JPH06112009A - High resistance film and manufacture thereof - Google Patents

High resistance film and manufacture thereof

Info

Publication number
JPH06112009A
JPH06112009A JP4258656A JP25865692A JPH06112009A JP H06112009 A JPH06112009 A JP H06112009A JP 4258656 A JP4258656 A JP 4258656A JP 25865692 A JP25865692 A JP 25865692A JP H06112009 A JPH06112009 A JP H06112009A
Authority
JP
Japan
Prior art keywords
boron
transition metal
nitrogen
carbon
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4258656A
Other languages
Japanese (ja)
Inventor
Toshiharu Kurauchi
倉内  利春
Munehito Hakomori
宗人 箱守
Tadashi Morita
正 森田
Konosuke Inagawa
幸之助 稲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP4258656A priority Critical patent/JPH06112009A/en
Publication of JPH06112009A publication Critical patent/JPH06112009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Physical Vapour Deposition (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To obtain the manufacturing method for a high resistance film having the specific resistance value several times higher than that of the conventional Ni-Cr alloy film and also having a practical resistance temperature coefficient. CONSTITUTION:This is the method in which a high resistance film, containing boron of 20 to 80wt.% in transition metal which is at least a kind selected from Cr, Mo, Nb, Ta, Ti, W and Zr, is formed on a substrate by evaporating the transition metal and boron simultaneously from the independent sources of evaporation respectively by changing the amount of evaporation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高抵抗膜および高抵抗膜
の製造方法に関し、更に詳しくは薄膜抵抗器、サーマル
ヘッドの発熱抵抗体に用いる高抵抗膜およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high resistance film and a method of manufacturing the high resistance film, and more particularly to a high resistance film used for a thin film resistor and a heating resistor of a thermal head and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来から薄膜抵抗器の抵抗材料としては
Ni−Cr等が知られており、また、サーマルヘッドの
発熱抵抗体材料としてはCr−Si−O、Ta−Si−
O等が知られている。
2. Description of the Related Art Conventionally, Ni-Cr and the like have been known as resistance materials for thin film resistors, and Cr-Si-O and Ta-Si- as heat-generating resistor materials for thermal heads.
O etc. are known.

【0003】[0003]

【発明が解決しようとする課題】近年、電子部品の小形
化、高集積化の要求から比抵抗がより大きく、抵抗温度
係数(TCR)が小さい抵抗材料が要望されている。
In recent years, a resistance material having a larger specific resistance and a smaller temperature coefficient of resistance (TCR) has been demanded due to the demand for miniaturization and high integration of electronic parts.

【0004】しかしながら、薄膜抵抗器の抵抗材料とし
て用いられているNi−Crの比抵抗は100μΩcm
(0.1mΩcm)と小さいため、高抵抗を得るには膜厚
を薄くしたり、パターンを微細にしなければならない。
しかし膜厚が200Å以下では抵抗値が不安定になりや
すく、微細なパターンの製作は困難となるばかりではな
く、高周波特性を悪化させるという問題がある。
However, the specific resistance of Ni-Cr used as the resistance material of the thin film resistor is 100 μΩcm.
Since it is as small as (0.1 mΩcm), it is necessary to reduce the film thickness or make the pattern fine in order to obtain high resistance.
However, when the film thickness is 200 Å or less, the resistance value is likely to be unstable, which makes it difficult to manufacture a fine pattern and also deteriorates the high frequency characteristics.

【0005】また、サーマルヘッドの発熱抵抗体材料と
して用いられているCr−Si−O、或いはTa−Si
−Oは膜中の酸素濃度の僅かな変化でも抵抗値が大きく
変化するという問題がある。
Further, Cr-Si-O or Ta-Si used as a heating resistor material of a thermal head.
-O has a problem that the resistance value changes greatly even if the oxygen concentration in the film changes slightly.

【0006】本発明はかかる従来の問題点を解消し、N
i−Crの5倍以上の比抵抗と、実用的な抵抗温度係数
を有する高抵抗膜と、その製造方法を提供することを目
的とする。
The present invention solves the above-mentioned conventional problems, and
It is an object of the present invention to provide a high resistance film having a specific resistance that is 5 times or more that of i-Cr and a practical temperature coefficient of resistance, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】本発明の高抵抗膜は下記
に示す方法で製造された膜である。
The high resistance film of the present invention is a film manufactured by the following method.

【0008】(1)真空蒸着法、活性化反応性蒸着法、イ
オンプレーティング法、CVD法のいずれかの方法によ
り、真空中、或いは窒素成分を含むガス雰囲気中、或い
は炭素成分を含むガス雰囲気中、或いは窒素と炭素の混
合成分を含むガス雰囲気中で、遷移金属或いは遷移金属
元素を含む合金とホウ素を夫々独立した蒸発源から夫々
任意の蒸発速度で同時に蒸発させて、基板上にCr,M
o,Nb,Ta,Ti,W,Zrから成る群から選択さ
れた少なくとも1つの遷移金属中にホウ素を20〜80
wt%含有する合金膜を形成した高抵抗膜。或いは基板上
に窒素、炭素、窒素と炭素の混合元素のうちいずれかの
1種類を0〜50at%含むCr,Mo,Nb,Ta,T
i,W,Zrから成る群から選択された少なくとも1つ
の遷移金属中にホウ素を5〜60wt%含有する合金膜を
形成した高抵抗膜である。
(1) A vacuum atmosphere, a gas atmosphere containing a nitrogen component, or a gas atmosphere containing a carbon component by any one of a vacuum vapor deposition method, an activated reactive vapor deposition method, an ion plating method, and a CVD method. In a medium or in a gas atmosphere containing a mixed component of nitrogen and carbon, a transition metal or an alloy containing a transition metal element and boron are simultaneously evaporated from independent evaporation sources at arbitrary evaporation rates, and Cr, M
20-80 boron in at least one transition metal selected from the group consisting of o, Nb, Ta, Ti, W, Zr.
A high resistance film formed with an alloy film containing wt%. Alternatively, Cr, Mo, Nb, Ta, T containing 0 to 50 at% of any one of nitrogen, carbon, and a mixed element of nitrogen and carbon on the substrate.
It is a high resistance film in which an alloy film containing 5 to 60 wt% of boron in at least one transition metal selected from the group consisting of i, W and Zr is formed.

【0009】(2)上記(1)の遷移金属、即ちCr,Mo,
Nb,Ta,Ti,W,Zrから成る群から選択された
少なくとも1つの遷移金属或いは遷移金属元素を含む合
金と、ホウ素とを任意の組成に混合して作製したターゲ
ットを用い、スパッタ法により窒素成分を含むガス雰囲
気中、或いは炭素成分を含むガス雰囲気中、或いは窒素
と炭素の混合成分を含むガス雰囲気中で該ターゲットに
スパッタリングして基板上に上記(1)の組成の合金膜、
即ちCr,Mo,Nb,Ta,Ti,W,Zrから成る
群から選択された少なくとも1つの遷移金属中にホウ素
を20〜80wt%含有する合金膜、或いは窒素、炭素、
窒素と炭素の混合元素のうちいずれかの1種類を0〜5
0at%含むCr,Mo,Nb,Ta,Ti,W,Zrか
ら成る群から選択された少なくとも1つの遷移金属中に
ホウ素を5〜60wt%含有する合金膜を形成した高抵抗
膜である。
(2) The transition metal of (1) above, namely Cr, Mo,
Using a target prepared by mixing boron with an arbitrary composition containing at least one transition metal or a transition metal element selected from the group consisting of Nb, Ta, Ti, W, and Zr, nitrogen is produced by sputtering. In a gas atmosphere containing a component, or in a gas atmosphere containing a carbon component, or in the gas atmosphere containing a mixed component of nitrogen and carbon on the target sputtering alloy film of the composition of (1) above,
That is, an alloy film containing 20 to 80 wt% of boron in at least one transition metal selected from the group consisting of Cr, Mo, Nb, Ta, Ti, W and Zr, or nitrogen, carbon,
0-5 for any one of the mixed elements of nitrogen and carbon
It is a high resistance film in which an alloy film containing 5 to 60 wt% of boron in at least one transition metal selected from the group consisting of Cr, Mo, Nb, Ta, Ti, W and Zr containing 0 at% is formed.

【0010】[0010]

【作用】本発明構成の高抵抗膜は、その組成域において
Ni−Cr合金膜の5倍以上の大きな比抵抗が得られ、
かつ抵抗温度係数が小さい高抵抗膜となる。
The high resistance film having the constitution of the present invention has a resistivity higher than five times that of the Ni-Cr alloy film in the composition range.
Moreover, the high resistance film has a small temperature coefficient of resistance.

【0011】[0011]

【実施例】本発明の具体的実施例を説明する。EXAMPLES Specific examples of the present invention will be described.

【0012】実施例1 本実施例は真空蒸着法により基板上にB−Crから成る
二元合金膜を形成する1例である。
Example 1 This example is an example of forming a binary alloy film of B-Cr on a substrate by a vacuum evaporation method.

【0013】先ず、真空処理室(図示せず)内の上方に
配設した基板保持装置(図示せず)にガラス製の基板
(図示せず)を保持し、該真空処理室内の下方に配設し
た1対の蒸発源(図示せず)のうち、一方の蒸発源内に
遷移金属元素としてクロム(Cr)を、また他方の蒸発
源内にホウ素(B)を充填した。次に、真空処理室内を
真空度1×10-5Torr以下に設定し、各蒸発源でクロム
とホウ素を夫々加熱し、蒸発させ、その蒸発量を種々変
えながら、基板上に蒸着させてクロムに対するホウ素の
添加量、即ちホウ素濃度が種々異なる膜厚0.3〜0.
4μmのB−Crから成る二元合金膜を形成した。
First, a glass substrate (not shown) is held by a substrate holding device (not shown) provided above the vacuum processing chamber (not shown), and the glass substrate (not shown) is placed below the vacuum processing chamber. Of the pair of evaporation sources (not shown) provided, one evaporation source was filled with chromium (Cr) as a transition metal element, and the other evaporation source was filled with boron (B). Next, the inside of the vacuum processing chamber is set to a vacuum degree of 1 × 10 −5 Torr or less, and chromium and boron are respectively heated and evaporated by each evaporation source, and the evaporation amount is variously changed, and chromium is evaporated on the substrate. The amount of boron added to the film, that is, the boron concentration varies from 0.3 to 0.
A binary alloy film composed of 4 μm of B—Cr was formed.

【0014】そして基板上に形成された各B−Cr合金
膜の電気的特性として比抵抗と抵抗温度係数を測定し、
その結果を図1に比抵抗を曲線Aとし、抵抗温度係数を
曲線Bとして示した。図1から明らかなように、ホウ素
の濃度の増加と共に、従来のNi−Cr合金の比抵抗
(0.1mΩcm)値の5倍以上の比抵抗値が得られ、ま
た、抵抗温度係数はホウ素の濃度の増加と共に減少し、
±500ppm/K以内の実用的な値を有することが分
かった。また、抵抗温度係数の値をほぼ零にすることも
可能である。
Then, the specific resistance and the temperature coefficient of resistance were measured as the electrical characteristics of each B--Cr alloy film formed on the substrate,
The results are shown in FIG. 1 with the specific resistance as curve A and the temperature coefficient of resistance as curve B. As is clear from FIG. 1, as the concentration of boron increases, a specific resistance value of 5 times or more of the specific resistance value (0.1 mΩcm) of the conventional Ni-Cr alloy is obtained, and the temperature coefficient of resistance of boron is Decreases with increasing concentration,
It was found to have a practical value within ± 500 ppm / K. It is also possible to make the value of the temperature coefficient of resistance almost zero.

【0015】実施例2 遷移金属としてクロムの代わりにニオブ(Nb)を用い
た以外は前記実施例1と同様の方法で基板上にホウ素の
濃度が種々異なるB−Nbから成る二元合金膜を形成
し、ホウ素濃度の異なる各B−Nb合金膜の夫々につい
て電気的特性として比抵抗値と抵抗温度係数を測定した
ところ、比抵抗値はNi−Crの5倍以上であり、また
抵抗温度係数は±500ppm/K以内であった。
Example 2 A binary alloy film made of B-Nb having various boron concentrations was formed on a substrate in the same manner as in Example 1 except that niobium (Nb) was used as the transition metal instead of chromium. When the specific resistance value and the resistance temperature coefficient were measured as the electrical characteristics of each of the formed B-Nb alloy films having different boron concentrations, the specific resistance value was 5 times or more that of Ni-Cr, and the resistance temperature coefficient was Was within ± 500 ppm / K.

【0016】実施例3 遷移金属としてクロムの代わりにチタン(Ti)を用い
た以外は前記実施例1と同様の方法で基板上にホウ素濃
度が種々異なるB−Tiから成る二元合金膜を形成し、
ホウ素の濃度の異なる各B−Ti合金膜の夫々について
電気的特性として比抵抗値と抵抗温度係数を測定したと
ころ、比抵抗値はNi−Crの5倍以上であり、また抵
抗温度係数は±500ppm/K以内であった。
Example 3 A binary alloy film made of B-Ti having various boron concentrations was formed on a substrate in the same manner as in Example 1 except that titanium (Ti) was used as the transition metal instead of chromium. Then
When the specific resistance value and the resistance temperature coefficient were measured as electric characteristics for each B-Ti alloy film having different boron concentration, the specific resistance value was 5 times or more that of Ni-Cr, and the resistance temperature coefficient was ± It was within 500 ppm / K.

【0017】実施例4 遷移金属としてクロムの代わりにモリブデン(Mo)を
用いた以外は前記実施例1と同様の方法で基板上にホウ
素濃度が種々異なるB−Moから成る二元合金膜を形成
し、ホウ素濃度の異なる各B−Mo合金膜の夫々につい
て電気的特性として比抵抗値と抵抗温度係数を測定した
ところ、比抵抗値はNi−Crの5倍以上であり、また
抵抗温度係数は±500ppm/K以内であった。
Example 4 A binary alloy film made of B-Mo having various boron concentrations was formed on a substrate in the same manner as in Example 1 except that molybdenum (Mo) was used as the transition metal instead of chromium. Then, when the specific resistance value and the resistance temperature coefficient were measured as electric characteristics for each of the B-Mo alloy films having different boron concentrations, the specific resistance value was 5 times or more that of Ni-Cr, and the resistance temperature coefficient was It was within ± 500 ppm / K.

【0018】実施例5 遷移金属としてクロムの代わりにタングステン(W)を
用いた以外は前記実施例1と同様の方法で基板上にホウ
素濃度が種々異なるB−Wから成る二元合金膜を形成
し、ホウ素濃度の異なる各B−W合金膜の夫々について
電気的特性として比抵抗値と抵抗温度係数を測定したと
ころ、比抵抗値はNi−Crの5倍以上であり、また抵
抗温度係数は±500ppm/K以内であった。
Example 5 A binary alloy film made of B-W having various boron concentrations is formed on a substrate in the same manner as in Example 1 except that tungsten (W) is used as the transition metal instead of chromium. Then, when the specific resistance value and the resistance temperature coefficient were measured as electric characteristics for each of the B-W alloy films having different boron concentrations, the specific resistance value was 5 times or more that of Ni-Cr, and the resistance temperature coefficient was It was within ± 500 ppm / K.

【0019】実施例6 基板上にB−Cr合金膜を形成するための方法として真
空蒸着法の代わりにHCD(中空陰極放電)法によるイ
オンプレーティング法を用いた以外は前記実施例1と同
様の方法でホウ素濃度が種々異なるB−Crから成る二
元合金膜を形成し、ホウ素濃度の異なる各B−Cr合金
膜の夫々について電気的特性として比抵抗値と抵抗温度
係数を測定したところ、比抵抗値はNi−Crの5倍以
上であり、また抵抗温度係数は±500ppm/K以内
であった。
Example 6 The same as Example 1 except that the ion plating method by HCD (hollow cathode discharge) method was used instead of the vacuum deposition method as the method for forming the B—Cr alloy film on the substrate. When a binary alloy film made of B-Cr having various boron concentrations was formed by the method described above, and a specific resistance value and a temperature coefficient of resistance were measured as electrical characteristics for each of the B-Cr alloy films having different boron concentrations, The specific resistance value was 5 times or more that of Ni-Cr, and the temperature coefficient of resistance was within ± 500 ppm / K.

【0020】実施例7 基板上にB−Ti合金膜を形成するための方法として真
空蒸着法の代わりにB26とTiCl4を原料ガスとし
たCVD法を用いた以外は前記実施例1と同様の方法で
ホウ素濃度が種々異なるB−Tiから成る二元合金膜を
形成し、ホウ素濃度の異なる各B−Ti合金膜の夫々に
ついて電気的特性として比抵抗値と抵抗温度係数を測定
したところ、比抵抗値はNi−Crの5倍以上であり、
また抵抗温度係数は±500ppm/K以内であった。
Example 7 Example 1 was repeated except that a CVD method using B 2 H 6 and TiCl 4 as source gases was used instead of the vacuum deposition method as a method for forming the B—Ti alloy film on the substrate. A binary alloy film composed of B-Ti having different boron concentrations was formed by the same method as described above, and the specific resistance value and the resistance temperature coefficient were measured as the electrical characteristics of each B-Ti alloy film having different boron concentrations. However, the specific resistance value is 5 times or more that of Ni-Cr,
The temperature coefficient of resistance was within ± 500 ppm / K.

【0021】実施例8 本実施例は活性化反応性蒸着法により基板上にB−Cr
−Cから成る三元合金膜を形成する1例である。
Example 8 In this example, B-Cr was formed on a substrate by activation reactive vapor deposition.
It is an example of forming a ternary alloy film of -C.

【0022】先ず、真空処理室(図示せず)内の上方に
配設した基板保持装置(図示せず)にガラス製の基板
(図示せず)を保持し、該真空処理室内の下方に配設し
た1対の蒸発源(図示せず)のうち、一方の蒸発源内に
遷移金属としてクロム(Cr)を、また他方の蒸発源内
にホウ素(B)を充填した。次に、真空処理室内を真空
度1×10-5Torr以下に設定し、続いて真空処理室内が
4×10-4Torrとなるように炭素成分としてC22ガス
を導入して炭素ガス雰囲気とした。
First, a glass substrate (not shown) is held by a substrate holding device (not shown) provided above the vacuum processing chamber (not shown), and is placed below the vacuum processing chamber. Of the pair of evaporation sources (not shown) provided, one evaporation source was filled with chromium (Cr) as a transition metal, and the other evaporation source was filled with boron (B). Next, the degree of vacuum in the vacuum processing chamber is set to 1 × 10 −5 Torr or less, and then C 2 H 2 gas is introduced as a carbon component so that the inside of the vacuum processing chamber becomes 4 × 10 −4 Torr. The atmosphere.

【0023】続いて、各蒸発源でクロムとホウ素を夫々
加熱し、蒸発させ、その蒸発量を種々変えながら、基板
上に蒸着させてクロム中の炭素量が50at%であって、
かつクロムに対するホウ素の濃度が種々異なる膜厚0.
4〜0.5μmのB−Cr−Cから成る三元合金膜を形
成した。
Then, chromium and boron are respectively heated and vaporized by each evaporation source, and the vaporization amount is variously changed and vapor-deposited on the substrate so that the carbon content in chromium is 50 at%.
In addition, the film thickness of boron having various concentrations of boron to chromium is 0.
A ternary alloy film of B-Cr-C having a thickness of 4 to 0.5 μm was formed.

【0024】そして基板上に形成された各B−Cr−C
合金膜の電気的特性として比抵抗値と抵抗温度係数を測
定し、その結果を図2に比抵抗を曲線C、抵抗温度係数
を曲線Dとして示した。図2から明らかなように、ホウ
素の濃度の増加と共に、従来のNi−Cr合金の比抵抗
値(0.1mΩcm)の5倍以上の比抵抗値が得られ、ま
た、抵抗温度係数はホウ素の濃度の増加と共に減少し、
±500ppm/K以内の実用的な値を有することが分
かった。また、前記実施例1と同様に抵抗温度係数の値
をほぼ零にすることも可能である。
Then, each B-Cr-C formed on the substrate
As the electrical characteristics of the alloy film, the specific resistance value and the temperature coefficient of resistance were measured, and the results are shown in FIG. 2 as curve C for resistance and curve D for resistance temperature coefficient. As is clear from FIG. 2, as the concentration of boron increases, a specific resistance value of 5 times or more of the specific resistance value (0.1 mΩcm) of the conventional Ni-Cr alloy is obtained, and the temperature coefficient of resistance of boron is Decreases with increasing concentration,
It was found to have a practical value within ± 500 ppm / K. Further, it is possible to set the value of the temperature coefficient of resistance to substantially zero as in the first embodiment.

【0025】実施例9 クロム中の炭素量を20at%、40at%とした以外は前
記実施例8と同様の方法でホウ素の濃度が種々異なるB
−Cr−Cから成る三元合金膜を形成した。
Example 9 B was used in the same manner as in Example 8 except that the amount of carbon in chromium was changed to 20 at% and 40 at%, and the concentration of boron was varied.
A ternary alloy film made of -Cr-C was formed.

【0026】そして各B−Cr−C合金膜の電気的特性
として比抵抗値と抵抗温度係数を測定したところ、比抵
抗値はいずれのB−Cr−C合金膜もNi−Crの5倍
以上であり、また、抵抗温度係数はいずれのB−Cr−
C合金膜も±500ppm/K以内であった。
When the specific resistance value and the temperature coefficient of resistance were measured as the electrical characteristics of each B-Cr-C alloy film, the specific resistance value of each B-Cr-C alloy film was 5 times that of Ni-Cr or more. And the temperature coefficient of resistance is B-Cr-
The C alloy film was also within ± 500 ppm / K.

【0027】実施例10 本実施例は活性化反応性蒸着法により基板上にB−Ti
−Cから成る三元合金膜を形成する1例である。
Example 10 In this example, B-Ti was formed on a substrate by an activated reactive vapor deposition method.
It is an example of forming a ternary alloy film of -C.

【0028】遷移金属としてクロムの代わりにチタン
(Ti)を用いた以外は前記実施例8と同様の方法で基
板上に蒸着せるチタン中の炭素量が50at%であって、
かつチタンに対するホウ素の濃度が種々異なる膜厚0.
5〜0.7μmのB−Ti−Cから成る三元合金膜を形
成した。
The amount of carbon in titanium deposited on the substrate was 50 at% by the same method as in Example 8 except that titanium (Ti) was used as the transition metal instead of chromium.
In addition, the film thickness of boron having various concentrations of boron with respect to titanium is 0.
A ternary alloy film of B-Ti-C having a thickness of 5 to 0.7 μm was formed.

【0029】そして基板上に形成された各B−Ti−C
合金膜の電気的特性として比抵抗値と抵抗温度係数を測
定し、その結果を図3に比抵抗を曲線E、抵抗温度係数
を曲線Fとして示した。図3から明らかなように、ホウ
素の濃度の増加と共に、従来のNi−Cr合金の比抵抗
値(0.1mΩcm)の7倍以上の比抵抗値が得られ、ま
た、抵抗温度係数はホウ素の濃度の増加と共に減少し、
±500ppm/K以内の実用的な値を有することが分
かった。また、前記実施例1と同様に抵抗温度係数の値
をほぼ零にすることも可能である。
Then, each B-Ti-C formed on the substrate
As the electrical characteristics of the alloy film, the specific resistance value and the temperature coefficient of resistance were measured, and the results are shown in FIG. As is clear from FIG. 3, with the increase of the concentration of boron, the specific resistance value of the conventional Ni-Cr alloy is more than 7 times (0.1 mΩcm), and the temperature coefficient of resistance of boron is Decreases with increasing concentration,
It was found to have a practical value within ± 500 ppm / K. Further, it is possible to set the value of the temperature coefficient of resistance to substantially zero as in the first embodiment.

【0030】実施例11 本実施例は活性化反応性蒸着法により基板上にB−Ti
−C−Nから成る四元合金膜を形成する場合の1例であ
る。
Example 11 In this example, B-Ti was formed on a substrate by an activated reactive vapor deposition method.
This is an example of forming a quaternary alloy film of -CN.

【0031】先ず、真空処理室(図示せず)内の上方に
配設した基板保持装置(図示せず)にガラス製の基板
(図示せず)を保持し、該真空処理室内の下方に配設し
た1対の蒸発源(図示せず)のうち、一方の蒸発源内に
遷移金属としてチタン(Ti)を、また他方の蒸発源内
にホウ素(B)を充填した。次に、真空処理室内を真空
度1×10-5Torr以下に設定し、続いて真空処理室内が
4×10-4Torrとなるように炭素成分としてC22ガス
と、窒素成分としてN2ガスを導入して炭素と窒素の混
合ガス雰囲気(分圧1:1)とした。
First, a glass substrate (not shown) is held by a substrate holding device (not shown) provided above the vacuum processing chamber (not shown), and the glass substrate is placed below the vacuum processing chamber. Of the pair of evaporation sources (not shown) provided, one evaporation source was filled with titanium (Ti) as a transition metal, and the other evaporation source was filled with boron (B). Next, the degree of vacuum in the vacuum processing chamber is set to 1 × 10 −5 Torr or less, and then C 2 H 2 gas as a carbon component and N as a nitrogen component so that the vacuum processing chamber has a pressure of 4 × 10 −4 Torr. Two gases were introduced to make a mixed gas atmosphere of carbon and nitrogen (partial pressure 1: 1).

【0032】続いて、各蒸発源でチタンとホウ素を夫々
加熱し、蒸発させ、その蒸発量を種々変えながら、基板
上に蒸着させてチタン中の炭素量が25at%、窒素量が
25at%であって、かつチタンに対するホウ素の濃度が
種々異なる膜厚0.5〜0.6μmのB−Ti−C−N
から成る四元合金膜を形成した。
Subsequently, titanium and boron are respectively heated and vaporized by the respective evaporation sources, and while varying the vaporization amount, vapor deposition is carried out on the substrate so that the carbon content in titanium is 25 at% and the nitrogen content is 25 at%. B-Ti-C-N having a film thickness of 0.5 to 0.6 μm and having various boron concentrations relative to titanium
Was formed of a quaternary alloy film.

【0033】そして基板上に形成された各B−Ti−C
−N合金膜の電気的特性として比抵抗値と抵抗温度係数
を測定し、その結果を図4に比抵抗を曲線G、抵抗温度
係数を曲線Hとして示した。図4から明らかなように、
ホウ素の濃度の増加と共に、従来のNi−Cr合金の比
抵抗値(0.1mΩcm)の5倍以上の比抵抗値が得ら
れ、また、抵抗温度係数はホウ素の濃度の増加と共に減
少し、±500ppm/K以内の実用的な値を有するこ
とが分かった。また、前記実施例1と同様に抵抗温度係
数の値をほぼ零にすることも可能である。
Then, each B-Ti-C formed on the substrate
A specific resistance value and a temperature coefficient of resistance were measured as electrical characteristics of the -N alloy film, and the results are shown in FIG. 4 as a curve G of a specific resistance and a curve H of a resistance temperature coefficient. As is clear from FIG.
With the increase of the boron concentration, the specific resistance value more than 5 times the specific resistance value (0.1 mΩcm) of the conventional Ni-Cr alloy was obtained, and the temperature coefficient of resistance decreased with the increase of the boron concentration, It was found to have a practical value within 500 ppm / K. Further, it is possible to set the value of the temperature coefficient of resistance to substantially zero as in the first embodiment.

【0034】実施例12 本実施例は活性化反応性蒸着法により基板上にB−Ti
−Nから成る三元合金膜を形成する1例である。
Example 12 In this example, B-Ti was formed on a substrate by an activated reactive vapor deposition method.
It is an example of forming a ternary alloy film of -N.

【0035】遷移金属としてクロムの代わりにチタン
(Ti)を用い、また合金膜の形成時の真空処理室内の
雰囲気を炭素ガス雰囲気の代わりに窒素成分としてN2
ガスを導入し、真空処理室内の圧力を4×10-4Torrの
窒素ガス雰囲気とした以外は前記実施例9と同様の方法
で基板上に蒸着せるクロム中の窒素量が50at%であっ
て、かつチタンに対するホウ素の濃度が種々異なる膜厚
0.6〜0.7μmのB−Ti−Nから成る三元合金膜
を形成した。
Titanium (Ti) is used as the transition metal instead of chromium, and the atmosphere in the vacuum processing chamber at the time of forming the alloy film is N 2 as the nitrogen component instead of the carbon gas atmosphere.
The amount of nitrogen in chromium deposited on the substrate was 50 at% by the same method as in Example 9 except that a gas was introduced and the pressure in the vacuum processing chamber was set to a nitrogen gas atmosphere of 4 × 10 −4 Torr. A ternary alloy film made of B-Ti-N having a film thickness of 0.6 to 0.7 μm and having various boron concentrations relative to titanium was formed.

【0036】そして基板上に形成された各B−Ti−N
合金膜の電気的特性として比抵抗値と抵抗温度係数を測
定し、その結果を図5に比抵抗を曲線I、抵抗温度係数
を曲線Jとして示した。図5から明らかなように、ホウ
素の濃度の増加と共に、従来のNi−Cr合金の比抵抗
値(0.1mΩcm)の5倍以上の比抵抗値が得られ、ま
た、抵抗温度係数はホウ素の濃度の増加と共に減少し、
±500ppm/K以内の実用的な値を有することが分
かった。また、前記実施例1と同様に抵抗温度係数の値
をほぼ零にすることも可能である。
Then, each B-Ti-N formed on the substrate
The specific resistance value and the temperature coefficient of resistance were measured as the electrical characteristics of the alloy film, and the results are shown in FIG. As is clear from FIG. 5, as the concentration of boron increases, a specific resistance value of 5 times or more of the specific resistance value (0.1 mΩcm) of the conventional Ni—Cr alloy is obtained, and the temperature coefficient of resistance of boron is Decreases with increasing concentration,
It was found to have a practical value within ± 500 ppm / K. Further, it is possible to set the value of the temperature coefficient of resistance to substantially zero as in the first embodiment.

【0037】実施例13 本実施例は活性化反応性蒸着法により基板上にB−Zr
−Nから成る三元合金膜を形成する1例である。
Example 13 In this example, B-Zr was formed on a substrate by an activated reactive vapor deposition method.
It is an example of forming a ternary alloy film of -N.

【0038】遷移金属としてクロムの代わりにジルコニ
ウム(Zr)を用い、また合金膜の形成時の真空処理室
内の雰囲気を炭素ガス雰囲気の代わりに窒素成分として
2ガスを導入し、真空処理室内の圧力を4×10-4Tor
rの窒素ガス雰囲気とした以外は前記実施例9と同様の
方法で基板上に蒸着せるジルコニウム中の窒素量が50
at%であって、かつジルコニウムに対するホウ素の濃度
が種々異なる膜厚0.4〜0.5μmのB−Zr−Nか
ら成る三元合金膜を形成した。
Zirconium (Zr) was used as the transition metal instead of chromium, and N 2 gas was introduced as the nitrogen component instead of the carbon gas atmosphere in the vacuum processing chamber when the alloy film was formed. Pressure is 4 × 10 -4 Tor
The amount of nitrogen in zirconium deposited on the substrate was 50 in the same manner as in Example 9 except that a nitrogen gas atmosphere of r was used.
A ternary alloy film made of B-Zr-N having a film thickness of 0.4 to 0.5 [mu] m, which is at% and has a different boron concentration with respect to zirconium, was formed.

【0039】そして基板上に形成された各B−Zr−N
合金膜の電気的特性として比抵抗値と抵抗温度係数を測
定し、その結果を図6に比抵抗を曲線K、抵抗温度係数
を曲線Lとして示した。図6から明らかなように、ホウ
素の濃度の増加と共に、従来のNi−Cr合金の比抵抗
値(0.1mΩcm)の5倍以上の比抵抗値が得られ、ま
た、抵抗温度係数はホウ素の濃度の増加と共に減少し、
±500ppm/K以内の実用的な値を有することが分
かった。また、前記実施例1と同様に抵抗温度係数の値
をほぼ零にすることも可能である。
Then, each B-Zr-N formed on the substrate
As the electrical characteristics of the alloy film, the specific resistance value and the temperature coefficient of resistance were measured, and the results are shown in FIG. As is clear from FIG. 6, with the increase of the boron concentration, the specific resistance value of 5 times or more of the specific resistance value (0.1 mΩcm) of the conventional Ni—Cr alloy was obtained, and the temperature coefficient of resistance of boron was Decreases with increasing concentration,
It was found to have a practical value within ± 500 ppm / K. Further, it is possible to set the value of the temperature coefficient of resistance to substantially zero as in the first embodiment.

【0040】実施例14 本実施例はクロムとホウ素の合金ターゲットを用い、ス
パッタ法により基板上にB−Crから成る二元合金膜を
形成する1例である。
Example 14 In this example, an alloy target of chromium and boron is used and a binary alloy film made of B—Cr is formed on a substrate by a sputtering method.

【0041】先ず、真空処理室(図示せず)内の上方に
配設した基板保持装置(図示せず)にガラス製の基板
(図示せず)を保持し、該真空処理室内の下方に配置し
たRFマグネトロンカソード(図示せず)上にクロム
(Cr)にホウ素(B)を30wt%、40wt%、50wt
%ドープしたターゲット材のいずれかを載置した。次
に、真空処理室内を真空度1×10-5Torr以下に設定
し、続いて真空処理室内が1×10-3Torr程度になるよ
うにアルゴンガスを導入した。続いてホウ素含有量の異
なるターゲット材の夫々についてRFマグネトロンスパ
ッタ法によりスパッタし、基板上にクロムに対するホウ
素の濃度が種々異なる膜厚0.5μmのB−Crから成
る二元合金膜を形成した。
First, a glass substrate (not shown) is held by a substrate holding device (not shown) provided above the vacuum processing chamber (not shown), and the glass substrate is placed below the vacuum processing chamber. Chromium (Cr), boron (B), 30 wt%, 40 wt% and 50 wt% on the RF magnetron cathode (not shown).
Either of the% doped target materials was placed. Next, the degree of vacuum in the vacuum processing chamber was set to 1 × 10 −5 Torr or less, and subsequently, argon gas was introduced so that the vacuum processing chamber became about 1 × 10 −3 Torr. Subsequently, the target materials having different boron contents were sputtered by the RF magnetron sputtering method to form a binary alloy film made of B-Cr having a film thickness of 0.5 μm with various boron concentrations on chromium on the substrate.

【0042】そして、基板上に形成された各B−Cr合
金膜の電気的特性として比抵抗値と抵抗温度係数を測定
したところ、比抵抗値はNi−Crの5倍以上であり、
また、抵抗温度係数は±500ppm/K以内であっ
た。
Then, when the specific resistance value and the temperature coefficient of resistance were measured as the electric characteristics of each B—Cr alloy film formed on the substrate, the specific resistance value was 5 times or more that of Ni—Cr.
The temperature coefficient of resistance was within ± 500 ppm / K.

【0043】実施例15 本実施例はチタンとホウ素の合金ターゲットを用い、窒
素ガス雰囲気中でスパッタ法により基板上にB−Ti−
Nから成る三元合金膜を形成する1例である。先ず、真
空処理室(図示せず)内の上方に配設した基板保持装置
(図示せず)にガラス製の基板(図示せず)を保持し、
該真空処理室内の下方に配置したRFマグネトロンカソ
ード(図示せず)上にチタン(Ti)にホウ素(B)を
10wt%、20wt%、30wt%ドープしたターゲット材
のいずれかを載置した。次に、真空処理室内を真空度1
×10-5Torr以下に設定し、続いて真空処理室内が1×
10-3Torrとなるようにアルゴンガスと窒素成分として
2ガスを導入して窒素ガス雰囲気とした。
Example 15 In this example, an alloy target of titanium and boron was used, and B-Ti- was formed on the substrate by sputtering in a nitrogen gas atmosphere.
This is an example of forming a ternary alloy film of N. First, a glass substrate (not shown) is held in a substrate holding device (not shown) arranged above in a vacuum processing chamber (not shown),
A target material in which titanium (Ti) was doped with 10 wt%, 20 wt% or 30 wt% of boron (B) was placed on an RF magnetron cathode (not shown) arranged below the vacuum processing chamber. Next, the vacuum degree in the vacuum processing chamber is 1
× 10 -5 Torr or less, then 1 × in the vacuum processing chamber
Argon gas and N 2 gas as a nitrogen component were introduced so as to obtain 10 −3 Torr to make a nitrogen gas atmosphere.

【0044】続いて、ホウ素含有量の異なるターゲット
材の夫々についてRFマグネトロンスパッタ法によりス
パッタし、基板上にチタン中の窒素が50at%であっ
て、かつチタンに対するホウ素の濃度が種々異なる膜厚
0.5μmのB−Ti−Nから成る三元合金膜を形成し
た。
Subsequently, the target materials having different boron contents were sputtered by the RF magnetron sputtering method, the nitrogen in the titanium was 50 at% on the substrate, and the boron concentration relative to the titanium was varied. A ternary alloy film of B-Ti-N having a thickness of 0.5 μm was formed.

【0045】そして、基板上に形成された各B−Ti−
N合金膜の電気的特性として比抵抗値と抵抗温度係数を
測定したところ、比抵抗値はNi−Crの5倍以上であ
り、また、抵抗温度係数は±500ppm/K以内であ
った。
Then, each B--Ti-- formed on the substrate
When the specific resistance value and the resistance temperature coefficient were measured as the electrical characteristics of the N alloy film, the specific resistance value was 5 times or more that of Ni-Cr, and the resistance temperature coefficient was within ± 500 ppm / K.

【0046】本発明の高抵抗膜の製造方法は前記実施例
のみに限定されるものではなく、Cr,Mo,Nb,T
a,Ti,W,Zrのうち少なくとも1つの遷移金属中
にホウ素が20〜80wt%含まれる高抵抗膜を基板上に
形成する場合は、真空蒸着法、活性化反応性蒸着法、イ
オンプレーティング法、CVD法、スパッタ法のいずれ
かの方法を選択し、これらの方法の中で、遷移金属とホ
ウ素を夫々蒸発量を変化させながら加熱蒸発させたり、
或いはホウ素含有量の異なるターゲットにスパッタリン
グを行うことにより、遷移金属中にホウ素が任意の配合
比で組成された高抵抗膜を形成することが出来る。
The manufacturing method of the high resistance film of the present invention is not limited to the above-mentioned embodiment, but Cr, Mo, Nb, T may be used.
When a high resistance film containing 20 to 80 wt% of boron in at least one transition metal of a, Ti, W, and Zr is formed on a substrate, a vacuum deposition method, an activated reactive deposition method, an ion plating method. Method, CVD method, or sputtering method is selected, and among these methods, the transition metal and boron are evaporated by heating while changing the evaporation amount respectively,
Alternatively, by performing sputtering on targets having different boron contents, it is possible to form a high resistance film in which boron is formed in the transition metal at an arbitrary mixing ratio.

【0047】また、窒素、炭素、窒素と炭素の混合元素
のうちいずれか1種類を0〜50at%の範囲で含有する
Cr,Mo,Nb,Ta,Ti,W,Zrのうち少なく
とも1つの遷移金属中にホウ素が5〜60wt%含まれる
高抵抗膜を基板上に形成する場合は、前記膜形成中に窒
素ガス、炭素ガスの単独ガスまたは混合ガスを導入、或
いはプラズマ雰囲気中で窒素ガス、炭素ガスの単独ガス
または混合ガスを導入しながら行うことにより遷移金属
中に炭素、窒素、炭素と窒素の混合元素のいずれか1種
類とホウ素が任意の配合比で組成された高抵抗膜を形成
することが出来る。
At least one transition of Cr, Mo, Nb, Ta, Ti, W, and Zr containing any one of nitrogen, carbon, and a mixed element of nitrogen and carbon in the range of 0 to 50 at%. When forming a high resistance film in which boron is contained in the metal in an amount of 5 to 60 wt% on the substrate, nitrogen gas, carbon gas alone or mixed gas is introduced during the film formation, or nitrogen gas in a plasma atmosphere, A high resistance film in which carbon, nitrogen, or any one of the mixed elements of carbon and nitrogen and boron are composed in an arbitrary mixing ratio is formed in the transition metal by introducing a single gas or a mixed gas of carbon gas. You can do it.

【0048】本発明の高抵抗膜の用途としては種々ある
が、その代表例を挙げると薄膜抵抗器、サーマルヘッド
の発熱抵抗体である。
There are various uses of the high resistance film of the present invention. Typical examples thereof are a thin film resistor and a heating resistor of a thermal head.

【0049】[0049]

【発明の効果】このように本発明の高抵抗膜によるとき
は、従来のNi−Cr合金膜の5倍以上の大きな比抵抗
値と、実用的な抵抗温度係数を有するので、比抵抗が高
く、抵抗温度係数が小さいから、電子部品の小型化、高
集積化を図ることが出来る効果がある。
As described above, according to the high resistance film of the present invention, since it has a large specific resistance value which is more than 5 times that of the conventional Ni-Cr alloy film and a practical temperature coefficient of resistance, the specific resistance is high. Since the temperature coefficient of resistance is small, there is an effect that electronic components can be downsized and highly integrated.

【0050】また、本発明の高抵抗膜の製造方法による
ときは、比抵抗が高く、抵抗温度係数の小さい高抵抗膜
を極めて容易に製造することが出来る効果がある。
Further, according to the method of manufacturing a high resistance film of the present invention, there is an effect that a high resistance film having a high specific resistance and a small resistance temperature coefficient can be manufactured very easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】 B−Cr膜中のB濃度と電気的特性との関係
を示す特性線図、
FIG. 1 is a characteristic diagram showing a relationship between B concentration in a B—Cr film and electrical characteristics,

【図2】 B−Cr−C膜中のB濃度と電気的特性との
関係を示す特性線図、
FIG. 2 is a characteristic diagram showing a relationship between B concentration in a B—Cr—C film and electrical characteristics,

【図3】 B−Ti−C膜中のB濃度と電気的特性との
関係を示す特性線図、
FIG. 3 is a characteristic diagram showing a relationship between B concentration in a B—Ti—C film and electrical characteristics,

【図4】 B−Ti−C−N膜中のB濃度と電気的特性
との関係を示す特性線図、
FIG. 4 is a characteristic diagram showing a relationship between B concentration in a B—Ti—C—N film and electrical characteristics,

【図5】 B−Ti−N膜中のB濃度と電気的特性との
関係を示す特性線図、
FIG. 5 is a characteristic diagram showing a relationship between B concentration in a B-Ti-N film and electrical characteristics,

【図6】 B−Zr−n膜中のB濃度と電気的特性との
関係を示す特性線図。
FIG. 6 is a characteristic diagram showing the relationship between B concentration in a B-Zr-n film and electrical characteristics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01C 17/08 8834−5E (72)発明者 稲川 幸之助 茨城県つくば市東光台5−9−7 日本真 空技術株式会社筑波超材料研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication location H01C 17/08 8834-5E (72) Inventor Konosuke Inagawa 5-9-7 Tokodai, Tsukuba, Ibaraki Japan Sky Technology Co., Ltd. Tsukuba Institute for Supermaterials

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Cr,Mo,Nb,Ta,Ti,W,Z
rから成る群から選択された少なくとも1つの遷移金属
中にホウ素を20〜80wt%添加して成ることを特徴と
する高抵抗膜。
1. Cr, Mo, Nb, Ta, Ti, W, Z
A high resistance film comprising 20 to 80 wt% of boron added to at least one transition metal selected from the group consisting of r.
【請求項2】 窒素、炭素、窒素と炭素の混合元素のう
ちいずれかの1種類を0〜50at%含むCr,Mo,N
b,Ta,Ti,W,Zrから成る群から選択された少
なくとも1つの遷移金属中にホウ素を5〜60wt%添加
して成ることを特徴とする高抵抗膜。
2. Cr, Mo, N containing 0 to 50 at% of any one of nitrogen, carbon, and a mixed element of nitrogen and carbon.
A high-resistance film comprising 5 to 60 wt% of boron added to at least one transition metal selected from the group consisting of b, Ta, Ti, W, and Zr.
【請求項3】 夫々独立した蒸発源からCr,Mo,N
b,Ta,Ti,W,Zrから成る群から選択された少
なくとも1つの遷移金属とホウ素を同時に蒸発させ、真
空蒸着法、活性化反応性蒸着法、イオンプレーティング
法、CVD法のいずれかの方法で基板上にCr,Mo,
Nb,Ta,Ti,W,Zrから成る群から選択された
少なくとも1つの遷移金属中にホウ素を20〜80wt%
添加して成る高抵抗膜を形成することを特徴とする高抵
抗膜の製造方法。
3. Cr, Mo, N from independent evaporation sources
At least one transition metal selected from the group consisting of b, Ta, Ti, W, and Zr and boron are simultaneously vaporized, and any one of vacuum vapor deposition method, activated reactive vapor deposition method, ion plating method, and CVD method is used. Method, Cr, Mo,
20-80 wt% boron in at least one transition metal selected from the group consisting of Nb, Ta, Ti, W and Zr
A method of manufacturing a high resistance film, which comprises forming a high resistance film formed by adding.
【請求項4】 Cr,Mo,Nb,Ta,Ti,W,Z
rから成る群から選択された少なくとも1つの遷移金属
とホウ素を含むターゲットを用い、スパッタ法により該
ターゲットにスパッタリングして基板上にCr,Mo,
Nb,Ta,Ti,W,Zrから成る群から選択された
少なくとも1つの遷移金属中にホウ素を20〜80wt%
添加して成る高抵抗膜を形成することを特徴とする高抵
抗膜の製造方法。
4. Cr, Mo, Nb, Ta, Ti, W, Z
A target containing at least one transition metal selected from the group consisting of r and boron is used, and the target is sputtered to form Cr, Mo,
20-80 wt% boron in at least one transition metal selected from the group consisting of Nb, Ta, Ti, W and Zr
A method of manufacturing a high resistance film, which comprises forming a high resistance film formed by adding.
【請求項5】 窒素成分を含むガス雰囲気中、或いは炭
素成分を含むガス雰囲気中、或いは窒素と炭素の混合成
分を含むガス雰囲気中で、夫々独立した蒸発源からC
r,Mo,Nb,Ta,Ti,W,Zrから成る群から
選択された少なくとも1つの遷移金属とホウ素を同時に
蒸発させ、真空蒸着法、活性化反応性蒸着法、イオンプ
レーティング法、CVD法のいずれかの方法で基板上に
窒素、炭素、窒素と炭素の混合元素のうちいずれかの1
種類を0〜50at%含むCr,Mo,Nb,Ta,T
i,W,Zrから成る群から選択された少なくとも1つ
の遷移金属中にホウ素を5〜60wt%添加して成る高抵
抗膜を形成することを特徴とする高抵抗膜の製造方法。
5. In a gas atmosphere containing a nitrogen component, a gas atmosphere containing a carbon component, or a gas atmosphere containing a mixed component of nitrogen and carbon, C is supplied from an independent evaporation source.
At least one transition metal selected from the group consisting of r, Mo, Nb, Ta, Ti, W, and Zr and boron are evaporated at the same time, and a vacuum evaporation method, an activated reactive evaporation method, an ion plating method, a CVD method Any one of nitrogen, carbon, or a mixed element of nitrogen and carbon on the substrate by any one of
Cr, Mo, Nb, Ta, T containing 0 to 50 at% of types
A method for producing a high resistance film, which comprises forming a high resistance film by adding 5 to 60 wt% of boron in at least one transition metal selected from the group consisting of i, W and Zr.
【請求項6】 窒素成分を含むガス雰囲気中、或いは炭
素成分を含むガス雰囲気中、或いは窒素と炭素の混合成
分を含むガス雰囲気中で、Cr,Mo,Nb,Ta,T
i,W,Zrから成る群から選択された少なくとも1つ
の遷移金属とホウ素を含むターゲットを用い、スパッタ
法により該ターゲットにスパッタリングして基板上に窒
素、炭素、窒素と炭素の混合元素のうちいずれかの1種
類を0〜50at%含むCr,Mo,Nb,Ta,Ti,
W,Zrから成る群から選択された少なくとも1つの遷
移金属中にホウ素を5〜60wt%添加して成る高抵抗膜
を形成することを特徴とする高抵抗膜の製造方法。
6. Cr, Mo, Nb, Ta, T in a gas atmosphere containing a nitrogen component, in a gas atmosphere containing a carbon component, or in a gas atmosphere containing a mixed component of nitrogen and carbon.
A target containing at least one transition metal selected from the group consisting of i, W, and Zr and boron is used, and the target is sputtered by sputtering, and any one of nitrogen, carbon, and a mixed element of nitrogen and carbon is formed on the substrate. Cr, Mo, Nb, Ta, Ti, which contains 1 to 50 at%
A method for producing a high resistance film, which comprises forming a high resistance film by adding 5 to 60 wt% of boron in at least one transition metal selected from the group consisting of W and Zr.
JP4258656A 1992-09-28 1992-09-28 High resistance film and manufacture thereof Pending JPH06112009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4258656A JPH06112009A (en) 1992-09-28 1992-09-28 High resistance film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4258656A JPH06112009A (en) 1992-09-28 1992-09-28 High resistance film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06112009A true JPH06112009A (en) 1994-04-22

Family

ID=17323283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4258656A Pending JPH06112009A (en) 1992-09-28 1992-09-28 High resistance film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06112009A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220667A (en) * 1999-09-27 2001-08-14 Applied Materials Inc Method and device for forming sputtered dope-finished seed layer
JP2016519329A (en) * 2013-03-12 2016-06-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Amorphous layer extreme ultraviolet lithography blank and manufacturing and lithography system therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220667A (en) * 1999-09-27 2001-08-14 Applied Materials Inc Method and device for forming sputtered dope-finished seed layer
JP2016519329A (en) * 2013-03-12 2016-06-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Amorphous layer extreme ultraviolet lithography blank and manufacturing and lithography system therefor

Similar Documents

Publication Publication Date Title
Musil et al. Hard nanocomposite Zr–Y–N coatings, correlation between hardness and structure
US4414274A (en) Thin film electrical resistors and process of producing the same
JP3027502B2 (en) Abrasion-resistant amorphous hard film and method for producing the same
JPH06158272A (en) Resistance film and production thereof
JPH0821482B2 (en) High stability laminated film resistor and manufacturing method thereof
JPS62111401A (en) Thin film resistor and manufacture of the same
US4454495A (en) Layered ultra-thin coherent structures used as electrical resistors having low temperature coefficient of resistivity
US4172718A (en) Ta-containing amorphous alloy layers and process for producing the same
US4063211A (en) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom
US5015308A (en) Corrosion-resistant and heat-resistant amorphous aluminum-based alloy thin film and process for producing the same
US6365014B2 (en) Cathode targets of silicon and transition metal
JPH06112009A (en) High resistance film and manufacture thereof
US4338145A (en) Chrome-tantalum alloy thin film resistor and method of producing the same
US5543208A (en) Resistive film
Deery et al. Reactive ion bombardment of tantalum thin film resistors
US6793781B2 (en) Cathode targets of silicon and transition metal
JPH04370901A (en) Electric resistance material
JPH05171417A (en) Manufacture of tantalum metallic thin film
JPH06275409A (en) Manufacture of thin-film resistive element
US3575833A (en) Hafnium nitride film resistor
JPH077722B2 (en) Resistor
JPS6395601A (en) Resistance thin film
JPH0331780B2 (en)
JPS6032962B2 (en) thin film resistor
JPH047561B2 (en)