JPH0611326B2 - Porous hollow fiber filtration membrane - Google Patents

Porous hollow fiber filtration membrane

Info

Publication number
JPH0611326B2
JPH0611326B2 JP59208549A JP20854984A JPH0611326B2 JP H0611326 B2 JPH0611326 B2 JP H0611326B2 JP 59208549 A JP59208549 A JP 59208549A JP 20854984 A JP20854984 A JP 20854984A JP H0611326 B2 JPH0611326 B2 JP H0611326B2
Authority
JP
Japan
Prior art keywords
hollow fiber
plasma
membrane
porous hollow
filtration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59208549A
Other languages
Japanese (ja)
Other versions
JPS6185957A (en
Inventor
厚 河合
俊信 小障子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59208549A priority Critical patent/JPH0611326B2/en
Publication of JPS6185957A publication Critical patent/JPS6185957A/en
Publication of JPH0611326B2 publication Critical patent/JPH0611326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は血漿中のビリルビン等の有害物質を選択的に除
去する血液浄化用膜に関する。
TECHNICAL FIELD The present invention relates to a blood purification membrane for selectively removing harmful substances such as bilirubin in plasma.

[従来の技術] 最近難治性疾患の治療に血漿交換療法が臨床応用され効
果を挙げつつある。しかしこれは血漿成分をすべて除去
し、新鮮血漿、血漿製剤、アルブミン等の補充液を補充
するもので、血漿中の有効成分を回収できないことのみ
ならず、補充液としての血漿あるいは血漿製剤の不足、
血清肝炎やアレルギーの発生等多くの問題が指摘されて
いる。
[Prior Art] Recently, plasma exchange therapy has been clinically applied to the treatment of intractable diseases, and its effect is being gained. However, this removes all plasma components and replenishes supplemental fluids such as fresh plasma, plasma preparations, albumin, etc., and not only the active ingredients in plasma cannot be recovered, but also the lack of plasma or plasma preparations as supplemental fluids. ,
Many problems such as the occurrence of serum hepatitis and allergies have been pointed out.

このため血球を分離した血漿から膜分離により病気原因
となる高分子物質(以下有害物質という)を除去しよう
とする方法として二段分離法や低温濾過法が考案されて
いる。しかし膜の微細孔の孔径によって有害物質のみを
選択的に除去することはそれぞれの病気によって有害物
質の分子量が異なること、孔径を所定の大きさのみのも
のにするようコントロールすることが非常に困難なこと
から限界がある。
For this reason, a two-stage separation method and a low temperature filtration method have been devised as a method for removing a polymer substance (hereinafter referred to as a harmful substance) that causes a disease from the plasma obtained by separating blood cells by membrane separation. However, it is very difficult to selectively remove only harmful substances depending on the pore size of the membrane because the molecular weight of the harmful substances differs depending on the disease, and it is very difficult to control the pore size to a specified size. There are limits because of this.

一方、有害物質を吸着剤を用いて除去する方法も検討さ
れ、ビリルビン等の有害物質を吸着除去する方法として
特開昭57−64059号、特開昭55−106165
号等にアニオン交換樹脂やポリアミン系吸着剤等が提案
されている。これは血漿中のビリルビン等を吸着すると
はいっても未だその能力は充分とはいえず、実用化に至
っていない現状にある。
On the other hand, a method for removing harmful substances using an adsorbent has also been investigated, and as a method for removing harmful substances such as bilirubin by adsorption, JP-A-57-64059 and JP-A-55-106165.
Anion exchange resins, polyamine-based adsorbents, etc. have been proposed in the publication. Although this adsorbs bilirubin and the like in plasma, its ability is not yet sufficient, and it has not yet been put to practical use.

[発明が解決しようとする問題点] 本発明は血漿や血清を濾過せしめるだけでビリルビン等
の有害物を選択的に除去することのできる多孔質中空糸
濾過膜を提供することを目的とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a porous hollow fiber filtration membrane capable of selectively removing harmful substances such as bilirubin only by filtering plasma or serum.

[問題を解決するための手段] 即ち、本発明の要旨は微細孔表面にアミノ基又は4級ア
ンモニウム基が導入されてなり、膜厚5μm乃至300
μmで、比表面積が少なくとも10m2/gであり、内壁
面より外壁面へ貫通した多数の微小空孔を有し、人血清
アルブミンの透過率が80%以上である多孔質中空糸濾
過膜にある。
[Means for Solving the Problem] That is, the gist of the present invention is that the amino group or the quaternary ammonium group is introduced into the surface of the micropores, and the film thickness is 5 μm to 300
A porous hollow fiber filtration membrane having a specific surface area of at least 10 m 2 / g, a large number of micropores penetrating from the inner wall surface to the outer wall surface, and a human serum albumin permeability of 80% or more. is there.

本発明の膜は膜厚が5μm未満の場合は吸着面積が小さ
く、逆に300μmを越えると血漿透過性が低下するの
で膜厚が5μm乃至300μmであることが必要であ
る。多孔質膜の材質は特に限定されるものではないが、
微細孔表面にアミノ基又は4級アンモニウム基が導入さ
れている必要がある。アミノ基としては1級、2級、3
級アミノ基のいずれでもよい。この中では3級アミノ基
と4級アンモニウム基が好ましい。アミノ基や4級アン
モニウム基の導入方法としては中空糸微細孔表面に化学
反応により導入してもよく、中空糸微細孔表面にアミノ
基又は4級アンモニウム基を有する重合体を形成しても
よい。具体的には例えばポリエチレン多孔質中空糸にス
チレン、アクリルアミド、アクリロニトリル等をグラフ
ト共重合し、これにアミノ基又は4級アンモニウム基を
導入する方法、ポリスチレン多孔質中空糸膜においてポ
リスチレンをクロルメチル化した後アミンを反応させて
アミノ基を導入する方法、ポリアクリロニトリル多孔質
中空糸のシアノ基を還元したアミノ基に転化させる方法
等を例示することができる。又、多孔質中空糸膜の表面
に多価アミンと多価エポキシ化合物からの付加重合体を
形成させてもよい。
When the thickness of the membrane of the present invention is less than 5 μm, the adsorption area is small, and when it exceeds 300 μm, the plasma permeability is lowered. The material of the porous film is not particularly limited,
An amino group or a quaternary ammonium group must be introduced on the surface of the micropores. Amino groups are primary, secondary, and 3
It may be any of the primary amino groups. Of these, a tertiary amino group and a quaternary ammonium group are preferred. As a method of introducing an amino group or a quaternary ammonium group, the amino group or the quaternary ammonium group may be introduced into the surface of the hollow fiber micropores by a chemical reaction, or a polymer having an amino group or a quaternary ammonium group may be formed on the surface of the hollow fiber micropores. . Specifically, for example, a method in which styrene, acrylamide, acrylonitrile, etc. are graft-copolymerized on a polyethylene porous hollow fiber, and an amino group or a quaternary ammonium group is introduced into this, after polystyrene is chloromethylated on the polystyrene porous hollow fiber membrane. Examples thereof include a method of reacting an amine to introduce an amino group and a method of converting a cyano group of a polyacrylonitrile porous hollow fiber into a reduced amino group. Further, an addition polymer composed of a polyvalent amine and a polyvalent epoxy compound may be formed on the surface of the porous hollow fiber membrane.

多孔質中空糸膜の素材としてはポリビニルアルコール、
セルロースアセテート、ポリオレフィン等を例示するこ
とができるが、ポリオレフィン等からなる高配向性結晶
性未延伸中空糸を比較的低温で延伸して得られる多孔質
中空糸濾過膜が微細孔内部表面積が大きので好ましく用
いられる。
As a material for the porous hollow fiber membrane, polyvinyl alcohol,
Cellulose acetate, polyolefin and the like can be exemplified, but the porous hollow fiber filtration membrane obtained by stretching a highly oriented crystalline unstretched hollow fiber made of polyolefin or the like at a relatively low temperature has a large micropore internal surface area. It is preferably used.

本発明で用いる多孔質膜は比表面積が少なくとも10m2
/g以上である必要がある。比表面積が10m2/gより
小さい場合は血液中の有害物質の除去効率が充分でな
い。この比表面積は窒素ガス吸着法で測定することがで
きる。また、該多孔質膜は人血清アルブミン透過率80
%以上であることを要する。ここで人血清アルブミン透
過率は膜が中空糸の場合は有効長7cmの中空糸を用
い、膜間差圧が50mmHgの条件で0.1%の人血清ア
ルブミン血清の生理食塩水溶液を中空糸内部に循環させ
た時に、濾液中に含まれる人血清アルブミン濃度を28
0nmの吸光度測定から求め、この値を用いて次式で計
算できるものである。
The porous membrane used in the present invention has a specific surface area of at least 10 m 2
/ G or more. If the specific surface area is less than 10 m 2 / g, the removal efficiency of harmful substances in blood is not sufficient. This specific surface area can be measured by a nitrogen gas adsorption method. The porous membrane has a human serum albumin permeability of 80.
% Or more is required. As for the human serum albumin permeability, a hollow fiber having an effective length of 7 cm is used when the membrane is a hollow fiber, and a physiological saline solution of 0.1% human serum albumin serum is circulated inside the hollow fiber under the condition that the transmembrane pressure difference is 50 mmHg. The concentration of human serum albumin contained in the filtrate was
It can be calculated by the following formula using the value obtained by measuring the absorbance at 0 nm.

人血清アルブミン透過率が80%未満の場合は血液を濾
過した場合有害物質の除去は可能であっても有用な血漿
成分の透過が不充分となり好ましくない。
When the human serum albumin permeability is less than 80%, when blood is filtered, harmful substances can be removed, but useful plasma components are not sufficiently permeated, which is not preferable.

膜の微細孔の寸法はバルブポイントで表示した場合1乃
至10kg/cm2であることが血漿透過性の点で好まし
い。バブルポイントはテスト液としてエタノールを用
い、ASTM F316−80に準じた方法で測定する
ことができる。多孔質膜は平膜でも良いが、装置をコン
パクトにできる点で中空糸であることが好ましい。中空
糸の場合は内径は150乃至500μmであることが好
ましい。また、空孔率は30%以上であることが血漿又
は血清濾過の点で好ましく、40%以上であることがよ
り好ましい。
The size of the fine pores of the membrane is preferably 1 to 10 kg / cm 2 when expressed in terms of valve points, from the viewpoint of plasma permeability. The bubble point can be measured by a method according to ASTM F316-80 using ethanol as a test solution. The porous membrane may be a flat membrane, but is preferably a hollow fiber because the device can be made compact. In the case of hollow fibers, the inner diameter is preferably 150 to 500 μm. Further, the porosity is preferably 30% or more from the viewpoint of plasma or serum filtration, and more preferably 40% or more.

[実施例] 以下に実施例を用いて本発明をさらに詳しく説明する。[Examples] The present invention will be described in more detail with reference to the following examples.

実施例1 内壁面より外壁面へ貫通した多数の微小空孔を有する多
孔質膜として、内径270μm、膜厚60μm、空孔率
60vol%、エタノール中で測定したバブルポイント
3.2kg/cm2、N吸着法で測定した内部表面積3
2m2/gのポリエチレン多孔質中空糸膜EHF(商品
名、三菱レイヨン(株)製)を用い、空気中前照射法に
よりスチレンを電子線グラフト共重合した。スチレンの
付加量はポリエチレン中空糸に対して約38%であっ
た。次いでこの中空糸膜をクロロメチル化した後トリメ
チルアミンを用いてアミノ化した。この中空糸を用いて
有効長7cm、膜面積200cm2(中空糸内径基準)の
血漿濾過ミニモジュールを作成した。このミニモジュー
ルの人血清アルブミンの透過率を円測定したところ95
%であった。このミニモジュールを用い、ビリルビンを
19.5mg/d含有する血漿を37℃で中空糸内部に4
ml/minの速度で流し、0.3ml/minの割合で
中空糸膜面を通して60分間濾過した。濾過されなかっ
た血漿は未濾過の血漿に戻す循環濾過方式を採用した。
濾過後の血漿中のビリルビン濃度は7.8mg/dlであ
った。これに対し全蛋白質、アルブミン、免疫グロブリ
ンの損失は僅かであった。
Example 1 As a porous membrane having a large number of micropores penetrating from the inner wall surface to the outer wall surface, an inner diameter of 270 μm, a film thickness of 60 μm, a porosity of 60 vol%, a bubble point measured in ethanol of 3.2 kg / cm 2 , Internal surface area 3 measured by N 2 adsorption method
Using 2 m 2 / g polyethylene porous hollow fiber membrane EHF (trade name, manufactured by Mitsubishi Rayon Co., Ltd.), styrene was subjected to electron beam graft copolymerization by an air pre-irradiation method. The amount of styrene added was about 38% with respect to the polyethylene hollow fiber. Next, this hollow fiber membrane was chloromethylated and then aminated with trimethylamine. Using this hollow fiber, a plasma filtration mini-module having an effective length of 7 cm and a membrane area of 200 cm 2 (hollow fiber inner diameter standard) was prepared. When the transmittance of human serum albumin of this mini module was measured in a circle, it was 95
%Met. With this mini module,
Plasma containing 19.5 mg / d was placed inside the hollow fiber at 37 ℃.
It was made to flow at a rate of ml / min, and filtered through the hollow fiber membrane surface at a rate of 0.3 ml / min for 60 minutes. The unfiltered plasma was recirculated to the unfiltered plasma by a circulation filtration method.
The bilirubin concentration in plasma after filtration was 7.8 mg / dl. In contrast, the loss of total protein, albumin and immunoglobulin was slight.

比較例1 実施例1で用いたと同様のポリエチレン多孔質中空糸膜
を用い、グラフト共重合を行なうことなくミニモジュー
ルを作成し、エチルアルコールで親水化処理を行なった
後実施例1と同様の条件で実施例1と同様の血漿を濾過
した。濾過後の血漿中のビリルビン濃度は15.6mg/d
lであつた。
Comparative Example 1 Using the same polyethylene porous hollow fiber membrane as that used in Example 1, a mini module was prepared without graft copolymerization, and after hydrophilizing treatment with ethyl alcohol, the same conditions as in Example 1 were applied. Then, the same plasma as in Example 1 was filtered. Bilirubin concentration in plasma after filtration is 15.6 mg / d
It was l.

比較例2 3級アミン型の陰イオン交換樹脂Amberlyte A−21
(ローム アンド ハース社製)0.4gと実施例1で用
いたと同様の血漿18mlとを37℃で2時間イキュベ
ートした。上清の血漿のビリルビン濃度は16.8mg/d
lであった。又、イオン交換樹脂の量を4gとして同様
にインキュベートしたところ上清の血漿のビリルビン濃
度は12.3mg/dlであった。
Comparative Example 2 Tertiary amine type anion exchange resin Amberlyte A-21
0.4 g (Rohm and Haas) and 18 ml of the same plasma as used in Example 1 were incubated at 37 ° C. for 2 hours. The plasma bilirubin concentration in the supernatant was 16.8 mg / d.
It was l. When the amount of the ion exchange resin was 4 g and the incubation was performed in the same manner, the plasma bilirubin concentration in the supernatant was 12.3 mg / dl.

[発明の効果] 本発明の多孔質中空糸膜はその微細孔表面にアミノ基又
は4級アンモニウム基が導入されているため、活性表面
積が著しく大きく、アミン型陰イオン交換樹脂のような
表面にアミノ基を有する粒状吸着剤に比べ血漿を処理し
たときの処理効率がはるかに優れ、有用物質の損失も少
なという特徴を有する。
[Effects of the Invention] The porous hollow fiber membrane of the present invention has an amino group or a quaternary ammonium group introduced on the surface of its micropores, so that the active surface area is remarkably large, and the surface of an anion-type anion exchange resin-like surface is improved. Compared with the granular adsorbent having an amino group, the treatment efficiency when treating plasma is far superior and the loss of useful substances is small.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】微細孔表面にアミノ基又は4級アンモニウ
ム基が導入されてなり、膜厚5μm乃至300μmで、
比表面積が少なくとも10m2/gであり、内壁面より外
壁面へ貫通した多数の微小空孔を有し、人血清アルブミ
ンの透過率が80%以上である多孔質中空糸濾過膜。
1. An amino group or a quaternary ammonium group is introduced on the surface of micropores, and the film thickness is 5 μm to 300 μm.
A porous hollow fiber filtration membrane having a specific surface area of at least 10 m 2 / g, a large number of micropores penetrating from an inner wall surface to an outer wall surface, and a human serum albumin permeability of 80% or more.
JP59208549A 1984-10-04 1984-10-04 Porous hollow fiber filtration membrane Expired - Lifetime JPH0611326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59208549A JPH0611326B2 (en) 1984-10-04 1984-10-04 Porous hollow fiber filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59208549A JPH0611326B2 (en) 1984-10-04 1984-10-04 Porous hollow fiber filtration membrane

Publications (2)

Publication Number Publication Date
JPS6185957A JPS6185957A (en) 1986-05-01
JPH0611326B2 true JPH0611326B2 (en) 1994-02-16

Family

ID=16558020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59208549A Expired - Lifetime JPH0611326B2 (en) 1984-10-04 1984-10-04 Porous hollow fiber filtration membrane

Country Status (1)

Country Link
JP (1) JPH0611326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103662B (en) * 2018-01-25 2020-09-15 天津工业大学 Preparation method of amino acid grafted nanofiber membrane for bilirubin adsorption

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149509A (en) * 1981-03-09 1982-09-16 Toray Ind Inc Preparation of hollow separating membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149509A (en) * 1981-03-09 1982-09-16 Toray Ind Inc Preparation of hollow separating membrane

Also Published As

Publication number Publication date
JPS6185957A (en) 1986-05-01

Similar Documents

Publication Publication Date Title
EP0586268B1 (en) A pathogenic substance removing material and a blood filter comprising said material
EP0679436B1 (en) Material for removing HIV and its related substances
US8303819B2 (en) Separation material
US5136032A (en) Method for separating phosphopolyol compounds using a separating agent
KR930000269B1 (en) Seperating membrane and seperation method
KR100343092B1 (en) Leucocyte-removing filter material
JP2024514111A (en) filtration media
JPH0615167A (en) Porous separating membrane
JPH0611326B2 (en) Porous hollow fiber filtration membrane
JPH0260660A (en) Adsorbent for treating body fluid
JPH11267199A (en) Blood treatment method and device
JPH0611325B2 (en) Porous hollow fiber membrane
JPH0611324B2 (en) Porous hollow fiber membrane
JPS6111054A (en) Blood purification system
JPS6125566A (en) Porous membrane
GB2067200A (en) Separation of plasma albumin by ultra filtration
JPH0611323B2 (en) Porous hollow fiber filtration membrane
JPH1057476A (en) Membrane separator
JPS6122867A (en) Porous hollow yarn filter membrane
JP2769210B2 (en) Protein purification method
JPH06114250A (en) Virus selective removing material
JPH04348757A (en) Method and device for treating dialyzate
JPH07133290A (en) New method for removing nucleic acid
JPH08173528A (en) Blood processing system
JPH06220A (en) Cellulose fine porous film having endotoxine adsorptiveness