene resin production apparatus for carrying out this reaction may be of any type such as a usual batch type or flow type, regardless of the shape.

本発明の芳香族メチレン樹脂製造のための反応条件は、
原料の芳香族化合物の種類、生成する樹脂への要望性状
により異なるが、一般に次の反応条件を用いることがで
きる。反応温度50〜150℃、望ましくは70〜90
℃、反応時間0.1〜12時間、望ましくは2〜7時間
圧力1〜20気圧、望ましくは常圧で芳香族化合物/ホ
ルムアルデヒドのモル比1〜10、望ましく1〜3、芳
香族化合物/強酸性陽イオン交換樹脂の総交換容量1〜
10、望ましくは1〜3程度で実施することができる。
The reaction conditions for producing the aromatic methylene resin of the present invention are:
Generally, the following reaction conditions can be used, though it depends on the kind of the aromatic compound as the raw material and the desired properties of the resin to be produced. Reaction temperature 50 to 150 ° C., preferably 70 to 90
C, reaction time 0.1 to 12 hours, preferably 2 to 7 hours, pressure 1 to 20 atm, preferably atmospheric pressure, molar ratio of aromatic compound / formaldehyde 1 to 10, preferably 1 to 3, aromatic compound / strong acid. Total cation exchange resin exchange capacity 1-
10, preferably about 1 to 3 can be carried out.

生成した芳香族メチレン樹脂は、触媒分離、水洗後、蒸
留で未反応油を除去すれば得られる。触媒は固体である
から、ろ過等の簡単な固液分離操作で容易に分離するこ
とができる。ろ液には触媒の酸基から生じる微量の酸性
物質が含まれるが、これは水洗で容易に洗い落とすこと
ができる。また、未反応のホルムアルデヒドが残存して
いる場合も、水洗で酸性物質と同時に除去することがで
きる。未反応ホルムアルデヒドが存在しない場合は塩基
性陰イオン交換樹脂、塩基性アルミナ等で酸性物質を除
去することもできる。生成した芳香族メチレン樹脂と未
反応の原料芳香族化合物の沸点差は50〜100℃と離
れているので、未反応油の除去は単蒸留、ロータリーエ
バポレーター等の簡単な蒸留操作で容易に実施すること
ができる。
The produced aromatic methylene resin can be obtained by separating the catalyst, washing with water, and then removing the unreacted oil by distillation. Since the catalyst is a solid, it can be easily separated by a simple solid-liquid separation operation such as filtration. The filtrate contains a trace amount of acidic substances generated from the acid groups of the catalyst, which can be easily washed off with water. Further, even when unreacted formaldehyde remains, it can be removed simultaneously with the acidic substance by washing with water. When there is no unreacted formaldehyde, the acidic substance can be removed with a basic anion exchange resin, basic alumina or the like. Since the boiling point difference between the produced aromatic methylene resin and the unreacted raw material aromatic compound is 50 to 100 ° C., the unreacted oil is easily removed by simple distillation or a simple distillation operation such as a rotary evaporator. be able to.

かくして製造した芳香族メチレン樹脂は、一般に黄色〜
黒褐色粘稠液体であり、元素分析装置、赤外分光光度
計、核磁気共鳴装置等で測定した結果、原料の芳香族化
合物がメチレン基で結合した化学構造を有し、酸素原子
は全くあるいは実質的にほとんど含まない樹脂であるこ
とが明らかになった。また、この芳香族メチレン樹脂と
同一芳香族から硫酸触媒で合成したホルムアルデヒド樹
脂との熱安定性を熱天秤で比較したところ、前者の方が
はるかに熱安定性に優れているにもかかわらず、他樹脂
との相溶性においては両者にほとんど差異が認められな
いことが分った。
The aromatic methylene resin thus produced is generally yellow to
It is a blackish brown viscous liquid, and as a result of measurement with an elemental analyzer, an infrared spectrophotometer, a nuclear magnetic resonance apparatus, etc., it has a chemical structure in which the starting aromatic compound is bound with a methylene group, and has no or substantially no oxygen atom. It became clear that it was a resin that hardly contained. In addition, when comparing the thermal stability of this aromatic methylene resin with a formaldehyde resin synthesized with a sulfuric acid catalyst from the same aromatic by a thermobalance, the former is far superior in thermal stability, It was found that there was almost no difference in compatibility with other resins.

(実施例) 次に実施例により本発明を更に具体的に説明するが、本
発明はこれにのみに限定するものではない。
(Examples) Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例1 攪拌羽根、還流冷却器を備えた4つ口フラスコ(内容積
1)に、メタキシレン212g、トリオキサン30
g、陽イオン交換樹脂(アンバーリスト15)100g
を仕込み、反応温度78〜106℃で7時間反応した。
反応終了後、触媒をろ過分離し、触媒をトルエン100
gで洗浄したのち、トルエンと反応液の混合物に純水2
00mを加えて分液ろう斗で水層を除去した。その後
減圧単蒸留(120℃/10mmHg)で未反応メタキシ
レンとトルエンを除去しメタキシレンメチレン樹脂12
3.4gを得た。元素分析の結果、含酸素率は0重量%
であった。得られた樹脂の熱重量測定結果を第1図に、
他樹脂に対する相溶性試験結果を第1表に示す。
Example 1 In a four-necked flask (internal volume 1) equipped with a stirring blade and a reflux condenser, 212 g of meta-xylene and 30 of trioxane.
g, cation exchange resin (Amberlyst 15) 100g
Was charged and reacted at a reaction temperature of 78 to 106 ° C. for 7 hours.
After the reaction was completed, the catalyst was separated by filtration, and the catalyst was washed with toluene 100
After washing with g, add 2 parts of pure water to the mixture of toluene and reaction solution.
00m was added and the aqueous layer was removed with a separatory funnel. After that, unreacted meta-xylene and toluene were removed by vacuum simple distillation (120 ° C / 10 mmHg) to remove meta-xylene methylene resin 12
3.4 g was obtained. As a result of elemental analysis, oxygen content is 0% by weight
Met. The thermogravimetric measurement results of the obtained resin are shown in FIG.
The compatibility test results for other resins are shown in Table 1.

実施例2 実施例1と同一装置にC芳香族留分(重質改質油の1
50〜180℃の沸点範囲の留分)540g、トリオキ
サン60g、陽イオン交換樹脂(アンバーリスト15)
100gを仕込み、反応温度78〜84℃で4時間反応
した。反応終了後、実施例1と同様に処理してC芳香
族メチレン樹脂239gを得た。元素分析の結果、含酸
素率は0.2重量%であった。得られた樹脂の熱重量測
定結果を第2図に、他樹脂に対する相溶性試験結果を第
1表に示す。
Example 2 The same apparatus as in Example 1 was used, but a C 9 aromatic fraction (heavy reformed oil 1
540 g of a fraction having a boiling point range of 50 to 180 ° C.), 60 g of trioxane, a cation exchange resin (Amberlyst 15)
100 g was charged and reacted at a reaction temperature of 78 to 84 ° C. for 4 hours. After the completion of the reaction, the same treatment as in Example 1 was carried out to obtain 239 g of a C 9 aromatic methylene resin. As a result of elemental analysis, the oxygen content was 0.2% by weight. The results of thermogravimetric measurement of the obtained resin are shown in FIG. 2, and the results of the compatibility test with other resins are shown in Table 1.

比較例1 市販のメタキシレンホルムアルデヒド樹脂(三菱瓦斯化
学社製“ニカノールL”)を元素分析した結果、含酸素
率は8.8重量%であった。また、熱重量測定結果を第
1図に、他樹脂に対する相溶性試験結果を第1表に示
す。
Comparative Example 1 As a result of elemental analysis of a commercially available meta-xylene formaldehyde resin (“Nican L” manufactured by Mitsubishi Gas Chemical Co., Inc.), the oxygen content was 8.8% by weight. The results of thermogravimetric measurement are shown in FIG. 1, and the results of the compatibility test with other resins are shown in Table 1.

比較例2 実施例1と同一装置に、実施例2と同一のC芳香族留
分240g、市販の37%ホルマリン284g、市販9
7%硫酸100gを仕込み、反応温度97〜103℃で
1.5時間反応した。反応終了後、トルエン100gを
加えて分液ろう斗に移し、純水で繰り返し洗浄して触媒
ならびに酸性物質を除去した。その後実施例1と同一操
作で蒸留し、C芳香族ホルムアルデヒド樹脂137g
を得た。元素分析の結果、含酸素率は13.1重量%で
あった。また、熱重量測定結果を第2図に、他樹脂に対
する相溶性試験結果を第1表に示す。
Comparative Example 2 In the same apparatus as in Example 1, 240 g of the same C 9 aromatic fraction as in Example 2, 284 g of commercially available 37% formalin, and commercially available 9
100 g of 7% sulfuric acid was charged and reacted at a reaction temperature of 97 to 103 ° C. for 1.5 hours. After the reaction was completed, 100 g of toluene was added, the mixture was transferred to a separating funnel, and washed repeatedly with pure water to remove the catalyst and acidic substances. Thereafter, the same operation as in Example 1 was carried out to distill 137 g of C 9 aromatic formaldehyde resin.
Got As a result of elemental analysis, the oxygen content was 13.1% by weight. The results of thermogravimetric measurement are shown in FIG. 2, and the results of the compatibility test with other resins are shown in Table 1.

(発明の効果) 図1、2の結果から明らかなように、本発明で得られた
芳香族メチレン樹脂は、同一の芳香族化合物から合成し
た従来の芳香族ホルムアルデヒド樹脂に比べて耐熱性が
改善されている。また、表1に見られるように、他樹脂
との相溶性試験においては芳香族メチレン樹脂も芳香族
ホルムアルデヒド樹脂もほぼ同等の相溶性を示してい
る。
(Effect of the Invention) As is clear from the results of FIGS. 1 and 2, the aromatic methylene resin obtained in the present invention has improved heat resistance as compared with the conventional aromatic formaldehyde resin synthesized from the same aromatic compound. Has been done. Further, as seen in Table 1, in the compatibility test with other resins, the aromatic methylene resin and the aromatic formaldehyde resin show almost the same compatibility.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1と比較例1の熱重量測定結果の比較図
であり、第2図は実施例2と比較例2の熱重量測定結果
の比較図である。
FIG. 1 is a comparative diagram of thermogravimetric measurement results of Example 1 and Comparative Example 1, and FIG. 2 is a comparative diagram of thermogravimetric measurement results of Example 2 and Comparative Example 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】芳香族化合物とホルムアルデヒドを強酸性
陽イオン交換樹脂の存在下で反応させて得られる実質的
に酸素原子を含まない芳香族メチレン樹脂の製造法。
1. A process for producing an aromatic methylene resin containing substantially no oxygen atom, which is obtained by reacting an aromatic compound with formaldehyde in the presence of a strongly acidic cation exchange resin.
【請求項2】ホルムアルデヒドが反応系内でトリオキサ
ンより発生することを特徴とする特許請求の範囲第1項
記載の芳香族メチレン樹脂の製造法。
2. The method for producing an aromatic methylene resin according to claim 1, wherein formaldehyde is generated from trioxane in the reaction system.
【請求項3】芳香族化合物に対するホルムアルデヒドの
量がその化学当量より少ない量のトリオキサンを使用す
る特許請求の範囲第2項記載の芳香族メチレン樹脂の製
造法。
3. A process for producing an aromatic methylene resin according to claim 2, wherein the amount of formaldehyde with respect to the aromatic compound is less than its chemical equivalent amount of trioxane.
JP60054357A 1985-03-20 1985-03-20 Method for producing aromatic methylene resin Expired - Lifetime JPH0611780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60054357A JPH0611780B2 (en) 1985-03-20 1985-03-20 Method for producing aromatic methylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60054357A JPH0611780B2 (en) 1985-03-20 1985-03-20 Method for producing aromatic methylene resin

Publications (2)

Publication Number Publication Date
JPS61213216A JPS61213216A (en) 1986-09-22
JPH0611780B2 true JPH0611780B2 (en) 1994-02-16

Family

ID=12968377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60054357A Expired - Lifetime JPH0611780B2 (en) 1985-03-20 1985-03-20 Method for producing aromatic methylene resin

Country Status (1)

Country Link
JP (1) JPH0611780B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100441551B1 (en) 1995-07-12 2004-11-03 미쓰비시 엔지니어링-플라스틱스 코포레이션 Polycarbonate resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082728A (en) * 1976-08-23 1978-04-04 The Standard Oil Company Xylene-formaldehyde resin compositions and process

Also Published As

Publication number Publication date
JPS61213216A (en) 1986-09-22

Similar Documents

Publication Publication Date Title
US3686225A (en) Complexes of polyether compounds and ionic compounds
BRPI0711500B1 (en) PROCESS FOR THE MANUFACTURE OF 3 (R) - (2-HYDROXY-2,2-DITIENE-2-ILACETOXY) -1- (3-PHENOXYPROPYL) 1-AZONIABICYCLE [2.2.2] OCTANA
JP4906726B2 (en) Specific calixarene, its production method and its use
CN109369430A (en) A method of preparing 6-aminocaprolc acid
EP0112725A1 (en) Chlorosulphonated polysulphones and polysulphone sulphonamides
JPH0611780B2 (en) Method for producing aromatic methylene resin
CN105693475B (en) A kind of solid acid H2SO4‑SiO2Catalysis prepares the process of bisphenol fluorene
Casiraghi et al. Selective step‐growth phenol‐aldehyde polymerization, 2. Synthesis of 4‐tert‐butylphenol novolac resins and related open chain oligomeric compounds
WO2011125326A1 (en) Method for purifying alkylnaphthalene formaldehyde polymer
JPH01226842A (en) Isolation of dihydroxydiphenylmethane
JP7066737B2 (en) Method for synthesizing 9,10-bis (chloromethyl) anthracene
CN107033151A (en) A kind of preparation method of methylene bridge Cucurbituril
US4024107A (en) Method of separating a copper-amine catalyst from a polyphenylene ether reaction mixture
JPH08169853A (en) Method of preparing iodonium salt
JP3930688B2 (en) Process for producing 2,2'-methylenebis (alkylphenol) s
JPH0611781B2 (en) Method for producing highly reactive aromatic hydrocarbon / formaldehyde resin
US2792429A (en) Production of dihydroxy diphenyl alkanes
JPH03247616A (en) Production of aromatic petroleum resin
CN101624344A (en) Ditert-butyl and diether linkage structure-containing aromatic dibasic acid and preparation method thereof and application thereof
JPS60105664A (en) Production of 4-methylimidazole
JPH1192543A (en) Aromatic hydrocarbon/formaldehyde resin
JPH1060068A (en) Production of phenolic resin
JPS6033124B2 (en) Production method of hexacyclic phenol formaldehyde resin
JPH0436254A (en) Production of dehydroxydiphenylmethane
JPS6033126B2 (en) Production method of 8-cyclic phenol formaldehyde resin