JPH06114739A - Electrodeposition grinding wheel - Google Patents

Electrodeposition grinding wheel

Info

Publication number
JPH06114739A
JPH06114739A JP4272063A JP27206392A JPH06114739A JP H06114739 A JPH06114739 A JP H06114739A JP 4272063 A JP4272063 A JP 4272063A JP 27206392 A JP27206392 A JP 27206392A JP H06114739 A JPH06114739 A JP H06114739A
Authority
JP
Japan
Prior art keywords
plating layer
electroless plating
layer
diameter
abrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4272063A
Other languages
Japanese (ja)
Inventor
Satoru Katsumata
哲 勝又
Tsutomu Takahashi
務 高橋
Yasuo Tsujisato
康生 辻郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4272063A priority Critical patent/JPH06114739A/en
Publication of JPH06114739A publication Critical patent/JPH06114739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To prolong the life of a grinding wheel by forming an electrolytic plating layer and an electroless plating layer of a specified constitution in the abrasive grain layer forming surface of a base metal, embedding large diameter super abrasive grains of a specified means grain size in both the layers, and further fixing a large number of the grains in a monolayer state along the abrasive grain layer forming surface, in the electrodeposition grinding wheel for grinding. CONSTITUTION:An electrolytic plating layer 12 and an electroless plating layer 14 are successively formed in a uniform thickness further with the synthetic thickness 0.2-0.8 times of a mean grain size, on an abrasive grain layer forming surface 10A of a conductor-made base metal 10. The electroless plating layer 14 is formed of a heat hardened Ni-B system alloy by containing 1-20wt.% P and 0.2-15wt.% heat hardened Ni-P system alloy or B. Furtherm hard small diameter particles 16 of 5mum or less mean grain size of one kind or more, selected from a super abrasive grain, SiC, Si3N4, Al2O3, are uniformly 5 to 35vol.% dispersed. Many large diameter super abrasive grains 18 of 50mum or more mean grain size are buried in both the layers 12, 14 and fixed in a monolayer state along the abrasive grain layer forming surface 10A.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種研削や切断に使用
される電着砥石に係わり、特に、砥石寿命を延長するた
めの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrodeposition grindstone used for various kinds of grinding and cutting, and more particularly to an improvement for extending the life of the grindstone.

【0002】[0002]

【従来の技術】この種の電着砥石は、台金の砥粒層形成
面に、ダイヤモンドまたはCBN等の超砥粒を、電解め
っき法で形成されるNiめっき層により単層状に固着さ
せたものであるが、 砥粒層形成面の形状や砥粒の粒度ばらつき、砥粒分
布の不均一等により、金属めっき層の厚さが不均等にな
りやすい、 電解めっきにより得られるNiめっき層は軟質であ
る、 等の理由により、砥粒保持力が小さく、砥粒が比較的早
期に脱落して寿命が短いという欠点を有している。
2. Description of the Related Art In this type of electrodeposition grindstone, superabrasive grains such as diamond or CBN are fixed in a single layer on a surface of a base metal on which an abrasive grain layer is formed by a Ni plating layer formed by an electrolytic plating method. However, the thickness of the metal plating layer tends to be uneven due to the shape of the surface on which the abrasive layer is formed, the particle size of the abrasive particles, and the uneven distribution of the abrasive particles. The Ni plating layer obtained by electrolytic plating is Due to the fact that it is soft, etc., it has the drawbacks that it has a small abrasive grain holding force, and the abrasive grains fall off relatively early, resulting in a short life.

【0003】上記欠点を改善するため、例えば特開昭6
3−221977号公報には、図2に示すような電着砥
石が提案されており、この砥石は次の工程を経て作成さ
れる。 まず、台金1の砥粒層形成面1Aに電解めっき
によりNi下地めっき層2を形成し、その上に超砥粒3
を分散しつつ電解めっきによりNi電解めっき層4を形
成して超砥粒3を仮固定する。
In order to improve the above drawbacks, for example, Japanese Patent Laid-Open No.
Japanese Patent Laid-Open No. 3-221977 proposes an electrodeposition grindstone as shown in FIG. 2, and this grindstone is produced through the following steps. First, a Ni undercoat layer 2 is formed by electrolytic plating on the abrasive layer forming surface 1A of the base metal 1, and the superabrasive particles 3 are formed thereon.
While dispersing, the Ni electrolytic plating layer 4 is formed by electrolytic plating and the superabrasive grains 3 are temporarily fixed.

【0004】次いで、無電解めっきを施し、これら仮固
定された超砥粒3の間にNi−P合金層5を析出させ、
超砥粒3を所定の深さまで埋め込み、さらに熱処理を施
してNi−P合金層5を硬質化させる。
Next, electroless plating is performed to deposit a Ni--P alloy layer 5 between these temporarily fixed superabrasive grains 3,
The super-abrasive grains 3 are embedded to a predetermined depth and further heat-treated to harden the Ni-P alloy layer 5.

【0005】この電着砥石によれば、超砥粒3を保持す
る金属めっき層4,5全体の厚さが均一になり、砥粒保
持力のばらつきが是正できるうえ、熱処理によってNi
−P合金層5が硬化するから、砥粒保持力が全体的に向
上して無駄な砥粒脱落が減り、砥石寿命が延長できる。
According to this electrodeposition grindstone, the entire thickness of the metal plating layers 4 and 5 holding the superabrasive grains 3 becomes uniform, the variation in the abrasive grain holding force can be corrected, and the Ni-plating by heat treatment.
Since the -P alloy layer 5 is hardened, the abrasive grain holding power is improved as a whole, wasteful removal of abrasive grains is reduced, and the life of the grindstone can be extended.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記のよう
にNi−P合金層で砥粒保持力を高めた砥石にあって
も、難削性の被削材を研削する場合などには砥粒の脱落
が頻発し、期待されるほど砥石寿命が延びないという欠
点があった。本発明は上記事情に鑑みてなされたもの
で、砥粒の無駄な脱落を低減し、切れ味低下に至るまで
の砥石寿命が長い電着砥石を提供することを課題として
いる。
However, even in the case of a grindstone having a Ni-P alloy layer having an increased abrasive grain holding force as described above, when the hard-to-cut work material is ground, the abrasive grains are However, there was a drawback that the grinding wheel life was not extended as expected. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrodeposited grindstone that reduces wasteful removal of abrasive grains and has a long grindstone life until sharpness is reduced.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたもので、まず本発明に係る第1の電
着砥石は、台金の砥粒層形成面上に、電解めっき層およ
び無電解めっき層が順に形成され、これら電解めっき層
および無電解めっき層に埋め込まれて平均粒径50μm
以上の大径超砥粒が前記砥粒層形成面に沿って単層状に
多数固定されるとともに、前記無電解めっき層はPを1
〜20wt%含有し、かつ加熱硬化されたNi合金で構
成され、しかもこの無電解めっき層中には超砥粒,Si
C,Si34,Al23から選択される1種または2種
以上の平均粒径5μm以下の硬質小径粒子が5〜35v
ol%均一に分散されていることを特徴とする。
The present invention has been made to solve the above problems. First, the first electrodeposition grindstone according to the present invention is electrolytic plating on a surface of a base metal on which an abrasive grain layer is formed. Layer and electroless plating layer are formed in order, and the average particle diameter is 50 μm embedded in these electroplating layer and electroless plating layer.
A large number of the large-diameter superabrasive grains described above are fixed in a single layer along the surface where the abrasive grain layer is formed, and the electroless plating layer has P of 1
.About.20 wt% and is composed of a heat-hardened Ni alloy, and in this electroless plating layer, superabrasive grains and Si are contained.
5 to 35v of hard small-diameter particles having an average particle diameter of 5 μm or less of one kind or two kinds or more selected from C, Si 3 N 4 and Al 2 O 3
ol% is uniformly dispersed.

【0008】一方、本発明に係る第2の電着砥石は、台
金の砥粒層形成面上に、電解めっき層および無電解めっ
き層が順に形成され、これら電解めっき層および無電解
めっき層に埋め込まれて平均粒径50μm以上の大径超
砥粒が前記砥粒層形成面に沿って単層状に多数固定され
るとともに、前記無電解めっき層はBを0.2〜15w
t%含有し、かつ加熱硬化されたNi合金で構成され、
しかもこの無電解めっき層中には超砥粒,SiC,Si
34,Al23から選択される1種または2種以上の平
均粒径5μm以下の硬質小径粒子が5〜35vol%均
一に分散されていることを特徴とする。
On the other hand, in the second electrodeposition grindstone according to the present invention, the electrolytic plating layer and the electroless plating layer are sequentially formed on the surface of the base metal on which the abrasive grain layer is formed. Embedded therein, a large number of large-diameter superabrasive grains having an average grain size of 50 μm or more are fixed in a single layer along the abrasive grain layer forming surface, and the electroless plating layer contains B of 0.2 to 15 w.
composed of a Ni alloy containing t% and heat-hardened,
Moreover, super-abrasive grains, SiC, Si are contained in the electroless plating layer.
One or more selected from 3 N 4 and Al 2 O 3 are characterized in that hard small-diameter particles having an average particle diameter of 5 μm or less are uniformly dispersed in an amount of 5 to 35 vol%.

【0009】上記いずれの場合にも、前記無電解めっき
層を構成するNi合金は、さらにW,Mo,Reから選
択される1以上の元素を0.5〜30wt%含有するこ
とが望ましい。また、前記無電解めっき層の厚さは、前
記大径超砥粒の平均粒径の0.1〜0.7倍とされ、か
つ前記電解めっき層および無電解めっき層の合計厚さ
は、前記大径超砥粒の平均粒径の0.2〜0.8倍とさ
れていることが望ましい。
In any of the above cases, it is preferable that the Ni alloy forming the electroless plating layer further contains 0.5 to 30 wt% of one or more elements selected from W, Mo and Re. Further, the thickness of the electroless plating layer is 0.1 to 0.7 times the average particle size of the large-diameter superabrasive grains, and the total thickness of the electrolytic plating layer and the electroless plating layer, It is desirable that the average grain size of the large-diameter superabrasive grains be 0.2 to 0.8 times.

【0010】[0010]

【作用】本発明に係る電着砥石では、被削材の研削に寄
与する個々の大径超砥粒が、Ni−P系合金またはNi
−B系合金からなる、それ自体硬度の高い無電解めっき
層で支持されているうえ、この無電解めっき層には5μ
m未満の小径超砥粒が均一分散されているから、これら
小径超砥粒によって無電解めっき層と被削材との接触頻
度を減らして無電解めっき層の摩耗速度を減少させる作
用、および粒子分散により無電解めっき層の変形抵抗が
増大する作用が得られる。
In the electrodeposition grindstone according to the present invention, the individual large-diameter superabrasive grains that contribute to the grinding of the work material are Ni-P alloy or Ni.
-Supported by an electroless plating layer that is made of B-based alloy and has a high hardness, and the electroless plating layer has a thickness of 5 μm.
Since the small-diameter superabrasive particles of less than m are uniformly dispersed, the small-diameter superabrasive particles reduce the frequency of contact between the electroless plating layer and the work material to reduce the wear rate of the electroless plating layer, and particles. The dispersion has the effect of increasing the deformation resistance of the electroless plating layer.

【0011】したがって、この電着砥石では無電解めっ
き層による大径超砥粒の保持力が著しく高く、しかも無
電解めっき層が摩耗しにくく砥粒保持力の経時低下率が
少ないから、難削材の研削を行う場合にも、切刃となる
大径超砥粒の無駄な脱落が少なく、長期に亙って良好な
切れ味が維持できる。
Therefore, in this electrodeposition grindstone, the holding power of the large-diameter superabrasive grains by the electroless plating layer is remarkably high, and further, the electroless plating layer is hard to be worn and the reduction rate of the holding force of the abrasive grains is small. Even when the material is ground, the large-diameter superabrasive grains that serve as the cutting edge are less likely to be wasted, and good sharpness can be maintained for a long period of time.

【0012】また、無電解めっき層と台金の砥粒層形成
面との間に、無電解めっき層より軟質の電解めっき層が
形成されているので、硬質の無電解めっき層と台金との
間に生じる熱応力を緩和する効果が得られ、発熱量の大
きい研削を行う際にも砥粒層の剥離等のおそれが少な
い。
Further, since the electrolytic plating layer which is softer than the electroless plating layer is formed between the electroless plating layer and the abrasive grain layer forming surface of the base metal, the hard electroless plating layer and the base metal are The effect of alleviating the thermal stress generated during the heat treatment is obtained, and there is little risk of peeling of the abrasive grain layer even when grinding with a large amount of heat generation.

【0013】[0013]

【実施例】図1は、本発明に係わる電着砥石の一実施例
を示す断面拡大図である。図中符号10は少なくともそ
の表面が導電体で形成された台金である。この台金10
の形状は限定されず、カップ型,ホイール型,総型など
従来使用されているいかなる形状でもよい。また、砥粒
層形成面10Aさえ導電体で構成されていれば、内部は
非導電体であってもよい。
EXAMPLE FIG. 1 is an enlarged sectional view showing an example of an electrodeposition grindstone according to the present invention. Reference numeral 10 in the figure is a base metal having at least its surface formed of a conductor. This base metal 10
The shape of is not limited, and may be any shape conventionally used such as a cup type, a wheel type, and a full type. Further, as long as the abrasive grain layer forming surface 10A is made of a conductor, the inside may be a non-conductor.

【0014】砥粒層形成面10A上には、電解めっき層
12および無電解めっき層14が順に均一厚に形成さ
れ、これら電解めっき層12および無電解めっき層14
に埋め込まれて、大径超砥粒18が砥粒層形成面10A
に沿って単層状に多数固定されている。また、無電解め
っき層14中には、多数の小径超砥粒16が均一に分散
されている。
An electrolytic plating layer 12 and an electroless plating layer 14 are sequentially formed on the abrasive grain layer forming surface 10A to have a uniform thickness. The electrolytic plating layer 12 and the electroless plating layer 14 are formed in this order.
Embedded in the surface, the large-diameter superabrasive grains 18 are formed on the abrasive grain layer forming surface 10A.
Many are fixed in a single layer along. Further, a large number of small-diameter superabrasive grains 16 are uniformly dispersed in the electroless plating layer 14.

【0015】電解めっき層12はNiまたはNi合金で
形成されたもので、特に、Co含有量が10〜60wt
%のNi−Co系合金は熱処理後の硬度が高く、好適で
ある。Co含有量が10wt%未満では、耐熱性、耐疲
労性が低下して砥粒保持力が低下する一方、60wt%
より大ではCoが高価であるからコストが高くつく。
The electroplating layer 12 is formed of Ni or a Ni alloy, and particularly has a Co content of 10 to 60 wt.
%, The Ni-Co alloy has a high hardness after heat treatment and is suitable. When the Co content is less than 10 wt%, the heat resistance and fatigue resistance are lowered and the abrasive grain holding power is lowered, while 60 wt%
The larger the cost, the higher the cost because Co is expensive.

【0016】一方、無電解めっき層14は、Pを1〜2
0wt%含有し加熱硬化されたNi−P系合金、あるい
はBを0.2〜15wt%含有し加熱硬化されたNi−
B系合金で形成されたものである。Ni−P系合金の場
合、Pの含有量が1wt%未満であると十分な硬度が得
られず、15wt%より大であると靱性が低下して砥粒
保持力が減少する。また、Ni−B系合金の場合、Bの
含有量が0.2wt%未満であると十分な硬度が得られ
ず、15wt%より大であるとめっきの平滑性が低下し
たり、めっき層が脆くなるという問題を生じる。
On the other hand, the electroless plating layer 14 has P of 1 to 2
Ni-P alloy containing 0 wt% and heat-hardened, or Ni-P alloy containing 0.2 to 15 wt% B and heat-hardened.
It is formed of a B-based alloy. In the case of a Ni-P alloy, if the P content is less than 1 wt%, sufficient hardness cannot be obtained, and if it is more than 15 wt%, the toughness decreases and the abrasive grain holding force decreases. Further, in the case of a Ni-B alloy, if the content of B is less than 0.2 wt%, sufficient hardness cannot be obtained, and if it is more than 15 wt%, the smoothness of the plating is deteriorated or the plating layer is formed. The problem of becoming brittle arises.

【0017】無電解めっき層14がNi−P系合金およ
びNi−B系合金のいずれである場合にも、無電解めっ
き層14には、W,Mo,Reから選択される1種また
は2種以上の元素が、総量として0.5〜30wt%含
まれることが望ましい。その場合、W,Mo,Reの総
含有量が0.5wt%未満であると十分な硬度向上効果
が得られず、30wt%を越えると無電解めっき膜の脆
性が増大し、逆に砥粒保持力が低下するという問題を生
じる。
Regardless of whether the electroless plating layer 14 is a Ni-P type alloy or a Ni-B type alloy, the electroless plating layer 14 contains one or two kinds selected from W, Mo and Re. It is desirable that the above elements are contained in a total amount of 0.5 to 30 wt%. In that case, if the total content of W, Mo and Re is less than 0.5 wt%, a sufficient hardness improving effect cannot be obtained, and if it exceeds 30 wt%, the brittleness of the electroless plating film increases, and conversely the abrasive grains This causes a problem that the holding power is lowered.

【0018】小径超砥粒16の平均粒径は5μm以下で
あることが必要で、より好ましくは1〜3μmとされ
る。5μmより大きいと、粒子分散による無電解めっき
層14の強度,硬さ,変形抵抗向上効果が不十分にな
る。無電解めっき層14中における小径超砥粒16の含
有量は5〜35vol%であることが望ましく、5vo
l%未満では無電解めっき層16の強度等を向上する効
果が不足し、35vol%より多くても無電解めっき層
16の強度を低下させる原因となる。
The average diameter of the small-diameter superabrasive grains 16 must be 5 μm or less, and more preferably 1 to 3 μm. If it is larger than 5 μm, the effect of improving the strength, hardness and deformation resistance of the electroless plating layer 14 due to particle dispersion becomes insufficient. The content of the small-diameter superabrasive grains 16 in the electroless plating layer 14 is preferably 5 to 35 vol% and 5 vo
If it is less than 1%, the effect of improving the strength of the electroless plating layer 16 is insufficient, and if it is more than 35 vol%, the strength of the electroless plating layer 16 is lowered.

【0019】なお、超砥粒の代わりに、SiC,Si3
4,Al23から選択される1種または2種以上の平
均粒径5μm以下の硬質小径粒子を用いても同様の効果
が得られる。
Instead of superabrasive grains, SiC, Si 3
The same effect can be obtained by using one or two or more kinds of hard small-diameter particles having an average particle diameter of 5 μm or less selected from N 4 and Al 2 O 3 .

【0020】大径超砥粒18の平均粒径は50μm以上
であることが必要で、望ましくは80〜300μmとさ
れる。大径超砥粒18の平均粒径が50μm未満である
と、大径超砥粒18の突出量を十分大きく確保しつつ、
大径超砥粒18の保持力を十分に高めることが困難にな
り、本発明の効果が得られ難い。また、大径超砥粒18
の砥粒層全体における面積的な含有率は30〜65%程
度が好ましい。この範囲を外れるといずれの場合も切れ
味と寿命の両立が難しくなる。
The average particle size of the large-diameter superabrasive particles 18 is required to be 50 μm or more, preferably 80 to 300 μm. When the average particle size of the large-diameter superabrasive particles 18 is less than 50 μm, the protrusion amount of the large-diameter superabrasive particles 18 is secured sufficiently large,
It becomes difficult to sufficiently increase the holding power of the large-diameter superabrasive grains 18, and it is difficult to obtain the effect of the present invention. Also, large-diameter superabrasive grains 18
It is preferable that the area content of the whole abrasive grain layer is about 30 to 65%. If it deviates from this range, it becomes difficult to achieve both sharpness and life in any case.

【0021】電解めっき層12の厚さT1は、大径超砥
粒18の平均粒径の0.1〜0.7倍であることが望ま
しい。0.1倍未満では無電解めっき層14と台金10
との間の応力緩和効果が不十分となり、昇温時に無電解
めっき層14が台金10から剥離するおそれが生じるう
え、後述する製造方法において大径超砥粒18を仮固定
することが困難になる。また、厚さT1が大径超砥粒1
8の平均粒径の0.7倍より大きいと、相対的に無電解
めっき層14の厚さが減少し、砥粒保持力が低下する。
The thickness T1 of the electrolytic plating layer 12 is preferably 0.1 to 0.7 times the average particle size of the large-diameter superabrasive particles 18. If less than 0.1 times, electroless plating layer 14 and base metal 10
And the stress relaxation effect between the two becomes insufficient, the electroless plating layer 14 may peel off from the base metal 10 at the time of temperature rise, and it is difficult to temporarily fix the large-diameter superabrasive grains 18 in the manufacturing method described later. become. Further, the thickness T1 is a large-diameter superabrasive grain 1
If the average grain size of No. 8 is larger than 0.7 times, the thickness of the electroless plating layer 14 is relatively reduced, and the abrasive grain holding power is reduced.

【0022】電解めっき層12および無電解めっき層1
4の合計厚さT2は、大径超砥粒18の平均粒径の0.
2〜0.8倍であることが望ましい。0.2倍未満では
砥粒保持力が不足し、0.8倍より厚いと大径超砥粒1
8の突出量が不足して切れ味が低下する。より望ましく
は0.5〜0.8倍である。
Electrolytic plating layer 12 and electroless plating layer 1
4 has a total thickness T2 of 0.
It is desirable to be 2 to 0.8 times. If it is less than 0.2 times, the abrasive grain holding power is insufficient, and if it is more than 0.8 times, the large-diameter super abrasive grain 1
The protrusion amount of 8 is insufficient and the sharpness is reduced. It is more preferably 0.5 to 0.8 times.

【0023】なお、この実施例では、台金10の砥粒層
形成面10Aに直接、電解めっき層12が形成されてい
るが、その代わりに、台金10の砥粒層形成面10Aに
NiまたはNi合金等からなる下地めっき層(この場
合、台金の一部となり、実際の砥粒層形成面を構成す
る)を形成し、砥粒層形成面の平滑度を高め、その上に
電解めっき層12を形成してもよい。
In this embodiment, the electrolytic plating layer 12 is formed directly on the abrasive grain layer forming surface 10A of the base metal 10. However, instead of this, Ni is formed on the abrasive grain layer forming surface 10A of the base metal 10. Alternatively, a base plating layer made of a Ni alloy or the like (in this case, it becomes a part of the base metal and constitutes an actual abrasive grain layer forming surface) is formed to enhance the smoothness of the abrasive grain layer forming surface, and then the electrolytic layer is formed thereon. The plating layer 12 may be formed.

【0024】次に、上記電着砥石の製造方法の一例を説
明する。この方法ではまず、台金10の砥粒層形成面1
0Aを除く部分にマスキングを施したうえ、台金10を
電解めっき槽にセットし、砥粒層形成面10A上に大径
超砥粒18を分散させつつ電解めっき層12を析出させ
て、大径超砥粒18を単層状に仮固定する。電解めっき
層12としてNi−Co系合金を使用する場合には、通
常のNiめっき液にスルファミン酸Co,塩化Co,臭
化Co等のCo塩を所定量添加しておけばよい。
Next, an example of a method of manufacturing the above electrodeposition grindstone will be described. In this method, first, the abrasive grain layer forming surface 1 of the base metal 10
After masking the parts except 0A, the base metal 10 is set in the electrolytic plating tank, and the electrolytic plating layer 12 is deposited while dispersing the large-diameter superabrasive particles 18 on the abrasive particle layer forming surface 10A, The superabrasive grains 18 are temporarily fixed in a single layer. When a Ni—Co based alloy is used for the electrolytic plating layer 12, a predetermined amount of Co salt such as Co sulfamate, Co chloride, Co bromide, etc. may be added to an ordinary Ni plating solution.

【0025】大径超砥粒18の仮固定が完了したら、台
金10を小径超砥粒16を均一分散させた無電解めっき
浴に浸漬し、電解めっき層12上に小径超砥粒16を均
一分散させつつ無電解めっき層14を析出させ、大径超
砥粒18を所定の深さまで埋め込む。ここで使用可能な
Ni−P系無電解めっき浴としては、次亜リン酸ナトリ
ウムを還元剤とした公知のNi−Pめっき浴、あるいは
これにタングステン酸ナトリウム等のタングステン酸
塩,モリブデン酸ナトリウム等のモリブデン酸塩,レニ
ウム酸アンモニウム等のレニウム酸塩等を1種または2
種以上添加したものが挙げられる。
After the temporary fixing of the large-diameter superabrasive grains 18 is completed, the base metal 10 is immersed in an electroless plating bath in which the small-diameter superabrasive grains 16 are uniformly dispersed, and the small-diameter superabrasive grains 16 are placed on the electrolytic plating layer 12. The electroless plating layer 14 is deposited while being uniformly dispersed, and the large-diameter superabrasive grains 18 are embedded to a predetermined depth. The Ni-P electroless plating bath usable here is a known Ni-P plating bath using sodium hypophosphite as a reducing agent, or a tungstate salt such as sodium tungstate, sodium molybdate, etc. Molybdate, rhenate such as ammonium rhenate, etc.
The thing which added one or more types is mentioned.

【0026】一方、無電解めっき層14としてNi−B
系合金を使用する場合には、通常のNi無電解めっき浴
に、還元剤としてNaBH4 等の水素化ほう素化合物、
ジメチルアミンボランなどを添加したNi−B系無電解
めっき浴、あるいはこれに前記W,Mo,Re塩等を添
加したものが使用可能である。
On the other hand, as the electroless plating layer 14, Ni-B is used.
When using a base alloy, a boron hydride compound such as NaBH 4 is used as a reducing agent in an ordinary Ni electroless plating bath,
It is possible to use a Ni-B system electroless plating bath to which dimethylamine borane or the like is added, or a bath to which the above W, Mo, Re salt or the like is added.

【0027】無電解めっき層14を形成し終えたら、砥
石を洗浄してマスキングを除去したうえ、300〜50
0℃×30〜240分程度の熱処理を施す。すると無電
解めっき相中のPまたはBが析出し、加熱前は400〜
700Hv程度の硬度であった無電解めっき相が800
〜1000Hv程度にまで硬化する。さらにW,Mo,
Reを添加した場合には、無電解めっき相が最高120
0Hv程度まで硬化し、無電解めっき層14の高温強
度、高温硬度が高まり、発熱量の大きい研削において
も、高い砥粒保持力が得られる。
After the electroless plating layer 14 is formed, the grindstone is washed to remove the masking, and then 300 to 50.
Heat treatment is performed at 0 ° C. for about 30 to 240 minutes. Then, P or B in the electroless plating phase is deposited, and 400 to before the heating.
The electroless plating phase, which had a hardness of about 700 Hv, is 800
Hardens to about 1000 Hv. Furthermore, W, Mo,
When Re is added, the maximum electroless plating phase is 120
It hardens to about 0 Hv, the high temperature strength and high temperature hardness of the electroless plating layer 14 increase, and a high abrasive grain holding force can be obtained even in grinding with a large amount of heat generation.

【0028】一方、電解めっき層12をNi−Co系合
金で形成した場合、その硬度は析出状態で525Hv、
熱処理後(400℃以下)で300〜400Hvであ
り、従来のNiめっき相が熱処理後に200Hv以下ま
で低下するのに比べて硬度が高く、この点からも砥粒保
持力の向上が図れる。
On the other hand, when the electrolytic plating layer 12 is formed of a Ni-Co type alloy, its hardness is 525 Hv in the deposited state,
It is 300 to 400 Hv after the heat treatment (400 ° C. or less), which is higher in hardness than the conventional Ni plating phase is reduced to 200 Hv or less after the heat treatment, and the abrasive grain holding force can be improved also from this point.

【0029】上記構成からなる電着砥石によれば、被削
材の研削に寄与する個々の大径超砥粒18が、Ni−P
系合金またはNi−B系合金からなる、それ自体硬度の
高い無電解めっき層14で支持されているうえ、この無
電解めっき層14には5μm未満の小径超砥粒16が均
一分散されているから、これら小径超砥粒16によって
無電解めっき層14と被削材との接触頻度を減らして無
電解めっき層14の摩耗速度を減少させる作用、および
小径超砥粒16により無電解めっき層14の剛性を向上
する作用が得られる。
According to the electrodeposition grindstone having the above structure, the individual large-diameter superabrasive grains 18 that contribute to the grinding of the work material are Ni-P.
It is supported by the electroless plating layer 14 which is made of a Ni-B alloy or a Ni-B alloy and has a high hardness, and the electroless plating layer 14 has uniformly dispersed small-diameter superabrasive grains 16 of less than 5 μm. Therefore, these small-diameter superabrasive grains 16 reduce the contact frequency between the electroless plating layer 14 and the work material to reduce the wear rate of the electroless plating layer 14, and the small-diameter superabrasive grains 16 reduce the electroless plating layer 14 The effect of improving the rigidity of is obtained.

【0030】したがって、この電着砥石では無電解めっ
き層14による大径超砥粒18の保持力が著しく高く、
しかも無電解めっき層14が摩耗しにくく砥粒保持力の
経時低下率が少ないから、難削材の研削を行う場合に
も、大径超砥粒18の無駄な脱落が少なく、長期に亙っ
て良好な切れ味が維持できる。
Therefore, in this electrodeposition grindstone, the holding power of the large-diameter superabrasive grains 18 by the electroless plating layer 14 is remarkably high,
Moreover, since the electroless plating layer 14 is less likely to be worn and the decrease rate of the abrasive grain holding force over time is small, the large-diameter superabrasive grains 18 are less likely to be unnecessarily removed even when grinding a difficult-to-cut material. And good sharpness can be maintained.

【0031】また、無電解めっき層14と台金10の砥
粒層形成面10Aとの間に、無電解めっき層14よりは
軟質の電解めっき層12が形成されているので、硬質の
無電解めっき層14と台金10との間に生じる熱応力を
緩和する効果が得られ、発熱量の大きい研削を行う際に
も砥粒層の剥離等のおそれが少ない。
Further, since the electrolytic plating layer 12 which is softer than the electroless plating layer 14 is formed between the electroless plating layer 14 and the abrasive grain layer forming surface 10A of the base metal 10, a hard electroless plating is performed. The effect of alleviating the thermal stress generated between the plating layer 14 and the base metal 10 is obtained, and the possibility of peeling of the abrasive grain layer or the like is small even when performing grinding with a large amount of heat generation.

【0032】[0032]

【実験例】次に、実験例を挙げて本発明の効果を実証す
る。 (実験例1)外径150mm×内径50.8mm×厚さ
7mmの1A1ストレート型の台金の砥粒層形成面を除
く部分にマスキングを施し、台金を下記組成からなる電
解めっき浴に浸漬し、砥粒層形成面にNi下地めっき層
を2μmの厚さに形成した。
[Experimental Example] Next, the effect of the present invention will be demonstrated with reference to an experimental example. (Experimental Example 1) A portion of the 1A1 straight type base metal having an outer diameter of 150 mm x an inner diameter of 50.8 mm x a thickness of 7 mm except for the surface where the abrasive grain layer is formed is masked, and the base metal is immersed in an electrolytic plating bath having the following composition. Then, a Ni undercoat layer having a thickness of 2 μm was formed on the surface of the abrasive grain layer.

【0033】次に、下記組成からなる電解めっき浴内
で、下地めっき層上にNi−Co合金層を10μmの厚
さに析出させ、大径ダイヤモンド砥粒を単層状に仮固定
した。得られたNi−Co合金相のCo含有率は30%
となった。
Next, in an electrolytic plating bath having the following composition, a Ni--Co alloy layer was deposited on the undercoating layer to a thickness of 10 μm, and large-diameter diamond abrasive grains were temporarily fixed in a single layer. Co content of the obtained Ni-Co alloy phase is 30%
Became.

【0034】電解めっき条件 浴組成 スルファミン酸Ni:450g/l ホウ酸 :30g/l 塩化Ni :10g/l 光沢剤 :少量 スルファミン酸Co:8g/l ダイヤモンド砥粒 :10g/l 砥粒平均粒径 :#80/100=150〜180
μm pH :4 浴温度 :50℃ 電流密度 :0.03A/cm2
Electroplating Conditions Bath Composition Ni: Sulfamic Acid: 450 g / l Boric Acid: 30 g / l Ni Chloride: 10 g / l Brightening Agent: Small Amount Sulfamic Acid Co: 8 g / l Diamond Abrasive Grains: 10 g / l Abrasive Grain Average Particle Size : # 80/100 = 150 to 180
μm pH: 4 Bath temperature: 50 ° C. Current density: 0.03 A / cm 2

【0035】次に台金を、以下の組成からなる小径超砥
粒を含む無電解めっき液に浸漬して85℃で無電解めっ
きを行い、Ni−Co合金層上に、小径超砥粒を均一に
分散させたNi−W−P合金層を形成して、仮固定され
た大径超砥粒をその平均粒径の70%まで埋め込んだ。
このNi−W−P合金層の組成はNi−9.24wt%
W−3.52wt%Pとなり、小径超砥粒の含有率は2
0vol%となった。さらに、砥石を洗浄してこれに4
50℃の熱処理を100分間施し、電着砥石を得た。熱
処理により、Ni−W−P合金相の硬度は1200Hv
になった。
Next, the base metal is immersed in an electroless plating solution containing small-diameter superabrasive grains of the following composition and electroless plated at 85 ° C. to form small-diameter superabrasive grains on the Ni—Co alloy layer. A uniformly dispersed Ni-WP alloy layer was formed, and the temporarily fixed large-diameter superabrasive grains were embedded to 70% of the average grain size.
The composition of this Ni-WP alloy layer is Ni-9.24 wt%.
W-3.52 wt% P, the content of small-diameter superabrasive grains is 2
It became 0 vol%. In addition, clean the grindstone and
Heat treatment was performed at 50 ° C. for 100 minutes to obtain an electrodeposition grindstone. The hardness of the Ni-WP alloy phase is 1200 Hv due to the heat treatment.
Became.

【0036】無電解めっき浴の組成 硫酸ニッケル :7g/l タングステン酸ナトリウム:35g/l クエン酸ナトリウム :40g/l 次亜リン酸ナトリウム :10g/l 温度 :95℃ pH :9.8 小径超砥粒分散量 :10g/l 小径超砥粒の平均粒径 :#4000=2〜4μmComposition of electroless plating bath Nickel sulfate: 7 g / l Sodium tungstate: 35 g / l Sodium citrate: 40 g / l Sodium hypophosphite: 10 g / l Temperature: 95 ° C. pH: 9.8 Small diameter superabrasive Grain dispersion amount: 10 g / l Average diameter of small-diameter superabrasive grains: # 4000 = 2 to 4 μm

【0037】(実験例2)一方、電解めっき層までは実
験例1と全く同一条件で形成した台金を、小径超砥粒を
含む無電解めっき液(日本カニゼン社製SB−55)に
浸漬し、60℃で無電解めっきを行い、Ni−Co合金
層上に前記同様の小径超砥粒を均一分散させたNi−B
合金層を形成して、仮固定された超砥粒を平均粒径の7
5%まで埋め込んだ。このNi−B合金相の組成は99
wt%Ni−1wt%Bとなり、小径超砥粒の含有率は
10vol%となった。さらに、砥石を洗浄してこれに
400℃の熱処理を120分間施し、電着砥石を得た。
熱処理により、Ni−B合金相の硬度は1000Hvに
なった。
(Experimental Example 2) On the other hand, up to the electrolytic plating layer, the base metal formed under exactly the same conditions as in Experimental Example 1 was immersed in an electroless plating solution containing small-diameter superabrasive grains (SB-55 manufactured by Kanigen Japan Ltd.). Then, electroless plating is performed at 60 ° C. to uniformly disperse the above-mentioned small-diameter superabrasive grains on the Ni—Co alloy layer.
An alloy layer is formed and the temporarily fixed superabrasive particles are treated with an average particle size of 7
Embedded up to 5%. The composition of this Ni-B alloy phase is 99.
wt% Ni-1 wt% B, and the content ratio of the small-diameter superabrasive grains was 10 vol%. Further, the grindstone was washed and heat-treated at 400 ° C. for 120 minutes to obtain an electrodeposition grindstone.
By the heat treatment, the hardness of the Ni-B alloy phase became 1000 Hv.

【0038】(実験例3)電解めっき層までは実験例1
と同様に形成した台金を無電解めっき液に浸漬し、70
℃で無電解めっきを行い、Ni−Co合金層上にNi−
B−Mo合金層を形成して、仮固定された超砥粒を平均
粒径の65%まで埋め込んだ。この無電解めっき層の組
成はNi−23wt%Mo−1wt%Bとなった。さら
に、砥石を洗浄してこれに430℃の熱処理を120分
間施し、電着砥石を得た。熱処理により、無電解めっき
相の硬度は1100Hvになった。
(Experimental example 3) Experimental example 1 up to the electrolytic plating layer
Immerse the base metal formed in the same manner as in 1.
Electroless plating at ℃, Ni-Co on the Ni-Co alloy layer
A B-Mo alloy layer was formed and the temporarily fixed superabrasive grains were embedded up to 65% of the average grain size. The composition of this electroless plating layer was Ni-23 wt% Mo-1 wt% B. Further, the grindstone was washed and heat-treated at 430 ° C. for 120 minutes to obtain an electrodeposition grindstone. The heat treatment brought the hardness of the electroless plating phase to 1100 Hv.

【0039】(比較例1)上記と同じ台金上に、下記に
組成を示すNiめっき浴を用いて共析めっきを行い、電
着砥石を得た。砥粒の埋め込み量は上記と同じである。 スルファミン酸Ni:450g/l ホウ酸:30g/l 塩化Ni:10g/l 光沢剤:少量 ダイヤモンド砥粒量:10g/l ダイヤモンド砥粒の大きさ:#80/100
Comparative Example 1 An electrodeposition grindstone was obtained by performing eutectoid plating on the same base metal as described above using a Ni plating bath having the following composition. The amount of abrasive grains embedded is the same as above. Ni sulfamic acid: 450 g / l Boric acid: 30 g / l Ni chloride: 10 g / l Brightening agent: small amount Diamond abrasive grain amount: 10 g / l Diamond abrasive grain size: # 80/100

【0040】(比較例2)特開昭63−221977号
公報に記載された砥石を作成した。まず、上記と同じ台
金の研削面に電着めっき法を用いて厚さ4μmのNiめ
っき層を形成した。次に、#80/100のダイヤモン
ド砥粒を懸濁させたNiめっき液を用いて砥粒を電着
し、平均厚さ10μmのNiめっき層を形成した。さら
に、この上に無電解めっき法により、平均粒径の70%
を埋め込むまでNi−P合金めっき層を形成した。この
ようにして製造した電着砥石を400℃に加熱し、Ni
−P合金めっき相の硬度をHv800程度に高めた。
(Comparative Example 2) A grindstone described in JP-A-63-221977 was prepared. First, a Ni plating layer having a thickness of 4 μm was formed on the ground surface of the same base metal as described above by using an electrodeposition plating method. Next, the abrasive grains were electrodeposited using a Ni plating solution in which # 80/100 diamond abrasive grains were suspended to form a Ni plating layer having an average thickness of 10 μm. Furthermore, 70% of the average particle size is obtained by electroless plating on this.
A Ni-P alloy plating layer was formed until the embedded. The electrodeposition grindstone manufactured in this way is heated to 400 ° C.
The hardness of the P alloy plating phase was increased to about Hv800.

【0041】(比較方法)以上のように作成した5種の
砥石を用いて下記に示す研削試験を行い、研削性能を比
較した。被削材を15cc研削した時点での砥粒残留率
(%)および仕上げ面粗さ:Rmax(μm)を表1に
示す。 研削条件 ホイール周速:1500m/min テーブル送り:10m/min クロス送り:2mm/Pass 切込み:0.015mm 被削材:超硬合金 (三菱マテリアル株式会社製商品名「ダイヤチタニッ
ト」) 研削液:ケミカルソリューション:50倍希釈
(Comparison method) The following grinding tests were carried out using the five kinds of grindstones prepared as described above, and the grinding performances were compared. Table 1 shows the abrasive grain residual ratio (%) and the finished surface roughness: Rmax (μm) at the time of grinding the work material by 15 cc. Grinding conditions Wheel peripheral speed: 1500 m / min Table feed: 10 m / min Cross feed: 2 mm / Pass Depth of cut: 0.015 mm Work material: cemented carbide (Mitsubishi Material Co., Ltd. product name "Diatitanit") Grinding fluid: Chemical solution: 50 times dilution

【0042】[0042]

【表1】 [Table 1]

【0043】上表から明らかなように、実験例1〜3の
砥石では砥粒残留率が比較例1,2の砥石に比して高
く、砥粒保持力がきわめて高いことが確認できた。ま
た、超硬合金のような硬脆材料の研削時にもチッピング
が生じにくく、仕上げ面粗さが良好になることが確認で
きた。
As is clear from the above table, it was confirmed that the grindstones of Experimental Examples 1 to 3 had a higher rate of residual abrasive grains than the grindstones of Comparative Examples 1 and 2, and had extremely high abrasive grain holding power. It was also confirmed that chipping did not easily occur during grinding of hard and brittle materials such as cemented carbide, and the finished surface roughness was good.

【0044】[0044]

【発明の効果】以上説明したように、本発明の電着砥石
によれば、被削材の研削に寄与する個々の大径超砥粒
が、Ni−P系合金またはNi−B系合金からなる、そ
れ自体極めて硬度の高い無電解めっき層で支持されてい
るうえ、この無電解めっき層には5μm未満の小径硬質
粒子が均一分散されているから、これら小径硬質粒子に
よって無電解めっき層と被削材との接触頻度を減らして
無電解めっき層の摩耗速度を減少させる作用、および小
径硬質粒子により無電解めっき層の剛性を向上する作用
が得られる。
As described above, according to the electrodeposition grindstone of the present invention, the individual large-diameter superabrasive grains that contribute to the grinding of the work material are made of Ni-P type alloy or Ni-B type alloy. It is supported by the electroless plating layer having extremely high hardness, and since the small diameter hard particles of less than 5 μm are uniformly dispersed in the electroless plating layer, the small diameter hard particles form an electroless plating layer. The effect of reducing the contact frequency with the work material to reduce the wear rate of the electroless plating layer, and the effect of improving the rigidity of the electroless plating layer by the small diameter hard particles can be obtained.

【0045】したがって、この電着砥石では無電解めっ
き層による大径超砥粒の保持力が著しく高く、しかも無
電解めっき層が摩耗しにくく砥粒保持力の経時低下率が
少ないから、難削材の研削を行う場合にも、大径超砥粒
の無駄な脱落が少なく、長期に亙って良好な切れ味が維
持できる。
Therefore, in this electrodeposition grindstone, the holding force of the large-diameter superabrasive grains by the electroless plating layer is remarkably high, and the electroless plating layer is less likely to be worn and the reduction rate of the holding force of the abrasive grains is small. Even when the material is ground, the large-diameter superabrasive particles are less likely to be uselessly dropped off, and good sharpness can be maintained for a long period of time.

【0046】また、無電解めっき層と台金の砥粒層形成
面との間に、無電解めっき層より軟質の電解めっき層が
形成されているので、硬質の無電解めっき層と台金との
間に生じる熱応力を緩和する効果が得られ、発熱量の大
きい研削を行う際にも砥粒層の剥離等のおそれが少ない
という優れた効果を奏する。
Further, since the electrolytic plating layer which is softer than the electroless plating layer is formed between the electroless plating layer and the abrasive grain layer forming surface of the base metal, the hard electroless plating layer and the base metal are The effect of alleviating the thermal stress generated during the process is obtained, and the excellent effect that there is little risk of peeling of the abrasive grain layer even when performing grinding with a large amount of heat generation is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電着砥石の一実施例を示す断面拡大図
である。
FIG. 1 is an enlarged sectional view showing an embodiment of an electrodeposition grindstone of the present invention.

【図2】従来の電着砥石の一例を示す断面拡大図であ
る。
FIG. 2 is an enlarged sectional view showing an example of a conventional electrodeposition grindstone.

【符号の説明】[Explanation of symbols]

10 台金 10A 砥粒層形成面 12 電解めっき層 14 無電解めっき層 16 小径超砥粒(小径硬質粒子) 18 大径超砥粒 10 Base metal 10A Abrasive grain layer forming surface 12 Electrolytic plating layer 14 Electroless plating layer 16 Small diameter super abrasive grain (small diameter hard particle) 18 Large diameter super abrasive grain

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】台金の砥粒層形成面上に、電解めっき層お
よび無電解めっき層が順に形成され、これら電解めっき
層および無電解めっき層に埋め込まれて平均粒径50μ
m以上の大径超砥粒が前記砥粒層形成面に沿って単層状
に多数固定されるとともに、前記無電解めっき層はPを
1〜20wt%含有し、かつ加熱硬化されたNi合金で
構成され、しかもこの無電解めっき層中には超砥粒,S
iC,Si34,Al23から選択される1種または2
種以上の平均粒径5μm以下の硬質小径粒子が5〜35
vol%均一に分散されていることを特徴とする電着砥
石。
1. An electrolytic plating layer and an electroless plating layer are sequentially formed on a surface of a base metal on which an abrasive grain layer is formed, and an average particle diameter of 50 μ is embedded in the electrolytic plating layer and the electroless plating layer.
A large number of large-diameter superabrasive grains of m or more are fixed in a single layer along the surface of the abrasive grain layer, and the electroless plating layer contains P in an amount of 1 to 20 wt% and is a heat-hardened Ni alloy. In addition, super-abrasive grains and S are contained in the electroless plating layer.
One or two selected from iC, Si 3 N 4 and Al 2 O 3
5 to 35 hard and small particles having an average particle diameter of 5 μm or less
vol% An electrodeposited whetstone that is evenly dispersed.
【請求項2】台金の砥粒層形成面上に、電解めっき層お
よび無電解めっき層が順に形成され、これら電解めっき
層および無電解めっき層に埋め込まれて平均粒径50μ
m以上の大径超砥粒が前記砥粒層形成面に沿って単層状
に多数固定されるとともに、前記無電解めっき層はBを
0.2〜15wt%含有し、かつ加熱硬化されたNi合
金で構成され、しかもこの無電解めっき層中には超砥
粒,SiC,Si34,Al23から選択される1種ま
たは2種以上の平均粒径5μm以下の硬質小径粒子が5
〜35vol%均一に分散されていることを特徴とする
電着砥石。
2. An electrolytic plating layer and an electroless plating layer are sequentially formed on an abrasive grain layer forming surface of a base metal, and an average particle diameter of 50 μ is embedded in the electrolytic plating layer and the electroless plating layer.
A large number of large-diameter superabrasive grains of m or more are fixed in a single layer along the surface of the abrasive grain layer formation, and the electroless plating layer contains 0.2 to 15 wt% of B and is heat-cured Ni. In the electroless plated layer, one or more selected from super-abrasive grains, SiC, Si 3 N 4 , and Al 2 O 3 are hard and small particles having an average particle size of 5 μm or less. 5
An electrodeposition grindstone characterized by being uniformly dispersed up to 35 vol%.
【請求項3】前記無電解めっき層を構成するNi合金
は、さらにW,Mo,Reから選択される1以上の元素
を0.5〜30wt%含有することを特徴とする請求項
1または2記載の電着砥石。
3. The Ni alloy forming the electroless plating layer further contains 0.5 to 30 wt% of one or more elements selected from W, Mo and Re. The electrodeposition grindstone described.
【請求項4】前記無電解めっき層の厚さは、前記大径超
砥粒の平均粒径の0.1〜0.7倍とされ、かつ前記電
解めっき層および無電解めっき層の合計厚さは、前記大
径超砥粒の平均粒径の0.2〜0.8倍とされているこ
とを特徴とする請求項1,2または3記載の電着砥石。
4. The thickness of the electroless plating layer is 0.1 to 0.7 times the average grain size of the large-diameter superabrasive grains, and the total thickness of the electroplating layer and the electroless plating layer. The diameter is 0.2 to 0.8 times the average particle size of the large-diameter superabrasive particles, and the electrodeposition grindstone according to claim 1, 2, or 3.
JP4272063A 1992-10-09 1992-10-09 Electrodeposition grinding wheel Pending JPH06114739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4272063A JPH06114739A (en) 1992-10-09 1992-10-09 Electrodeposition grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4272063A JPH06114739A (en) 1992-10-09 1992-10-09 Electrodeposition grinding wheel

Publications (1)

Publication Number Publication Date
JPH06114739A true JPH06114739A (en) 1994-04-26

Family

ID=17508580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4272063A Pending JPH06114739A (en) 1992-10-09 1992-10-09 Electrodeposition grinding wheel

Country Status (1)

Country Link
JP (1) JPH06114739A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306025B1 (en) 1997-06-13 2001-10-23 Nec Corporation Dressing tool for the surface of an abrasive cloth and its production process
WO2001085376A1 (en) * 2000-05-11 2001-11-15 Wacker-Chemie Gmbh Nickel-diamond-coated saw wire with improved anchoring of the diamond particles
JP2002178266A (en) * 2000-12-12 2002-06-25 Toyoda Mach Works Ltd Monolayer metal bond grinding wheel and its manufacturing method
DE10251614A1 (en) * 2002-11-06 2004-05-19 Thomas Kronenberger Production of a uniform defined surface structure on an electrically conducting workpiece comprises depositing a layer matrix made from a metal or metal alloy with embedded particles on the workpiece surface
JP2008155362A (en) * 2006-12-01 2008-07-10 Shinshu Univ Electrodeposited diamond tool and manufacturing method for the same
JP2008246633A (en) * 2007-03-30 2008-10-16 Mitsubishi Materials Corp Electrodeposition tool
JP2009078321A (en) * 2007-09-26 2009-04-16 Mitsubishi Heavy Ind Ltd Electroplated tool and method of manufacturing the same
KR101237195B1 (en) * 2010-11-08 2013-03-28 (주)프로텍이노션 Grinding method for the glass of mobile phone
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
JP2015107553A (en) * 2013-05-17 2015-06-11 株式会社ミヤギタノイ Cutting tap
JP2016519002A (en) * 2013-05-14 2016-06-30 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Grinding sawing wire and its manufacturing method and use
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9676982B2 (en) 2012-12-31 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US9688893B2 (en) 2012-05-23 2017-06-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9771506B2 (en) 2012-01-10 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10179391B2 (en) 2013-03-29 2019-01-15 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10286523B2 (en) 2012-10-15 2019-05-14 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
WO2021085762A1 (en) * 2019-10-29 2021-05-06 주식회사 미래컴퍼니 Grinding system
CN113319749A (en) * 2021-02-08 2021-08-31 长沙理工大学 Preparation method of composite coating superhard grinding wheel
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
CN114269515A (en) * 2019-07-02 2022-04-01 韩商未来股份有限公司 Polishing system and polishing method
WO2022102173A1 (en) 2020-11-10 2022-05-19 株式会社東京ダイヤモンド工具製作所 Electrodeposition grinding wheel and method for producing same
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US11819979B2 (en) 2016-02-22 2023-11-21 A.L.M.T. Corp. Abrasive tool
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306025B1 (en) 1997-06-13 2001-10-23 Nec Corporation Dressing tool for the surface of an abrasive cloth and its production process
WO2001085376A1 (en) * 2000-05-11 2001-11-15 Wacker-Chemie Gmbh Nickel-diamond-coated saw wire with improved anchoring of the diamond particles
US6783442B2 (en) 2000-05-11 2004-08-31 Wacker-Chemie Gmbh Nickel-diamond-coated saw wire with improved anchoring of the diamond particles
JP2002178266A (en) * 2000-12-12 2002-06-25 Toyoda Mach Works Ltd Monolayer metal bond grinding wheel and its manufacturing method
DE10251614A1 (en) * 2002-11-06 2004-05-19 Thomas Kronenberger Production of a uniform defined surface structure on an electrically conducting workpiece comprises depositing a layer matrix made from a metal or metal alloy with embedded particles on the workpiece surface
JP2008155362A (en) * 2006-12-01 2008-07-10 Shinshu Univ Electrodeposited diamond tool and manufacturing method for the same
JP2008246633A (en) * 2007-03-30 2008-10-16 Mitsubishi Materials Corp Electrodeposition tool
JP2009078321A (en) * 2007-09-26 2009-04-16 Mitsubishi Heavy Ind Ltd Electroplated tool and method of manufacturing the same
KR101237195B1 (en) * 2010-11-08 2013-03-28 (주)프로텍이노션 Grinding method for the glass of mobile phone
US8840694B2 (en) 2011-06-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Liquid phase sintered silicon carbide abrasive particles
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8840695B2 (en) 2011-12-30 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9765249B2 (en) 2011-12-30 2017-09-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US8840696B2 (en) 2012-01-10 2014-09-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11649388B2 (en) 2012-01-10 2023-05-16 Saint-Gobain Cermaics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US9676980B2 (en) 2012-01-10 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10106715B2 (en) 2012-01-10 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11859120B2 (en) 2012-01-10 2024-01-02 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having an elongated body comprising a twist along an axis of the body
US9771506B2 (en) 2012-01-10 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US10000676B2 (en) 2012-05-23 2018-06-19 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US9688893B2 (en) 2012-05-23 2017-06-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US10106714B2 (en) 2012-06-29 2018-10-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10286523B2 (en) 2012-10-15 2019-05-14 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US9676982B2 (en) 2012-12-31 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10179391B2 (en) 2013-03-29 2019-01-15 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
JP2016519002A (en) * 2013-05-14 2016-06-30 コミッサリア ア レネルジ アトミック エ オー エネルジス アルテルナティヴスCommissariat A L‘Energie Atomique Et Aux Energies Alternatives Grinding sawing wire and its manufacturing method and use
JP2015107553A (en) * 2013-05-17 2015-06-11 株式会社ミヤギタノイ Cutting tap
US9604346B2 (en) 2013-06-28 2017-03-28 Saint-Gobain Cermaics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US9803119B2 (en) 2014-04-14 2017-10-31 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US11926780B2 (en) 2014-12-23 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US9938440B2 (en) 2015-03-31 2018-04-10 Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs Fixed abrasive articles and methods of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11819979B2 (en) 2016-02-22 2023-11-21 A.L.M.T. Corp. Abrasive tool
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US11549040B2 (en) 2017-01-31 2023-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles having a tooth portion on a surface
US11932802B2 (en) 2017-01-31 2024-03-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles comprising a particular toothed body
CN114269515A (en) * 2019-07-02 2022-04-01 韩商未来股份有限公司 Polishing system and polishing method
CN114650895A (en) * 2019-10-29 2022-06-21 韩商未来股份有限公司 Grinding system
KR20210051052A (en) * 2019-10-29 2021-05-10 (주)미래컴퍼니 Grinding system
WO2021085762A1 (en) * 2019-10-29 2021-05-06 주식회사 미래컴퍼니 Grinding system
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
WO2022102173A1 (en) 2020-11-10 2022-05-19 株式会社東京ダイヤモンド工具製作所 Electrodeposition grinding wheel and method for producing same
JP2022076650A (en) * 2020-11-10 2022-05-20 株式会社東京ダイヤモンド工具製作所 Electro-deposition grindstone and manufacturing method
CN113319749A (en) * 2021-02-08 2021-08-31 长沙理工大学 Preparation method of composite coating superhard grinding wheel
CN113319749B (en) * 2021-02-08 2022-07-08 长沙理工大学 Preparation method of composite coating superhard grinding wheel

Similar Documents

Publication Publication Date Title
JPH06114739A (en) Electrodeposition grinding wheel
US7704127B2 (en) Electrodeposited wire tool
JP2006181701A (en) Electro-deposited wire tool and manufacturing method thereof
JP5066508B2 (en) Fixed abrasive wire saw
KR910003131B1 (en) Electro deposited grindstone
JP5285381B2 (en) Super abrasive tool
JP2001107260A (en) Electrodepositing tool
JP3039115B2 (en) Electroplated whetstone
JP5123628B2 (en) Electrodeposition tool manufacturing method
JPS5921749B2 (en) Abrasive particle attachment method
JP7162910B2 (en) Electroplated grindstone and manufacturing method
JP3019593B2 (en) Electroplated whetstone and method of manufacturing the same
JP3280639B2 (en) Super abrasive cutting wheel
JPH08309666A (en) Electrodeposition grinding wheel and manufacture thereof
JP2005028525A (en) Super abrasive grain grinding wheel
CN102729344A (en) Fretsaw structure with fixed abrasive particles
JPH06254768A (en) Electrodeposition grinding wheel and manufacture thereof
JPS6311279A (en) Electrocast sharp-edged grindstone and manufacture thereof
JP4494590B2 (en) Thin blade blade manufacturing method
JP2002127011A (en) Cmp conditioner
JPH0354180A (en) Production of diamond-coated sintered material
JP3006932B2 (en) Grinding wheel
JP3158519B2 (en) Manufacturing method of electrodeposited whetstone
CN117359514A (en) Composite coating diamond abrasive particle cutter and preparation method and application thereof
JPS59110560A (en) Manufacturing method of electrodeposition grindstone for cutting