JPH06111838A - Reformer, reforming system, and fuel cell system - Google Patents

Reformer, reforming system, and fuel cell system

Info

Publication number
JPH06111838A
JPH06111838A JP4261415A JP26141592A JPH06111838A JP H06111838 A JPH06111838 A JP H06111838A JP 4261415 A JP4261415 A JP 4261415A JP 26141592 A JP26141592 A JP 26141592A JP H06111838 A JPH06111838 A JP H06111838A
Authority
JP
Japan
Prior art keywords
fuel
reformer
reforming
flat plate
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4261415A
Other languages
Japanese (ja)
Inventor
Tomiaki Furuya
富明 古屋
Masayuki Shiratori
昌之 白鳥
Seisaburo Shimizu
征三郎 清水
Kazuhiko Kurematsu
一彦 槫松
Yoshio Hanakada
佳男 羽中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4261415A priority Critical patent/JPH06111838A/en
Publication of JPH06111838A publication Critical patent/JPH06111838A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To miniaturize a reformer, by forming reforming catalysts on the grooves of one side plate and combustion catalysts on the grooves of the other side plate respectively, and supplying heat required for reforming reaction with these plates alternately laminated to be adopted as a fluid passage. CONSTITUTION:Reforming catalysts 6 are formed on the surfaces of grooves formed in a plate 1, and combustion catalysts 5 are formed on the surfaces of the grooves of a plate 2. The plates 1 and 2 are alternately laminated to supply fuel, composed of a mixture of a compound, including a hydrocarbon group, and water, to a fluid passage 3, formed by a surface having the grooves of the plate 1 and a surface having no groove of the plate 2; and hydrogen is generated by catalysts 6. Fuel and oxygen-containing fluid are supplied to a fluid passage 4 to cause catalyst combustion reaction by the catalyst 5. That is, exothermic reaction and endothermic reaction are concurrently caused at positions adjoined vertically to supply heat, required for reforming reaction, by combustion reaction. Consequently, reforming reaction is made without a burner, and moreover an auxiliary facility such as a reaction tank, heat insulating material, and a reaction pipe is eliminated for miniaturization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池システム、及
び燃料電池に水素を供給するために炭化水素基を有する
化合物からなる燃料を水素に変換する改質器及び改質シ
ステムに関し、特に小型化に適した構造の燃料電池シス
テム、改質器及び改質システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system, a reformer and a reforming system for converting a fuel composed of a compound having a hydrocarbon group into hydrogen for supplying hydrogen to the fuel cell, and particularly to a small size TECHNICAL FIELD The present invention relates to a fuel cell system, a reformer, and a reforming system having a structure suitable for conversion.

【0002】[0002]

【従来の技術】近年、ワープロ、パソコンをはじめとす
るOA機器や家庭用電化機器は、半導体技術の発達と共
に小型化され、さらにポータブル化が要求されている。
従来このような要求を満足するために、これらの機器の
電源として、手軽な一次電池や二次電池が使用されてい
る。しかし、一次電池や二次電池は、機能上使用時間に
制限があり、このような電池を用いた機器では、当然使
用時間が限定される。これらの電池を使用した場合、電
池の放電が終った後、電池を交換して機器を動かすこと
はできるものの、従来の一次電池ではその重量に対して
使用時間が短く、ポータブルな機器には不向きである。
また、二次電池では、放電が終ると充電できる半面、充
電のために外部電源を必要とし使用場所が限定されるの
みならず、充電時間が必要となり、機器の運転が中断さ
れるという欠点がある。こりように、各種小型機器を長
時間作動させるには、従来の一次電池や二次電池では、
対応が難しく、より長時間の作動に向いた電源が要求さ
れている。
2. Description of the Related Art In recent years, office automation equipment such as word processors and personal computers and household electric appliances have been miniaturized with the development of semiconductor technology and are required to be portable.
Conventionally, in order to satisfy such requirements, a handy primary battery or secondary battery has been used as a power source for these devices. However, the primary battery and the secondary battery are functionally limited in usage time, and the device using such a battery is naturally limited in usage time. When these batteries are used, the battery can be replaced and the device can be moved after the battery is discharged, but the conventional primary battery has a short usage time due to its weight and is not suitable for portable devices. Is.
In addition, the secondary battery can be charged when it is discharged, but on the other hand, it requires an external power source for charging, which limits the place of use and also requires a charging time, which interrupts the operation of the device. is there. In this way, in order to operate various small devices for a long time, conventional primary batteries and secondary batteries are
It is difficult to deal with, and there is a demand for a power supply suitable for longer operation.

【0003】上記の問題点の一つの解決策として、従来
の一次電池や二次電池の代わりに燃料電池システムを用
いることが挙げられる。燃料電池システムは、現在大型
の発電プラントとして実用化されている。燃料電池シス
テムにおいては燃料と酸化剤を燃料電池本体に供給する
ことにより発電するもので、酸化剤として空気を使用
し、更に燃料のみを外部から供給することにより、連続
して発電できるという利点を有している。そのため燃料
電池システムの小型化ができれば、各種小型機器の作動
に極めて有効である。
One solution to the above problems is to use a fuel cell system instead of the conventional primary battery or secondary battery. Fuel cell systems are currently in practical use as large-scale power plants. In a fuel cell system, power is generated by supplying a fuel and an oxidant to the fuel cell main body, and air is used as the oxidant, and by supplying only the fuel from the outside, continuous power generation is possible. Have Therefore, if the fuel cell system can be miniaturized, it is extremely effective for the operation of various small devices.

【0004】さて、上記燃料電池システムにおいては、
通常、炭化水素基を含む化合物及び水からなる燃料を燃
料電池本体とは別に設けた改質機構によって水素ガスに
改質し、その水素ガスを燃料電池本体に送り発電を行っ
ている。上述の如く燃料電池システムを小型化し、機器
に搭載するための発電システムとするためには、燃料電
池本体のみならず、改質機構も小型化、及び高効率化す
る必要がある。
Now, in the above fuel cell system,
Usually, a fuel composed of a compound containing a hydrocarbon group and water is reformed into hydrogen gas by a reforming mechanism provided separately from the fuel cell body, and the hydrogen gas is sent to the fuel cell body for power generation. In order to reduce the size of the fuel cell system as described above and provide a power generation system for mounting on equipment, it is necessary to reduce the size and efficiency of the reforming mechanism as well as the fuel cell body.

【0005】図19は周辺機器を含めた従来の改質機構
の概略図である。改質槽本体101の槽壁には断熱材1
02が設けられている。改質槽本体101内に設置され
ている反応管は外管103及び内管104で構成されて
おり、反応管の内部には、燃料の改質反応を行う改質触
媒105が充填されている。改質触媒の材料としては、
セラミックスに担持させたニッケル等が用いられてい
る。バーナー106は、改質触媒が十分な改質活性を維
持する温度に加熱するために設置されている。燃料であ
る炭化水素及び水の混合物は、燃料タンク108からポ
ンプ109により熱交換器107に供給される。熱交換
器107では、バーナー106の燃焼排気ガスが持つ熱
を用い炭化水素基を含む化合物及び水からなる燃料を加
熱して気化させる。気化された燃料は改質槽本体101
中の反応管に送られ、反応管にて水素に改質された後、
燃料電池本体に供給される。一方、炭化水素基を含む化
合物と水との混合物を改質して水素ガスを得る反応は、
例えばメタンを用いた場合、 CH4 +2H2 O→4H2 +CO2 −39kcal/mol(25℃) (1) となり、また、メタノールを用いた場合、 CH3 OH+H2 O→3H2 +CO2 −31kcal/mol(25℃) (2) となり、上記(1),(2)に例示されるように、いず
れも吸熱反応である。上記反応を効率よく生起させるに
は、通常メタンの場合で800℃以上、比較的低温で反
応するメタノールを用いた場合でも、少なくとも150
℃以上の温度に燃料を加熱する必要がある。この加熱を
行うために、上述した従来の改質機構においては、バー
ナー106の火炎を用いて加熱を行っている。しかしな
がら、燃料電池システムを機器に組み込んだり、携帯す
ることを考えると、バーナーの火炎を用いた加熱では火
炎、火傷等の災害の危険性が生じる。
FIG. 19 is a schematic view of a conventional reforming mechanism including peripheral devices. A heat insulating material 1 is provided on the tank wall of the reforming tank body 101.
02 is provided. The reaction tube installed in the reforming tank main body 101 is composed of an outer tube 103 and an inner tube 104, and the inside of the reaction tube is filled with a reforming catalyst 105 that performs a fuel reforming reaction. . As the material of the reforming catalyst,
Nickel or the like supported on ceramics is used. The burner 106 is installed to heat the reforming catalyst to a temperature that maintains sufficient reforming activity. A mixture of hydrocarbon and water as fuel is supplied from the fuel tank 108 to the heat exchanger 107 by the pump 109. In the heat exchanger 107, the fuel contained in the hydrocarbon group-containing compound and water is heated and vaporized by using the heat of the combustion exhaust gas of the burner 106. The vaporized fuel is the reforming tank body 101.
After being sent to the inner reaction tube and reformed to hydrogen in the reaction tube,
It is supplied to the fuel cell body. On the other hand, the reaction for reforming a mixture of a compound containing a hydrocarbon group and water to obtain hydrogen gas is
For example, when methane is used, CH 4 + 2H 2 O → 4H 2 + CO 2 −39 kcal / mol (25 ° C.) (1), and when methanol is used, CH 3 OH + H 2 O → 3H 2 + CO 2 −31 kcal. / mol (25 ° C.) (2), and both are endothermic reactions, as exemplified in (1) and (2) above. In order to cause the above reaction efficiently, it is usually at least 150 ° C in the case of methane, and at least 150 even in the case of using methanol which is reacted at a relatively low temperature
It is necessary to heat the fuel to temperatures above ° C. In order to perform this heating, in the above-described conventional reforming mechanism, the flame of the burner 106 is used for heating. However, considering that the fuel cell system is incorporated in a device or carried, the heating using the flame of the burner causes a risk of disaster such as flame and burn.

【0006】また、周辺機器へ影響や、安全面を考慮す
ると反応槽本体101内の熱が外部に漏れないよう断熱
材などを設ける必要がある。しかし分厚い断熱材を用い
ていたのでは、改質機構の小型化には不向きである。
Further, in consideration of the influence on peripheral equipment and safety, it is necessary to provide a heat insulating material or the like to prevent the heat in the reaction tank body 101 from leaking to the outside. However, the use of a thick heat insulating material is not suitable for downsizing the reforming mechanism.

【0007】また、従来の改質機構における反応管など
の配管にステンレス製などのチューブが用いられている
が、チューブ自体の体積を必要とするばかりでなく、長
さ方向への熱膨張による歪みを吸収するためのスペース
を設ける等の工夫をする必要がある。また、粒状の触媒
を反応管に詰めて使用する場合、ある程度管径を太くせ
ねばならず、これも小型化の妨げとなる。
Further, although tubes made of stainless steel or the like are used for the reaction tubes and the like in the conventional reforming mechanism, not only the volume of the tube itself is required, but also distortion due to thermal expansion in the length direction is caused. It is necessary to devise such as providing a space to absorb the Further, when a granular catalyst is packed in a reaction tube for use, the tube diameter must be increased to some extent, which also hinders miniaturization.

【0008】[0008]

【発明が解決しようとする課題】以上述べた如く、改質
機構の小型化を考慮した場合、従来の改質機構では、改
質反応に関与する熱の供給のために、バーナー、反応
槽、反応管などの設備を必要とし、それ自体体積を必要
とすると共に、安全面の点からも小型化は困難である。
As described above, in consideration of the miniaturization of the reforming mechanism, the conventional reforming mechanism has a burner, a reaction tank, It requires equipment such as a reaction tube, requires a volume per se, and is difficult to miniaturize from the viewpoint of safety.

【0009】本発明は、上記課題を解決するためになさ
れたもので、上述したようなバーナー、反応槽、反応管
などの付帯設備を用いることなく、改質反応に必要な熱
を改質触媒に供給することにより、効率良く燃料の改質
反応を起こさせ、かつ小型化に適した改質機構及びそれ
を用いた燃料電池システムを得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the heat necessary for the reforming reaction can be converted into heat necessary for the reforming reaction without using the above-mentioned auxiliary equipment such as a burner, a reaction tank and a reaction tube. It is an object of the present invention to obtain a reforming mechanism suitable for miniaturization and a fuel cell system using the same, by efficiently supplying a reforming reaction of fuel by supplying the reforming mechanism to the reforming mechanism.

【0010】[0010]

【課題を解決するための手段及び作用】本発明は、溝を
有する複数の平板を積層して流体通路を形成し、その隣
接する一方の平板上の溝の表面が改質触媒が形成され、
他方の平板の溝の表面が燃焼触媒が形成されていること
を特徴とする改質器である。
According to the present invention, a plurality of flat plates having grooves are laminated to form a fluid passage, and the reforming catalyst is formed on the surface of the groove on one of the adjacent flat plates.
The reformer is characterized in that the combustion catalyst is formed on the surface of the groove of the other flat plate.

【0011】以下、図1及び図2を用いて本発明の改質
器の基本構造を示す。本発明の改質器においては、溝を
有する平板(図1中では平板1及び平板2で示す。)を
少なくとも2枚以上積層することによって、平板1の溝
を有する面と平板2の溝を有しない面により流体流路3
を形成し、また、平板2の溝を有する面と平板1の溝を
有しない面により流体流路4を形成する。
The basic structure of the reformer of the present invention will be shown below with reference to FIGS. 1 and 2. In the reformer of the present invention, by stacking at least two flat plates (shown as flat plate 1 and flat plate 2 in FIG. 1) having grooves, the grooved surface of the flat plate 1 and the groove of the flat plate 2 are formed. The fluid flow path 3 by the surface that does not have
Further, the fluid passage 4 is formed by the grooved surface of the flat plate 2 and the grooveless surface of the flat plate 1.

【0012】図2に本願発明の改質器の部分断面図を示
す。図2に示される平板1及び平板2は各々図1に示さ
れる平板1及び平板2に相当するものである。隣接した
平板のうちの一つの平板1に形成された溝の表面は改質
触媒6が形成されている。また、平板1に隣接した平板
2に形成された溝の表面には燃焼触媒5が形成されてい
る。各々の改質触媒6を形成した平板1と燃焼触媒5を
形成した平板2は交互に積層されている。
FIG. 2 shows a partial sectional view of the reformer of the present invention. The flat plate 1 and the flat plate 2 shown in FIG. 2 correspond to the flat plate 1 and the flat plate 2 shown in FIG. 1, respectively. The reforming catalyst 6 is formed on the surface of the groove formed on one of the adjacent flat plates 1. A combustion catalyst 5 is formed on the surface of the groove formed on the flat plate 2 adjacent to the flat plate 1. A flat plate 1 on which the reforming catalyst 6 is formed and a flat plate 2 on which the combustion catalyst 5 is formed are alternately laminated.

【0013】上記のような構成の改質器において、図2
に示される改質触媒6を形成した平板1の溝を有する面
と平板2の溝を有しない面により形成される流体流路3
には、炭化水素気を含む化合物と水の混合物からなる燃
料を供給し、改質反応によって水素を生成させる。ま
た、燃焼触媒5を形成した平板2の溝を有する面と平板
1の溝を有しない面により形成される流体流路4には、
燃料と酸素含有気体を供給し、平板2の溝の表面にある
燃焼触媒5によって触媒燃焼反応を起させる。なお、前
記酸素含有気体は空気により代用してもよい。
In the reformer having the above structure, as shown in FIG.
The fluid flow path 3 formed by the grooved surface of the flat plate 1 on which the reforming catalyst 6 is formed and the grooveless surface of the flat plate 2 shown in FIG.
Is supplied with a fuel composed of a mixture of a compound containing hydrocarbon gas and water, and hydrogen is generated by a reforming reaction. Further, in the fluid passage 4 formed by the grooved surface of the flat plate 2 on which the combustion catalyst 5 is formed and the grooveless surface of the flat plate 1,
A fuel and an oxygen-containing gas are supplied, and a catalytic combustion reaction is caused by the combustion catalyst 5 on the surface of the groove of the flat plate 2. The oxygen-containing gas may be replaced by air.

【0014】ここで流体流路4において生起する触媒燃
焼反応は、発熱反応であることが必要である。前記触媒
燃焼反応により生じる熱は、平板1を介して平板1の溝
を有する面に伝導され、平板1の溝の表面の改質触媒6
において生じる前記改質反応に用いられる。すなわち、
本願発明は、燃焼触媒を有する平板2と改質触媒を有す
る平板1とを積層させることにより、発熱反応である触
媒燃焼反応と吸熱反応である改質反応とを隣り合った位
置にて同時に生起させ、改質反応に必要な熱を触媒燃焼
反応によって供給するものである。
Here, the catalytic combustion reaction occurring in the fluid passage 4 must be an exothermic reaction. The heat generated by the catalytic combustion reaction is conducted to the grooved surface of the flat plate 1 through the flat plate 1 and the reforming catalyst 6 on the surface of the groove of the flat plate 1.
Is used for the reforming reaction that occurs in. That is,
According to the present invention, by stacking a flat plate 2 having a combustion catalyst and a flat plate 1 having a reforming catalyst, a catalytic combustion reaction, which is an exothermic reaction, and a reforming reaction, which is an endothermic reaction, occur simultaneously at adjacent positions. Then, the heat required for the reforming reaction is supplied by the catalytic combustion reaction.

【0015】それにより、バーナーによる火炎を用いる
ことなく効率よく改質反応を生じさせることができ、ま
たその構造は平板の積層体であるため、バーナーをはじ
め反応槽、断熱材、反応管などの付帯設備が不要とな
り、小型の改質器を提供することができる。
As a result, the reforming reaction can be efficiently generated without using a flame from the burner, and since the structure is a laminated body of flat plates, the burner, reaction tank, heat insulating material, reaction tube, etc. Ancillary equipment is not required, and a small reformer can be provided.

【0016】また、改質反応を生起させる層と触媒反応
を生起させる層と積層させる方法としては、本願発明の
構成の他に、一枚の隔壁の一方の面を改質触媒層でコー
ティングして、他方の面を燃焼触媒層でコーティングし
たエレメントを表裏交互に流路を形成して積層する方
法、また、材料を押し出し成型することにより多数のハ
ニカム状の流路を形成して隣接する流路に異なった触媒
を担持させる方法が考えられるが、上記の構造での改質
器の製造を考えた場合、本願発明の如く片面に一種の触
媒を形成した平板を積層する方法に比して、各々の触媒
層を形成する際の条件(焼成温度、焼成時間、焼成雰囲
気など)を各触媒の形成部位毎に変えることが難しく、
そのため、実質的に有効な触媒層が形成できない。本発
明の改質器においては1枚の平板に対し一種の触媒を形
成するため、触媒毎に最適な形成条件が製造が行えるた
め、実用的である。
As a method of laminating a layer which causes a reforming reaction and a layer which causes a catalytic reaction, in addition to the constitution of the present invention, one surface of one partition is coated with a reforming catalyst layer. , The other surface is coated with a combustion catalyst layer to form a flow path by alternately forming the flow path on the front and back sides, or by extruding a material to form a number of honeycomb-shaped flow paths and adjoining flow paths. Although a method of supporting different catalysts on the path is conceivable, when considering the production of the reformer with the above structure, as compared with the method of laminating flat plates having one kind of catalyst formed on one side as in the present invention. , It is difficult to change the conditions (calcination temperature, calcination time, calcination atmosphere, etc.) for forming each catalyst layer for each catalyst formation site,
Therefore, a substantially effective catalyst layer cannot be formed. In the reformer of the present invention, since one kind of catalyst is formed on one flat plate, it is practical because optimum forming conditions can be produced for each catalyst.

【0017】一方、本発明に係る溝を有する平板の材質
は、セラミックス、金属、シリコンなどの半導体、高分
子樹脂板等、特に制限されないが、熱伝導率が大きい物
質が好ましい。
On the other hand, the material of the flat plate having the groove according to the present invention is not particularly limited, such as ceramics, metal, semiconductors such as silicon, polymer resin plate, etc., but a substance having a large thermal conductivity is preferable.

【0018】溝を有する平板は、上記の材質の平板を機
械的に、切削加工、目的溝を凸状に加工して金型で加圧
成型して製造する方法が挙げられる。また、化学的加工
などによって溝を形成することも可能である。また、エ
ッチング技術、リソグラフィー技術などの微細加工技術
を用い、平板の材料表面に感光性レジストを塗布し、目
的の溝のマスクを用いて露光、及びエッチングして溝を
形成することもできる。改質触媒及び燃焼触媒として
は、公知の触媒を使用することができる。
The flat plate having the groove may be manufactured by mechanically cutting the flat plate of the above material, processing the target groove into a convex shape, and press-molding it with a die. It is also possible to form the groove by chemical processing or the like. It is also possible to form a groove by applying a photosensitive resist on the surface of a flat plate material using a microfabrication technology such as an etching technology or a lithography technology, and exposing and etching using a mask of the desired groove. Known catalysts can be used as the reforming catalyst and the combustion catalyst.

【0019】改質触媒は、Pt、Ni、Cu、Zn、A
l、Pd、Auなどを単体または合金として用いること
ができる。また、ZnO,FeO,Cr,Cr2 3
BeO,K2 O,WO3 なども用いることができる。ま
た、Fe2 3 −Cr2 3-K 2 OやCr2 3 −Al
2 3 やFe2 3 −MoO3 などの多元触媒が挙げら
れる。
The reforming catalyst is Pt, Ni, Cu, Zn, A
1, Pd, Au, etc. can be used alone or as an alloy. In addition, ZnO, FeO, Cr, Cr 2 O 3 ,
BeO, K 2 O, WO 3 and the like can also be used. In addition, Fe 2 O 3 —Cr 2 O 3 —K 2 O and Cr 2 O 3 —Al
Examples include multi-component catalysts such as 2 O 3 and Fe 2 O 3 —MoO 3 .

【0020】また、燃焼触媒としては、Pt、Au,A
gなどの貴金属等を単体または合金として用いることが
できる。更にCu,CuO,Cul2 ,Ag2 O,Z
n,Hg,Pd,PdCl2 ,Co,OsO,Fe,F
eO,MoO3 ,Cr,V,V2 3 ,TiO3 ,Te
O,Se,SeO,P2 5 ,PbO,Pb,Sn,S
nO,Ba,BaO,Ca,などか挙げられる。また、
2 5 −K2 SO4 −ケイソウ土,ホブカライト(M
nO2 ,CuO,Co2 3 ,AgO)やAg2O−A
2 3 やCu2 O−SeOやV2 5 −K2 SO4
シリカゲルやFe2 3 −Cr2 3 などの多元触媒も
挙げられる。
Further, as the combustion catalyst, Pt, Au, A
A noble metal such as g can be used alone or as an alloy. Further Cu, CuO, Cul 2 , Ag 2 O, Z
n, Hg, Pd, PdCl 2 , Co, OsO, Fe, F
eO, MoO 3 , Cr, V, V 2 O 3 , TiO 3 , Te
O, Se, SeO, P 2 O 5 , PbO, Pb, Sn, S
nO, Ba, BaO, Ca, etc. are mentioned. Also,
V 2 O 5 -K 2 SO 4 -diatomaceous earth, hobucarite (M
nO 2 , CuO, Co 2 O 3 , AgO) and Ag 2 O-A
l 2 O 3 and Cu 2 O-SeO or V 2 O 5 -K 2 SO 4 -
Multi-component catalysts such as silica gel and Fe 2 O 3 —Cr 2 O 3 are also included.

【0021】これらの触媒は、平板に形成した溝の表面
に多孔質体を形成し、多孔質体に島状あるいは粒状に分
散して担持させることが、反応面積が増え触媒の利用率
が向上するため、好ましい。
When these catalysts are formed by forming a porous body on the surface of a groove formed on a flat plate and supporting the porous body by dispersing them in an island shape or in a granular form, the reaction area is increased and the utilization rate of the catalyst is improved. Therefore, it is preferable.

【0022】多孔質体を平板の溝の表面に形成させるに
は、種々の方法がある。例えば、平板の溝の表面にアル
ミナからなる多孔質体を形成する場合、溝表面を金属ア
ルミニウムでコーティングした後、金属アルミニウムを
酸素雰囲気で加熱して酸化するかまたは、酸化剤を作用
させて酸化させ、アルミナからなる多孔質体を形成する
ことができる。また、平板自体の材質を酸化処理しても
よい。例えば、シリコンからなる基板に溝を形成した
後、マスキングして平板の表面を酸化処理すると、溝の
表面にSiO2 からなる多孔質体を形成することができ
る。
There are various methods for forming the porous body on the surfaces of the grooves of the flat plate. For example, when forming a porous body made of alumina on the surface of a flat plate groove, after coating the groove surface with metallic aluminum, the metallic aluminum is heated in an oxygen atmosphere for oxidation, or an oxidizing agent is used to oxidize it. Then, a porous body made of alumina can be formed. Further, the material of the flat plate itself may be oxidized. For example, when a groove is formed on a substrate made of silicon, the surface of the flat plate is oxidized by masking, a porous body made of SiO 2 can be formed on the surface of the groove.

【0023】また多孔質体の材質は、上記のAl
2 3 、SiO2 の他に、さらにその他の方法で形成さ
れるSiO2 −Al2 3 ,粘度鉱物,MgO,TiO
2 ,α−Al2 3 ,ケイソウ土,シリコーンカーバイ
ト,アランダムなどが挙げられる。
The material of the porous body is the above-mentioned Al.
2 O 3, in addition to SiO 2, SiO 2 -Al 2 O 3 formed by still another method, clay minerals, MgO, TiO
2 , α-Al 2 O 3 , diatomaceous earth, silicone carbide, alundum and the like.

【0024】また前記触媒は平板の溝の表面に種々の方
法で形成させることができる。例えば、燃焼触媒または
改質触媒をターゲットとし、溝を形成した平板にスパッ
タリングで上記触媒を形成する方法でもよい。スパッタ
リングにより触媒を形成することにより触媒を均一に平
板の溝の表面に形成することができる。
Further, the catalyst can be formed on the surface of the groove of the flat plate by various methods. For example, a method may be used in which a combustion catalyst or a reforming catalyst is used as a target and the catalyst is formed on a flat plate having grooves by sputtering. By forming the catalyst by sputtering, the catalyst can be uniformly formed on the surfaces of the flat plate grooves.

【0025】この時スパッタリング時の条件として雰囲
気ガスとして酸素あるいは水素をアルゴン等の不活性ガ
ス中に0.3Vol %以上〜3Vol %以下程度加えたもの
を用いることが好ましい。それにより不活性ガスのみの
雰囲気ガスを用いた場合に比して触媒の活性を高めるこ
とができる。
At this time, as a condition for sputtering, it is preferable to use oxygen or hydrogen as an atmosphere gas in which an inert gas such as argon is added in an amount of 0.3 vol% to 3 vol%. As a result, the activity of the catalyst can be increased as compared with the case of using the atmosphere gas containing only the inert gas.

【0026】また、多孔質体を形成した平板の溝の表面
に触媒を担持させるには、スパッタリングで金属触媒を
多孔質層に照射したり、触媒金属塩水溶液、あるいはコ
ロイドを多孔質層に含浸後、乾燥、焼成する方法が挙げ
られる。また、多孔質体の原料成分と触媒成分とを混合
スラリーとして平板にコーティングした後、乾燥焼成す
る方法でもよい。
In order to support the catalyst on the surface of the groove of the flat plate having the porous body, the porous layer is irradiated with the metal catalyst by sputtering, or the porous metal layer is impregnated with the catalytic metal salt aqueous solution or colloid. The method of drying and baking after that is mentioned. Alternatively, the raw material component of the porous material and the catalyst component may be coated on a flat plate as a mixed slurry and then dried and fired.

【0027】平板の溝の表面に形成した多孔質体に触媒
を担持させる場合、図3に示される通り、触媒粒子の濃
度を傾斜分布させてもよい。図3は触媒を担持した多孔
体の部分断面図である。図3において触媒担持体12は
平板の溝の表面に形成した多孔体を示し、11は触媒粒
子を示す。触媒粒子の濃度は燃料の通路の側が最大とな
るよう形成することが好ましい。
When the catalyst is supported on the porous material formed on the surface of the groove of the flat plate, the concentration of the catalyst particles may be distributed in a gradient as shown in FIG. FIG. 3 is a partial cross-sectional view of a porous body carrying a catalyst. In FIG. 3, the catalyst carrier 12 is a porous body formed on the surface of the flat groove, and 11 is a catalyst particle. It is preferable that the concentration of the catalyst particles is formed so as to be maximum on the fuel passage side.

【0028】上述の如くの触媒を傾斜濃度を有するよう
に分布させた多孔体は、本願発明の如くの改質器だけで
なく、一板の隔壁の一方の面に改質触媒を有し、他方の
面を燃焼触媒を有するエレメントを表裏交互に流路を形
成して積層するタイプの改質器にも用いることができ
る。
The porous material in which the catalyst is distributed so as to have a gradient concentration has not only the reformer as in the present invention but also the reforming catalyst on one surface of the partition wall of one plate, It can also be used in a reformer of the type in which an element having a combustion catalyst on the other surface is alternately laminated on the front and back to form a flow path.

【0029】図4は改質器の構成を示す部分断面図であ
る。図4に示されるように、触媒担持体12は多孔体で
あり、かつ一方の面は燃焼触媒粒子13が表面の方が高
い濃度を持つように傾斜分布して担持されている。また
別の面は改質触媒粒子14が同様に表面の方が高い濃度
を有するよう傾斜分布して形成されている。改質器の構
成としては上述の如くの触媒担持体が同種の触媒面が向
き合い、かつ流体流路15,16となる空間を持つよう
積層する。燃焼触媒粒子13の分布を有する部分と、改
質触媒粒子14の分布を持つ部分の境界には、各々の流
路に供給される燃料及び生成物が混合せず、かつ、熱の
伝導を妨げない熱伝導性の分離体17を設けておくこと
が好ましい。また各触媒担持体12の表面または内部に
燃料及び生成物の流路15を設けることができる。(図
5) また濃度傾斜を持つ担持体の内部に燃料及び生成物の通
路16を設け該通路の径が傾斜変化を持つ担持体を積層
して構成することもできる。(図6) 担持した触媒の濃度傾斜を持つ触媒担持体の成形方法に
は次の方法が挙げられる。ここで、AまたはBを触媒ま
たは担持材とする。 1)溶浸法
FIG. 4 is a partial sectional view showing the structure of the reformer. As shown in FIG. 4, the catalyst carrier 12 is a porous body, and the combustion catalyst particles 13 are supported on one surface in an inclined distribution so that the surface thereof has a higher concentration. On the other surface, the reforming catalyst particles 14 are similarly formed with a gradient distribution so that the surface has a higher concentration. As the structure of the reformer, the catalyst carriers as described above are laminated so that the catalyst surfaces of the same kind face each other and have spaces for forming the fluid flow paths 15 and 16. At the boundary between the portion having the distribution of the combustion catalyst particles 13 and the portion having the distribution of the reforming catalyst particles 14, the fuel and the products supplied to the respective flow paths are not mixed and the heat conduction is hindered. It is preferable to provide a non-heat-conducting separator 17. Further, the fuel and product flow paths 15 can be provided on the surface or inside of each catalyst carrier 12. (FIG. 5) Alternatively, the fuel and product passages 16 may be provided inside the carrier having a concentration gradient, and the carriers having different diameters may be laminated. (FIG. 6) The following method can be mentioned as a method for forming a catalyst carrier having a concentration gradient of the carried catalyst. Here, A or B is a catalyst or a supporting material. 1) Infiltration method

【0030】多孔体Aの空隙に他のBを溶融、滲透させ
て埋める方法である。多孔体Aよりも融点の低いBを用
いて、多孔体とのぬれがよければ毛細管現象で空隙に滲
透する。AとBの圧粉体を組み合わせて、焼結接合を兼
ねて溶浸することも可能である。また熱処理が必要であ
る。Aの空隙の変化またはAとBとの混合比を変えて圧
粉体の使用によりAまたはBの濃度傾斜ができた担持体
となる。 2)粉末圧延法
This is a method of melting and permeating another B into the voids of the porous body A to fill it. If B, which has a lower melting point than the porous body A, is used and wets well with the porous body, it permeates into the voids by a capillary phenomenon. It is also possible to combine the green compacts of A and B and infiltrate them while also serving as sinter bonding. In addition, heat treatment is necessary. By using a green compact by changing the void of A or changing the mixing ratio of A and B, a carrier having a concentration gradient of A or B can be obtained. 2) Powder rolling method

【0031】粉末Aを圧延ロールで直接連続的に圧粉板
にし、引き続き焼結して多孔質焼結板とし、さらに熱間
圧延によって真密度の圧延板とする。この工程のいずれ
かで、粉末Bを供給し、さらに同じ工程を粉末Bの量を
変えて繰り返すことによりAとBの濃度傾斜ができた担
持体となる。 3)容射成形法
The powder A is directly and continuously formed into a compacted plate with a rolling roll, and subsequently sintered into a porous sintered plate, and further hot rolled into a true density rolled plate. In any of these steps, powder B is supplied, and the same step is repeated by changing the amount of powder B to obtain a carrier having a concentration gradient of A and B. 3) Injection molding method

【0032】AとBの容湯を窒素ガスで噴霧し、冷却コ
レクタとして丸棒を回転移動させながら容射堆積して成
形する方法で、AとBの噴霧量を変えて繰り返し容射堆
積して剥がせばAとBの濃度傾斜ができた担持体とな
る。 4)その他の方法 AとBとの混合比を変えた圧粉体の層を作り焼結鍛造
法、熱間等方圧成形法、擬熱間等方圧成形法などでAと
Bの濃度傾斜ができた担持体となる。
By spraying hot water of A and B with nitrogen gas and spray depositing while rotating a round bar as a cooling collector, the spraying amount of A and B is repeatedly spray deposited. If it is peeled off, a carrier having a concentration gradient of A and B is formed. 4) Other methods Concentration of A and B is made by sintering forging method, hot isostatic pressing method, pseudo hot isostatic pressing method, etc. by making a layer of green compact with different mixing ratio of A and B. It becomes a supporting body that is inclined.

【0033】上述の如くの触媒を傾斜濃度を有するよう
に分布させた多孔体を用いた改質器は、燃料の浸透の多
い多孔体の表面層にて最も活性に反応が生起し、また燃
料の浸透の少ない多孔体の内部においても反応は生起
し、かつ不完全な反応は起こり難い。したがって供給さ
れた燃料は、最大限に反応に用いられ、また燃料の不完
全な反応に伴うカーボンや一酸化炭素の発生による触媒
汚染あるいは、触媒毒となる物質の生成を最小に抑える
ことがてきる。また、多孔体の内部でも反応が生起する
ため、改質反応と触媒燃焼部における熱交換において、
熱損失が抑えられる。したがって改質器の効率が向上す
る。
In the reformer using the porous material in which the catalyst is distributed so as to have a gradient concentration, the most active reaction occurs in the surface layer of the porous material with a large amount of fuel permeation, and the fuel The reaction occurs even inside the porous material with low permeation, and an incomplete reaction is unlikely to occur. Therefore, the supplied fuel can be used for reaction to the maximum extent, and it is possible to minimize the catalyst contamination due to the generation of carbon and carbon monoxide due to the incomplete reaction of the fuel or the generation of a substance that becomes a catalyst poison. It In addition, since the reaction occurs inside the porous body, in the reforming reaction and the heat exchange in the catalytic combustion part,
Heat loss is suppressed. Therefore, the efficiency of the reformer is improved.

【0034】さて一方、前述した図1に示される如くの
改質触媒を形成した平板と燃焼触媒を形成した平板とを
積層した構成の改質器においては、改質触媒6を形成し
た平板1の溝を有する面と平板2の溝を有しない面によ
り形成される流体流路3には、炭化水素と水の混合物を
供給し、燃焼触媒5を形成した平板2の溝を有する面と
平板1の溝を有しない面により形成される流体流路4に
は、燃料と酸素の混合物を供給する必要がある。また、
流体流路3下流には生成物である水素及び二酸化炭素及
び一酸化炭素が生じ、また、流体流路4には二酸化炭素
及び水などの生成物が生じるためこれらの生成物を別々
に排出する必要がある。このような積層体の層間に異な
った2種以上の流体を供給及び、排出する際には、内部
マニホールドを用いることが好ましい。それにより、流
体の供給管、排出管が簡素化される。 図7は本発明の
改質器の一部を示す斜視図である。図7において平板2
0は流体流路21を形成する溝を有しており、また溝の
表面には、燃焼触媒(図示せず。)が形成されている。
また、平板22も同様に流体流路23を形成する溝を有
しており、また溝の表面には、改質触媒(図示せず。)
が形成されており、平板 20と平板22は交互に積層
されている。(下方の平板20及び平板22を以下、各
々平板20a,20b…、平板22a,22b…とす
る。)平板20において流体流路21から矢印24の方
向に流出してくる流体(この場合、水素ガス)は、流路
と連結して平板に開いている孔25を出て行き、隣接す
る平板23の同一位置に設けられた孔26を経由し、さ
らに下方に積層された平板20と同構成の平板20aに
設けられた孔25において平板20aにおける流体流路
からの流体と合流する。以下平板25bにおいても同様
に合流を繰り返し、各平板上の流体流路からの流体は積
層構造物の最下部にて排出される。
On the other hand, in the reformer having a structure in which the flat plate on which the reforming catalyst is formed and the flat plate on which the combustion catalyst is formed as shown in FIG. 1 are laminated, the flat plate 1 on which the reforming catalyst 6 is formed. Of the flat plate 2 on which the combustion catalyst 5 is formed by supplying a mixture of hydrocarbon and water to the fluid passage 3 formed by the grooved surface of the flat plate 2 and the flat surface of the flat plate 2 It is necessary to supply a mixture of fuel and oxygen to the fluid flow path 4 formed by the surface having no groove. Also,
Hydrogen, carbon dioxide, and carbon monoxide that are products are generated downstream of the fluid flow path 3, and products such as carbon dioxide and water are generated in the fluid flow path 4, and these products are separately discharged. There is a need. It is preferable to use an internal manifold when supplying and discharging two or more different fluids between the layers of such a laminate. This simplifies the fluid supply pipe and the fluid discharge pipe. FIG. 7 is a perspective view showing a part of the reformer of the present invention. Flat plate 2 in FIG.
Reference numeral 0 has a groove that forms the fluid flow path 21, and a combustion catalyst (not shown) is formed on the surface of the groove.
Similarly, the flat plate 22 also has a groove that forms the fluid flow path 23, and the reforming catalyst (not shown) is formed on the surface of the groove.
Are formed, and the flat plates 20 and the flat plates 22 are alternately laminated. (The lower flat plate 20 and the flat plate 22 are hereinafter referred to as flat plates 20a, 20b ..., Flat plates 22a, 22b ...) Fluid flowing out of the fluid passage 21 in the flat plate 20 in the direction of arrow 24 (in this case, hydrogen) (Gas) exits through a hole 25 opened in the flat plate in connection with the flow path, passes through a hole 26 provided at the same position in the adjacent flat plate 23, and has the same structure as the flat plate 20 laminated further below. In the hole 25 provided in the flat plate 20a, the fluid merges with the fluid from the fluid flow path in the flat plate 20a. In the flat plate 25b, the merging is repeated in the same manner, and the fluid from the fluid flow path on each flat plate is discharged at the bottom of the laminated structure.

【0035】一方、流体の供給については平板22を例
にとり説明する。流体の供給は、排出の場合と逆に、平
板22の流体流路23の上流に流体流路に連結して設け
られている孔27から行われ、隣接した平板22に設け
られた孔28を介してさらに上方に送られる。
On the other hand, the fluid supply will be described by taking the flat plate 22 as an example. Contrary to the case of discharging, the fluid is supplied from the hole 27 provided in the flat plate 22 upstream of the fluid flow path 23 and connected to the fluid flow path, and the hole 28 provided in the adjacent flat plate 22 is supplied. Sent further upward through.

【0036】このように、流体流路と連結している孔と
連結していない孔とを各平板の両端の同位置に備えるこ
とによって、改質反応と燃焼反応の各々の系統に供給配
管と排出配管とをそれぞれ1本ずつ接続するだけでよ
く、配管が簡素化される。
As described above, the holes connected to the fluid flow path and the holes not connected to the fluid flow path are provided at the same positions on both ends of each flat plate, so that the supply piping and the supply piping are provided to each system of the reforming reaction and the combustion reaction. It suffices to connect only one to each of the discharge pipes, which simplifies the pipes.

【0037】また、本願発明の如くの内部マニホールド
を用いた場合、孔25及び孔26、孔27及び孔28の
設ける位置によって流体流路21,23が平行または直
交とすることができる。特に流体流路21及び23とを
平行流とし、かつ触媒燃焼の燃料の供給方向と、改質燃
料とを同方向に流すよう平板に設ける孔及び各々の燃料
供給方向を調整することにより、平板上の温度の分布が
均一化し、さらに効率よく改質反応が進むものである。
When the internal manifold as in the present invention is used, the fluid passages 21 and 23 can be parallel or orthogonal depending on the positions where the holes 25 and 26 and the holes 27 and 28 are provided. In particular, by making the fluid flow paths 21 and 23 parallel to each other and adjusting the fuel supply direction of catalytic combustion and the holes provided in the flat plate so that the reformed fuel flows in the same direction and the respective fuel supply directions, The temperature distribution above becomes uniform, and the reforming reaction proceeds more efficiently.

【0038】本願発明の如く、触媒燃焼による発熱反応
を起こす層(触媒燃焼層)及び改質反応による吸熱発応
を起こす層(改質層)を積層した改質器においては、改
質器全体が改質層にて改質反応が効率よく起こるに足る
目的温度まで上昇したならば、燃料を間欠的に供給する
かあるいは調節して温度を一定に保つことが好ましい。
それにより触媒燃焼層に供給される燃料のむだがなく、
また、温度の上昇しすぎによる危険も防止できる。燃料
タンクから改質器の触媒燃焼層または改質反応層へ燃料
を送る方法としては、燃料タンクと改質器をつなぐパイ
プに設けたバルブ及び燃料供給量を調節するためのバル
ブ調節器を用い何らかの方法で制御し、必要量の燃料を
供給する方法がある。特に微細加工技術によるマイクロ
ポンプを用いると小型化が可能となる。
As in the present invention, in a reformer in which a layer that causes an exothermic reaction due to catalytic combustion (catalyst combustion layer) and a layer that causes endothermic reaction due to a reforming reaction (reforming layer) are stacked, the entire reformer is used. When the temperature rises to a target temperature sufficient for the reforming reaction to occur efficiently in the reforming layer, it is preferable to intermittently supply or adjust the fuel to keep the temperature constant.
As a result, the fuel supplied to the catalytic combustion layer is wasted,
In addition, it is possible to prevent a danger due to an excessive rise in temperature. As a method of sending fuel from the fuel tank to the catalytic combustion layer or the reforming reaction layer of the reformer, a valve provided in the pipe connecting the fuel tank and the reformer and a valve regulator for adjusting the fuel supply amount are used. There is a method of controlling in some way and supplying the required amount of fuel. In particular, downsizing can be achieved by using a micropump manufactured by a fine processing technique.

【0039】また、燃料タンクを均一加圧状態とし、燃
料タンクと改質器をつなぐパイプの一部を形状記憶合金
で形成し、温度変化により該合金製パイプを変形させ、
燃料の供給量を調整することも可能である。以下具体的
に説明する。
Further, the fuel tank is uniformly pressurized, a part of the pipe connecting the fuel tank and the reformer is made of a shape memory alloy, and the alloy pipe is deformed by a temperature change,
It is also possible to adjust the fuel supply amount. This will be specifically described below.

【0040】図8に形状記憶合金からなる配管を用いた
改質システムの一例を示す概念図を示す。燃料タンク4
1から本発明の改質器42へ燃料供給を行う配管の一部
(図中43及び44)が形状記憶合金で形成されてい
る。図において43は改質燃料供給用の形状記憶合金配
管であり、44は触媒燃焼燃料供給用の形状記憶合金配
管である。改質器42は触媒燃焼層と改質層とが積層さ
れており、各層への燃料供給は内部マニホールドにより
各々1カ所から行なえるようになっている。このような
2つの改質器は、形状記憶合金配管43及び44を挟ん
で積層されている。形状記憶合金配管43,44は改質
器42の燃料供給孔に接続されている。触媒燃焼燃料供
給用配管44は温度が低いと開いており温度が高くなる
と閉じるようになっている。
FIG. 8 is a conceptual diagram showing an example of a reforming system using a pipe made of a shape memory alloy. Fuel tank 4
Part of the pipes (43 and 44 in the figure) for supplying fuel from 1 to the reformer 42 of the present invention is formed of a shape memory alloy. In the figure, 43 is a shape memory alloy pipe for supplying reformed fuel, and 44 is a shape memory alloy pipe for supplying catalytic combustion fuel. The reformer 42 is formed by stacking a catalytic combustion layer and a reforming layer, and fuel can be supplied to each layer from one location by an internal manifold. Such two reformers are stacked with the shape memory alloy pipes 43 and 44 sandwiched therebetween. The shape memory alloy pipes 43 and 44 are connected to the fuel supply holes of the reformer 42. The catalytic combustion fuel supply pipe 44 is opened when the temperature is low and closed when the temperature is high.

【0041】また、改質燃料供給用配管43は温度が低
いと閉じており、温度が高くなると開くようになってい
る。形状記憶合金配管43及び44の開閉は具体的には
配管がある一定の温度に達すると絞りこみ、折り畳み、
潰れる等の形状の変化が生じ、配管を閉じ、その逆の形
状変化が起こることにより配管が開く。形状記憶合金配
管43及び44は改質器42に積層されることにより改
質器42の温度の変化に対応し配管の開閉を行い供給す
る燃料の量を調節するものである。
Further, the reformed fuel supply pipe 43 is closed when the temperature is low, and is opened when the temperature is high. Specifically, the shape memory alloy pipes 43 and 44 are opened and closed by squeezing, folding, when the pipes reach a certain temperature.
A change in shape such as crushing occurs, the pipe is closed, and the opposite change in shape causes the pipe to open. The shape memory alloy pipes 43 and 44 are laminated on the reformer 42 to open and close the pipes in response to changes in the temperature of the reformer 42 to adjust the amount of fuel to be supplied.

【0042】運転開始直後は改質器42の温度は低いた
め、触媒燃焼燃料供給用配管44は、開き改質器42内
の触媒燃焼層に燃料が供給される。該層にて触媒燃焼が
生じ改質器42の温度が上昇し、改質燃料供給用配管4
3が開き、改質器42の改質層に燃料が供給される。ま
た前記触媒層に過剰に燃料が供給され改質器42の温度
が上昇しすぎると、配管44は閉じ燃料供給は減少す
る。以上のように配管43及び44は改質器42の温度
の変化に応じ燃料の供給量を調節し、改質器の温度を及
び改質量を一定に保つと共に、燃料の供給のむだを省
く。
Since the temperature of the reformer 42 is low immediately after the start of the operation, the catalyst combustion fuel supply pipe 44 is opened and fuel is supplied to the catalyst combustion layer in the reformer 42. Catalytic combustion occurs in the layer, the temperature of the reformer 42 rises, and the reforming fuel supply pipe 4
3, the fuel is supplied to the reforming layer of the reformer 42. Further, when the fuel is excessively supplied to the catalyst layer and the temperature of the reformer 42 rises too much, the pipe 44 is closed and the fuel supply is reduced. As described above, the pipes 43 and 44 adjust the amount of fuel supplied according to the change in the temperature of the reformer 42, keep the temperature of the reformer and the amount of reforming constant, and eliminate waste of fuel supply.

【0043】また、形状記憶合金を用いた燃料供給配管
は、改質器と燃料電池とを組み合わせた燃料電池システ
ムに適用した際に、燃料電池に供給された水素量に応じ
て、改質器への燃料供給量を調節する機能を持たせるこ
とも可能である。以下に具体的に説明する。
Further, the fuel supply pipe using the shape memory alloy, when applied to a fuel cell system in which a reformer and a fuel cell are combined, changes the reformer according to the amount of hydrogen supplied to the fuel cell. It is also possible to add a function of adjusting the fuel supply amount to the fuel tank. This will be specifically described below.

【0044】図9は形状記憶合金からなる燃料供給配管
を適用した燃料電池システムを示す。図9において41
は燃料タンク、42は改質器、45は燃料電池である。
燃料タンクから改質器へ燃料を供給する配管の一部は形
状記憶合金からなる配管46となっている。配管46の
周囲はヒータ47が設置され、配管46を加熱できるよ
うになっている。配管46はヒータ47が作動しないと
管が開いた状態であり、また、ヒータ47が作動すると
管が閉じた状態となるような配管を用いている。また改
質器42で生じた水素は配管48により燃料電池に供給
される。燃料電池45の水素供給孔には圧力センサが設
置されている。圧力センサ49は燃料電池の水素供給量
に応じて、配管46の周囲にあるヒータ47を作動させ
るよう設定されている。このような燃料電池システムに
おいて、例えば改質器42から燃料電池の容量よりも過
剰に水素が供給された場合、水素供給孔の水素圧力が上
がるため、圧力センサー49が作動し、ヒータ47が作
動する。それに伴ない配管46が閉じ改質器への燃料の
供給が停止される。また、水素の供給が少くなり、水素
供給孔の水素圧が下がった場合、ヒータ47の作動が止
り、配管46が開き、改質器42に燃料が供給される。
FIG. 9 shows a fuel cell system to which a fuel supply pipe made of a shape memory alloy is applied. 41 in FIG.
Is a fuel tank, 42 is a reformer, and 45 is a fuel cell.
A part of the pipe for supplying the fuel from the fuel tank to the reformer is a pipe 46 made of a shape memory alloy. A heater 47 is installed around the pipe 46 so that the pipe 46 can be heated. The pipe 46 is a pipe that is opened when the heater 47 is not operated and is closed when the heater 47 is operated. The hydrogen generated in the reformer 42 is supplied to the fuel cell through the pipe 48. A pressure sensor is installed in the hydrogen supply hole of the fuel cell 45. The pressure sensor 49 is set to operate the heater 47 around the pipe 46 according to the hydrogen supply amount of the fuel cell. In such a fuel cell system, for example, when hydrogen is supplied from the reformer 42 in excess of the capacity of the fuel cell, the hydrogen pressure in the hydrogen supply hole rises, so the pressure sensor 49 operates and the heater 47 operates. To do. Accordingly, the pipe 46 is closed and the supply of fuel to the reformer is stopped. Further, when the supply of hydrogen becomes low and the hydrogen pressure in the hydrogen supply hole decreases, the operation of the heater 47 stops, the pipe 46 opens, and the fuel is supplied to the reformer 42.

【0045】上記の燃料電池システムにおいては、圧力
ヒータの作動圧、ヒータ47の温度設定は燃料電池シス
テムの運転状況により適宜選定すればよい。また圧力セ
ンサのかわりに温度センサを用いてもよい。
In the above fuel cell system, the operating pressure of the pressure heater and the temperature setting of the heater 47 may be appropriately selected according to the operating conditions of the fuel cell system. A temperature sensor may be used instead of the pressure sensor.

【0046】このように形状記憶合金を配管に用いるこ
とにより、燃料調整用のバルブ調整用器材を使用するこ
となく、小型軽量の改質システムまたは燃料電池システ
ムが得られる。また、燃料のむだを省き効率的に運転さ
せることができる。
By using the shape memory alloy in the pipe as described above, a compact and lightweight reforming system or a fuel cell system can be obtained without using a valve adjusting device for adjusting fuel. In addition, it is possible to efficiently operate the fuel without wasting fuel.

【0047】一方本願発明の構造の改質器は、平板の積
層体から構成されるため、燃料電池のスタック(少なく
とも燃料極、酸化剤極、及び両電極に狭持された電解質
板)と共に積層することができ、改質器と燃料電池が一
体となった燃料電池システムを提供できる。それにより
コンパクトな発電装置を得ることができる。
On the other hand, since the reformer having the structure of the present invention is composed of a flat plate laminated body, it is laminated together with the fuel cell stack (at least the fuel electrode, the oxidant electrode, and the electrolyte plate sandwiched between both electrodes). Therefore, a fuel cell system in which the reformer and the fuel cell are integrated can be provided. Thereby, a compact power generator can be obtained.

【0048】図10に本願発明の改質器と燃料電池スタ
ックの積層体からなる燃料電池システムの概略図を示
す。図10において30は、平板に燃焼触媒、または改
質触媒を形成した平板を積層した本願発明の改質器であ
る。また、31は電解質板、32は燃料極、33は酸化
剤極である。燃料極32及び酸化剤極33にはそれぞれ
水素ガス及び、酸化剤ガスの流路34,35が設けられ
ている。
FIG. 10 shows a schematic diagram of a fuel cell system comprising a laminate of a reformer and a fuel cell stack of the present invention. In FIG. 10, reference numeral 30 denotes a reformer of the present invention in which a flat plate on which a combustion catalyst or a reforming catalyst is formed is laminated. Further, 31 is an electrolyte plate, 32 is a fuel electrode, and 33 is an oxidizer electrode. The fuel electrode 32 and the oxidant electrode 33 are provided with hydrogen gas and oxidant gas passages 34 and 35, respectively.

【0049】改質器30の改質触媒を有する流路には、
メタノール等の炭化水素基を有する化合物及び水蒸気の
混合物からなる燃料が供給される。生成物の水素ガスは
別系統の流路を通って燃料電池の燃料極32に供給され
る。また、改質触媒を有する流路を燃料極に隣接して構
成し該流路にて生ずる水素が直接隣接した燃料極の酸化
酸ガス流路に供給されるよう構成すれば、配管が簡略化
される。この場合、燃料極と改質触媒を形成した平板と
の間に水素ガス選択性透過膜37を設けておくと純粋な
水素のみが燃料極に供給され好ましい。また、改質器3
0の燃焼触媒を有する流路には、燃料と燃焼用の空気と
して外部から空気を取り入れるかあるいは燃料電池の空
気極33からの廃ガスまたはそれらを混合して供給す
る。該流路に供給する燃焼用の燃料としては外部から炭
化水素類あるいは燃料極からの廃ガス(未反応の水素)
を供給する。
In the flow path having the reforming catalyst of the reformer 30,
A fuel comprising a mixture of a compound having a hydrocarbon group such as methanol and steam is supplied. The product hydrogen gas is supplied to the fuel electrode 32 of the fuel cell through the flow path of another system. Further, if the flow path having the reforming catalyst is formed adjacent to the fuel electrode and hydrogen generated in the flow path is directly supplied to the oxidant gas flow path of the adjacent fuel electrode, the piping is simplified. To be done. In this case, it is preferable to provide the hydrogen gas selective permeable membrane 37 between the fuel electrode and the flat plate on which the reforming catalyst is formed, because only pure hydrogen is supplied to the fuel electrode. In addition, the reformer 3
Into the flow path having the combustion catalyst of 0, the air is taken in from the outside as the fuel and the air for combustion, or the waste gas from the air electrode 33 of the fuel cell or a mixture thereof is supplied. As the fuel for combustion supplied to the flow passage, hydrocarbons from the outside or waste gas from the fuel electrode (unreacted hydrogen)
To supply.

【0050】本願発明の改質器は、燃焼触媒を形成した
平板において、発熱反応が生じその熱が改質触媒を形成
した平板における吸熱反応に用いられる。また、燃料電
池においては、発電時には熱が発生するが、起動時には
作動温度まで加熱したり、発電時に適正な温度まで加熱
するためにも利用できる。
In the reformer of the present invention, an exothermic reaction occurs in the flat plate on which the combustion catalyst is formed, and the heat is used for the endothermic reaction on the flat plate on which the reforming catalyst is formed. Further, in the fuel cell, although heat is generated during power generation, it can be used for heating up to an operating temperature at the time of start-up or heating up to an appropriate temperature during power generation.

【0051】燃料電池と本願発明の改質器を積層するこ
とにより、コンパクト化を図れるのみならず、各々で発
生する熱を相互に利用することが容易となり熱の利用率
を向上させることができる。
By stacking the fuel cell and the reformer of the present invention, not only can the size be reduced, but also the heat generated by each can be easily utilized mutually, and the heat utilization rate can be improved. .

【0052】図10においては、燃料電池のスタックが
一つの例について記載したが、さらに複数の燃料電池及
び改質器を交互に積層してもよい。燃料電池スタックを
複数個直列に積層したものと改質器を積層してもよい。
In FIG. 10, one fuel cell stack is described as an example, but a plurality of fuel cells and reformers may be alternately stacked. A plurality of fuel cell stacks stacked in series and a reformer may be stacked.

【0053】また、改質器を形成する平板を電気導電性
を有する材料で形成し、燃料電池スタックと積層するこ
とにより、改質器の積層された平板を介して燃料電池の
スタックが電気的に直列に接続される。そのため、改質
器を介して積層された燃料電池のスタック間の配線が不
要となり、全体の積層構造の両端にシステム全体の電力
を取り出すことが可能となる。
Further, the flat plate forming the reformer is made of a material having electrical conductivity and laminated with the fuel cell stack, so that the fuel cell stack is electrically connected through the laminated flat plate of the reformer. Are connected in series. Therefore, the wiring between the stacks of the fuel cells stacked via the reformer becomes unnecessary, and the electric power of the entire system can be taken out at both ends of the entire stacked structure.

【0054】本発明では、積層する燃料電池の種類を限
定するものではなく、炭化水素を改質した燃料を用いる
燃料電池であればよい。例えば、固体高分子電解質膜
(例えば商品名Nafion Du Pont社製)、
水素イオン伝導体(例えばヒドロニウムあるいはアンモ
ニウムβアルミナもしくはβガリア、三酸化セリウムス
トロンチウムの焼結体)を電解質に用いた燃料電池、酸
素イオン伝導体(例えば、安定化ジルコニウア)を電解
質に用いた燃料電池などが挙げられる。
In the present invention, the type of fuel cell to be stacked is not limited, and any fuel cell using a hydrocarbon reformed fuel may be used. For example, a solid polymer electrolyte membrane (for example, trade name Nafion Du Pont),
Fuel cells using hydrogen ion conductors (eg, hydronium or ammonium β-alumina or β-gallia, sintered body of cerium strontium trioxide) as electrolytes, fuel cells using oxygen ion conductors (eg, stabilized zirconium) as electrolytes And so on.

【0055】また図10において、電気導電性を有する
材料からなる平板を用いた改質器と燃料電池の積層体を
形成する場合、改質器の改質触媒を有する流体流路を流
体流路36とし、流体流路36と燃料電池燃料極の水素
ガス流路34との間に、両面が触媒活性と電気伝導性を
有する水素イオン(プロトン)伝導膜37を備えること
によって、改質触媒層で改質された流体中から選択的に
水素を燃料電池燃料極の流体中に移動させて燃料電池燃
料極で反応させることが可能である。改質触媒を有する
流体流路36では炭化水素基を含む化合物が改質されて
水素、一酸化炭素、二酸化炭素が生成するが、流体中に
は未反応の炭化水素類や水も残留している。この流体と
燃料電池燃料極の流体の間に両面が触媒活性と電気伝導
性を有する水素イオン(プロトン)伝導膜37を設置す
ると、改質触媒を有する流路36に接する膜の表面を陽
極とし、燃料電池燃料極の流路34に接する側の膜の表
面を陰極として電位差を生じる。この時、膜の陽極と陰
極では以下の反応が起こる。 陽極; H2 →2H+ +2e CO+H2 O →CO2 +2H+ +2e 陰極; 2H+ +2e →H2 2H+ +2e →H2
Further, in FIG. 10, when a laminated body of a reformer and a fuel cell using a flat plate made of an electrically conductive material is formed, the fluid passage having the reforming catalyst of the reformer is changed to the fluid passage. And a hydrogen ion (proton) conductive film 37 having catalytic activity and electric conductivity on both sides between the fluid flow path 36 and the hydrogen gas flow path 34 of the fuel cell fuel electrode. It is possible to selectively move hydrogen into the fluid of the fuel electrode of the fuel cell to cause reaction in the fuel electrode of the fuel cell by selectively moving hydrogen from the fluid reformed in (1). In the fluid flow path 36 having a reforming catalyst, a compound containing a hydrocarbon group is reformed to generate hydrogen, carbon monoxide, and carbon dioxide, but unreacted hydrocarbons and water also remain in the fluid. There is. When a hydrogen ion (proton) conductive film 37 having catalytic activity and electrical conductivity on both sides is installed between this fluid and the fluid of the fuel cell fuel electrode, the surface of the film in contact with the flow path 36 having the reforming catalyst serves as an anode. , A potential difference is generated with the surface of the membrane on the side of the fuel cell fuel electrode in contact with the flow path 34 as the cathode. At this time, the following reactions occur at the anode and cathode of the film. Anode: H 2 → 2H + + 2e CO + H 2 O → CO 2 + 2H + + 2e cathode; 2H + + 2e → H 2 2H + + 2e → H 2

【0056】この反応によって、改質触媒層の流路の流
体中の水素と一酸化炭素の分圧が低下し、改質反応の進
行が促進される。また、燃料電池燃料極の流路36に接
する側の膜の表面では水素のみが生成して、高純度な水
素が燃料電池燃料極で発電のために使用される。膜の両
側の電位差は、電気的・構造的に積層されている燃料電
池から生じる電力の一部を消費して生じさせるため、外
部からの電力供給は不要である。また、改質器が電気導
電性を有するため、燃料電池スタックとの電気的な積層
が可能であり、電気配線が不要である。本発明によれ
ば、改質反応と燃料電池の電極反応が促進されるため、
炭化水素の利用効率向上と装置のコンパクト化が図れ
る。さらに、本発明においては燃料電池スタックの各々
に電気的に並列にコンデンサーや2次電池を接続するこ
とによって、システムの起動時など燃料電池電極での発
電が不十分の時でも外部への電力供給が可能である。ま
た、コンデンサーや2次電池は改質器の流路から水素イ
オン導伝性膜を介して水素を燃料電池燃料極に供給する
場合の起動時の電力源にもなり、システムの起動が容易
になる。
By this reaction, the partial pressures of hydrogen and carbon monoxide in the fluid in the flow path of the reforming catalyst layer are lowered, and the progress of the reforming reaction is promoted. Further, only hydrogen is produced on the surface of the membrane on the side of the fuel cell fuel electrode that is in contact with the flow path 36, and high-purity hydrogen is used for power generation at the fuel cell fuel electrode. The potential difference between the two sides of the membrane is generated by consuming a part of the electric power generated from the fuel cells that are electrically and structurally stacked, and thus does not require external power supply. Further, since the reformer has electrical conductivity, it can be electrically stacked with the fuel cell stack, and no electrical wiring is required. According to the present invention, since the reforming reaction and the electrode reaction of the fuel cell are promoted,
It is possible to improve the utilization efficiency of hydrocarbons and make the device compact. Furthermore, in the present invention, by electrically connecting a capacitor or a secondary battery in parallel to each of the fuel cell stacks, power is supplied to the outside even when power generation at the fuel cell electrodes is insufficient, such as when the system is started. Is possible. Further, the condenser and the secondary battery also serve as a power source at the time of starting when hydrogen is supplied to the fuel cell fuel electrode from the reformer passage through the hydrogen ion conductive film, and thus the system can be easily started. Become.

【0057】[0057]

【実施例】以下実施例により本発明の改質器を説明す
る。 (実施例1)
EXAMPLES The reformer of the present invention will be described below with reference to examples. (Example 1)

【0058】0.1mm厚さのニッケル板に感光レジス
トを塗布し、0.15mm間隔で0.3mmピッチで露
光現像後エッチングし、幅0.18mmで深さ0.6m
mでピッチ0.3mmの溝を形成したニッケル製の平板
を複数枚作成した。
A photosensitive resist is applied to a nickel plate having a thickness of 0.1 mm, exposed and developed at intervals of 0.15 mm at a pitch of 0.3 mm, and then etched to give a width of 0.18 mm and a depth of 0.6 m.
A plurality of nickel flat plates having grooves with a pitch of 0.3 mm at m were formed.

【0059】得られた平板にマスキングした後、白金を
ターゲットとし、圧力10-3Torr、酸素1%を含有した
アルゴン雰囲気で10秒間スパッタし、平板の溝の表面
に平均厚さ0.5μmの島状の燃焼触媒を形成した。同
様の方法で燃焼触媒を形成した平板(以下平板2とす
る)を10枚作成した、他方上記の方法と同様な方法に
てエッチングしたニッケル製の平板にマスキングした
後、銅と亜鉛の合金をターゲットとし、圧力10-3Tor
r、水素1%のアルゴン雰囲気で10秒間スパッタし、
平板の溝の表面に平均厚さ0.5μmの島状の改質触媒
を形成した。同様の方法で改質触媒を形成した平板(以
下平板1とする。)を10枚作成した。上記方法で得ら
れた平板1と平板2とを、図1に示されるように順次交
互に積層し、外装をガラス綿、及びアルミニウム箔で巻
き付け、改質器を得た。
After masking the obtained flat plate, platinum was used as a target and sputtered for 10 seconds in an argon atmosphere containing 10 -3 Torr of pressure and 1% of oxygen to form an average thickness of 0.5 μm on the surface of the groove of the flat plate. An island-shaped combustion catalyst was formed. Ten flat plates (hereinafter referred to as flat plate 2) on which combustion catalysts were formed by the same method were prepared. On the other hand, after masking a nickel flat plate etched by the same method as above, an alloy of copper and zinc was added. Target, pressure 10 -3 Torr
r, sputter for 10 seconds in an argon atmosphere of 1% hydrogen,
An island-shaped reforming catalyst having an average thickness of 0.5 μm was formed on the surface of the groove of the flat plate. Ten flat plates (hereinafter referred to as flat plate 1) on which the reforming catalyst was formed were prepared by the same method. The flat plate 1 and the flat plate 2 obtained by the above method were alternately laminated as shown in FIG. 1, and the exterior was wound with glass cotton and aluminum foil to obtain a reformer.

【0060】次に、以上のようにして得られた改質器に
ついて、運転を行なった。溝の表面に燃焼触媒を有する
流体流路4に、メタノールと空気とを混合燃料を流した
ところ、流体流路4内の温度が200℃程度に上がった
ため、流体流路3にメタノールと水とを1:1に混合し
た燃料を流した。その結果メタノールと水が気化し、さ
らに水素が変換された。メタノールの水素への変換率は
60%〜70%であった。 (実施例2)
Next, the reformer thus obtained was operated. When a mixed fuel of methanol and air was made to flow through the fluid channel 4 having a combustion catalyst on the surface of the groove, the temperature in the fluid channel 4 rose to about 200 ° C., so that methanol and water were mixed in the fluid channel 3. The fuel mixed with 1: 1 was flowed. As a result, methanol and water were vaporized and further hydrogen was converted. The conversion rate of methanol to hydrogen was 60% to 70%. (Example 2)

【0061】溝を形成した平板に、改質触媒及び燃焼触
媒を形成する際のスパッタリング時のガス雰囲気が、圧
力10-3Torr、酸素1%を含有したアルゴン雰囲気であ
る以外は、実施例1と同様な方法で改質器を得た。
Example 1 except that the gas atmosphere during sputtering when forming the reforming catalyst and the combustion catalyst on the flat plate having the grooves was an argon atmosphere containing a pressure of 10 −3 Torr and 1% oxygen. A reformer was obtained in the same manner as in.

【0062】得られた改質器について実際に運転を行っ
た。溝の表面に燃焼触媒を有する流体流路4に、メタノ
ールと空気との混合燃料を流したところ、実施例1の場
合に比して5倍の体積の燃料を流した時点で流体流路4
の温度が200℃程度に上った。次に、流体流路3にメ
タノールと水とを1:1に混合した燃料を流した。その
結果メタノールと水が気化し、さらに水素に変換され
た。メタノールの水素への変換率は15%〜25%であ
った。 (実施例3)
The reformer thus obtained was actually operated. When a mixed fuel of methanol and air was made to flow through the fluid passage 4 having a combustion catalyst on the surface of the groove, the fluid passage 4 was formed at the time when a fuel having a volume five times as large as that in the case of Example 1 was made to flow.
Temperature of about 200 ℃. Next, a fuel in which methanol and water were mixed at a ratio of 1: 1 was flown through the fluid passage 3. As a result, methanol and water were vaporized and further converted to hydrogen. The conversion rate of methanol to hydrogen was 15% to 25%. (Example 3)

【0063】本実施例においては、改質器に内部マニホ
ールドを設け改質触媒を有する流体流路への燃料供給・
生成物排出方向と、燃焼触媒を有する流体流路への燃料
供給・生成物排出の方向とが直交した場合の実施例を示
す。
In this embodiment, the reformer is provided with an internal manifold to supply fuel to the fluid passage having the reforming catalyst.
An example is shown in which the product discharge direction and the fuel supply / product discharge direction to the fluid passage having the combustion catalyst are orthogonal to each other.

【0064】まずシリコンウェーハ((100)面、5
00μm厚)を熱酸化することにより、表面にSiO2
を形成し、リソグラフィー技術を用いて所定のパターン
を転写した後、フッ化水素酸でSiO2 の選択除去を行
った。次に、エチレンジアミン系の水溶液を用いた異方
性エッチングを行うことにより、ウェーハの表面に図1
1の如く台形状の溝52を形成した。この時、溝の深さ
は約100μmとし、ピッチは約1mmとした。溝の両
端は各々の溝を通過した流体が混合するように深溝5
3,54を形成してあり、一方は下方からの流路との接
続のために開放とし、他方は上部との接続のために上部
のみを開放とした。また、本ウェーハを燃料ガス用及び
加熱流体用に交互に積層した時の一方の流体の経路接続
用に、開放した溝55を形成した。各エッチング工程終
了後、ダイシングにより全体のシリコン基板51形状を
図11の如くとした。
First, a silicon wafer ((100) plane, 5
The surface of SiO 2 is
Was formed, and a predetermined pattern was transferred using a lithography technique, and then SiO 2 was selectively removed with hydrofluoric acid. Next, anisotropic etching is performed using an ethylenediamine-based aqueous solution, so that the wafer surface shown in FIG.
A trapezoidal groove 52 was formed as shown in FIG. At this time, the depth of the grooves was about 100 μm, and the pitch was about 1 mm. Both ends of the groove are deep grooves 5 so that the fluids passing through each groove are mixed.
3, 54 are formed, one of which is open for connection with the flow path from below, and the other of which is open only for connection with the upper part. Further, an open groove 55 was formed for connection of one fluid path when the present wafer was alternately laminated for fuel gas and heating fluid. After the completion of each etching step, the entire silicon substrate 51 was shaped as shown in FIG. 11 by dicing.

【0065】前記の如く流体経路を形成したシリコン基
板51にスパッタ法等により、経路内に燃焼触媒層を形
成した。また別途シリコン基板51と同様な方法で図1
2に示すような形状のシリコン基板56〜60を製造し
た。シリコン基板56、58には燃焼触媒を形成し、シ
リコン基板57には改質触媒を形成した。図12の如く
改質反応用基板57及び触媒燃焼用基板56が直交する
ように各ウェーハを直接接着法により接着し積層した。
直接接着することにより、例えば基板56と57との接
着により、基板56の表面に形成した溝は基板57の底
面により各々1本の流路となる。
On the silicon substrate 51 having the fluid path formed as described above, a combustion catalyst layer was formed in the path by a sputtering method or the like. In addition, a method similar to that for the silicon substrate 51 is separately used in FIG.
Silicon substrates 56 to 60 having a shape as shown in 2 were manufactured. A combustion catalyst was formed on the silicon substrates 56 and 58, and a reforming catalyst was formed on the silicon substrate 57. As shown in FIG. 12, the respective wafers were bonded and laminated by the direct bonding method so that the modification reaction substrate 57 and the catalytic combustion substrate 56 were orthogonal to each other.
By directly adhering, for example, by adhering the substrates 56 and 57, the groove formed on the surface of the substrate 56 becomes one flow path by the bottom surface of the substrate 57.

【0066】改質反応用基板57の上下が媒燃焼用基板
56及び58となる構造とすることにより、燃料ガスの
改質部を均一に加熱することができる。また、積層構造
の最下部及び最上部には各流体の配管用に燃料ガス入口
62、改質後の水素含有ガス出口64及び加熱用ガス入
口61、出口63を図14の如く形成した。
With the structure in which the upper and lower sides of the reforming reaction substrate 57 are the medium burning substrates 56 and 58, the reforming portion of the fuel gas can be heated uniformly. Further, a fuel gas inlet 62, a hydrogen-containing gas outlet 64 after reforming, a heating gas inlet 61, and an outlet 63 are formed in the lowermost and uppermost portions of the laminated structure for piping of each fluid as shown in FIG.

【0067】本発明に係わる改質器の断面図を図13に
示した。前記の如く積層した基板を、シリコンをエッチ
ングすることにより作製した固定治具65、66で改質
装置内に固定した。固定治具には燃料ガス及び加熱流体
用の微小な貫通孔を形成してあり、低融点ガラス等で配
管と接続した。
A sectional view of the reformer according to the present invention is shown in FIG. The substrates laminated as described above were fixed in the reforming apparatus by fixing jigs 65 and 66 produced by etching silicon. Minute holes for fuel gas and heating fluid were formed in the fixing jig, and the fixing jig was connected to the pipe with a low melting point glass or the like.

【0068】また、燃料供給タンクから改質装置への経
路には、微細加工技術により作製したマイクロポンプ7
2,73を設置した。このマイクロポンプはシリコンと
パイレックスガラスを陽極接合により作製される。シリ
コンのエッチングにより流体の流路を形成し、またパイ
レックスガラスにはエッチングによりダイヤフラムを形
成してあり、ダイヤフラムの上部にピエゾアクチュエー
タが取付けられている。このアクチュエータに電圧を印
加することにより、ダイヤフラムが上下することにより
流体を所定量流すことが可能となる。 (実施例4)また、担持した触媒が傾斜濃度分布を有す
る多孔体を用いた改質器の実施例を示す。
Further, the micro pump 7 manufactured by the fine processing technique is provided in the path from the fuel supply tank to the reformer.
2,73 were installed. This micropump is made by anodic bonding silicon and Pyrex glass. A fluid flow path is formed by etching silicon, and a diaphragm is formed on the Pyrex glass by etching, and a piezoelectric actuator is attached to the upper portion of the diaphragm. By applying a voltage to this actuator, the diaphragm moves up and down to allow a predetermined amount of fluid to flow. (Example 4) An example of a reformer using a porous material in which the supported catalyst has a gradient concentration distribution will be described.

【0069】酸化アルミニウム(融点2050℃)粉体
33gを開口径1mmのホッパーにいれて自然落下さ
せ、ニッケル金属粉(融点1455℃)10gを開口径
0.1mmのホッパーにいれて秒速50mmで往復運転
している2500℃に加熱したタングステン(融点33
70℃)板の上に均一に落下させる。粉体の落下点の両
サイドに2500℃に加熱したタングステン(融点33
70℃)ロールを加重10kgから秒速100gで減圧
しながら厚さ2mmのニッケル担持酸化アルミニウム圧
延体を成形する。同様にしてニッケル金属粉のかわりに
白金(融点1773℃)を用いて白金担持酸化アルミニ
ウム圧延体を成形する。それら圧延体をタングステン板
から剥し、銅(融点1083℃)の溶湯中にタングステ
ン板から剥した圧延体の面を側面まで浸漬し溶浸した後
取りだし、一対の両端の側面をそれぞれ切り落としその
切り落とし面が交叉するように銅でぬれた面を重ね熱圧
着し結着した。
33 g of aluminum oxide (melting point 2050 ° C.) powder was put into a hopper with an opening diameter of 1 mm and allowed to fall naturally, and 10 g of nickel metal powder (melting point 1455 ° C.) was put into a hopper with an opening diameter of 0.1 mm and reciprocated at 50 mm / sec. Tungsten heated to 2500 ° C (melting point 33
(70 ° C) Drop it evenly on the plate. Tungsten heated to 2500 ° C on both sides of the powder drop point (melting point 33
70 ° C.) A roll of nickel-supported aluminum oxide having a thickness of 2 mm is formed while depressurizing the roll from a load of 10 kg to 100 g per second. Similarly, a platinum-supported aluminum oxide rolled body is formed using platinum (melting point: 1773 ° C.) instead of nickel metal powder. The rolled bodies are peeled from the tungsten plate, and the rolled body surface peeled from the tungsten plate is immersed in the molten copper (melting point 1083 ° C.) to the side surface, infiltrated, and then taken out, and the pair of both side surfaces are cut off and cut off. The surfaces that were wet with copper were stacked so that they crossed each other and bonded by thermocompression bonding.

【0070】この成形板をニッケル担持酸化アルミニウ
ム圧延体面はニッケル担持酸化アルミニウム圧延体面
に、白金担持酸化アルミニウム圧延体面は白金担持酸化
アルミニウム圧延体面に切り口をそろえて6枚積層して
改質器を組み立てた。
Assembling a reformer by stacking 6 sheets of the shaped plate on the nickel-supported aluminum oxide rolled body surface on the nickel-supported aluminum oxide rolled body surface and the platinum-supported aluminum oxide rolled body surface on the platinum-supported aluminum oxide rolled body surface. It was

【0071】貫通路を持つ白金担持酸化アルミニウム多
孔質圧延体の切り落とし面からメタノール蒸気と過剰の
空気を2気圧で流動させ、一方貫通路を持つニッケル担
持酸化アルミニウム多孔質圧延体の切り落とし面からメ
タノール蒸気と等モルの水蒸気を2気圧で流動させる。
そしてリホーマーの一部を150℃以上に上げてメタノ
ールと酸素を着火したところ、100時間以上水素発生
濃度の変化は見られなかった。 (実施例5)
Methanol vapor and excess air were made to flow at 2 atm from the cut-off surface of the platinum-supported aluminum oxide porous rolled body having a through passage, while methanol was flown from the cut-off surface of the nickel-supported aluminum oxide porous rolled body having a through passage. Steam equimolar to steam is made to flow at 2 atm.
When a part of the reformer was heated to 150 ° C. or higher and ignited with methanol and oxygen, no change in the hydrogen generation concentration was observed for 100 hours or longer. (Example 5)

【0072】本実施例においては、本願発明の改質器に
おいて、燃料タンクから改質器へ燃料供給する配管に形
状記憶合金からなる配管を適用した場合の燃料電池シス
テムについて説明する。
In this example, a fuel cell system in which a pipe made of a shape memory alloy is applied to a pipe for supplying fuel from a fuel tank to the reformer in the reformer of the present invention will be described.

【0073】図14のように表裏面に半田鍍金した厚さ
0.2mm、大きさ100×300mmの薄いニッケル
にあらかじめ補給孔92、排気孔93、通気口94とし
て径5mmの穴4つ開けた。さらに、表面をエッチング
してピッチ1mm、長さ70mm、幅0.5mm、深さ
0.1mm細溝89、燃料補給溝90及び排気溝91と
して幅10mm、深さ0.1mmを作成した。改質用、
燃焼用それぞれ3枚ずつ作成した。このように作成した
基板表面の細溝部の凹凸及び各溝を除いた部分にカバー
を付け燃焼用には酸化触媒を改質用には改質触媒をそれ
ぞれスパッタで薄く付けた。これらを交互に積層し23
0℃でプレスし積層し改質器とした。上記の方法で得ら
れた改質器を用い、図15のように燃料電池システムを
作成した。
As shown in FIG. 14, four holes having a diameter of 5 mm were preliminarily provided as replenishment holes 92, exhaust holes 93, and ventilation holes 94 in thin nickel having a thickness of 0.2 mm and a size of 100 × 300 mm plated on the front and back sides. . Further, the surface was etched to form a pitch of 1 mm, a length of 70 mm, a width of 0.5 mm, a depth of 0.1 mm, a narrow groove 89, a refueling groove 90 and an exhaust groove 91 having a width of 10 mm and a depth of 0.1 mm. For reforming,
Three sheets were prepared for burning each. A cover was attached to the surface of the substrate thus formed except for the irregularities of the fine grooves and each groove, and an oxidation catalyst for combustion and a reforming catalyst for reforming were thinly deposited by sputtering. These are stacked alternately 23
It was pressed at 0 ° C. and laminated to form a reformer. Using the reformer obtained by the above method, a fuel cell system was prepared as shown in FIG.

【0074】41は燃料タンク42は上記改質器、45
は燃料電池である。配管系は均一に加圧できるようにし
た燃料タンク41から改質器42に燃料を供給する配管
の一部に形状記憶合金配管46が用いられている。この
形状記憶合金配管46にヒータ47が巻かれている。形
状記憶合金配管46は常温では閉じており、ヒータ47
を加熱することにより開く。形状記憶合金配管46は二
股に分かれた配管80に繋がる。配管80の一方を燃焼
燃料供給用形状記憶合金配管44に繋がり、燃料補給孔
部に繋がっている。燃焼燃料供給用形状記憶合金配管4
4は、常温では開いており、温度が目的温度になると閉
じる。燃焼燃料供給用形状記憶合金配管44と燃料補給
孔92の間に空気供給配管81がある。配管80の地方
に改質燃料供給用形状記憶合金配管43が繋がり改質の
燃料補給孔92に繋がっている。改質燃料供給用形状記
憶合金配管43は、常温では閉じており温度が高くなる
と開く。改質部で改質され生じた水素ガスは燃料電池本
体45に供給させる。燃料電池には圧力センサ48が取
り付けられ、改質ガスの圧力が目的圧力以上になるとヒ
ータ47が切れ、燃料調整用形状記憶合金配管46が閉
じる。圧力が下がるとヒータ47が入り、再び燃料調整
用形状記憶合金配管46が開く。
41 is a fuel tank 42 is the above reformer, 45
Is a fuel cell. In the piping system, a shape memory alloy piping 46 is used as a part of the piping for supplying fuel from the fuel tank 41 to the reformer 42 so that the pressure can be uniformly applied. A heater 47 is wound around the shape memory alloy pipe 46. The shape memory alloy pipe 46 is closed at room temperature, and the heater 47
Open by heating. The shape memory alloy pipe 46 is connected to a forked pipe 80. One of the pipes 80 is connected to the combustion fuel supply shape memory alloy pipe 44 and is connected to the fuel supply hole portion. Shape memory alloy pipe for combustion fuel supply 4
4 is open at room temperature and closes when the temperature reaches the target temperature. An air supply pipe 81 is provided between the combustion fuel supply shape memory alloy pipe 44 and the fuel supply hole 92. The reformed fuel supply shape memory alloy pipe 43 is connected to the region of the pipe 80, and is connected to the reforming fuel supply hole 92. The reformed fuel supply shape memory alloy pipe 43 is closed at room temperature and opened when the temperature rises. The hydrogen gas reformed in the reforming section is supplied to the fuel cell body 45. A pressure sensor 48 is attached to the fuel cell, and when the pressure of the reformed gas exceeds the target pressure, the heater 47 is turned off and the fuel adjustment shape memory alloy pipe 46 is closed. When the pressure decreases, the heater 47 is turned on and the fuel adjusting shape memory alloy pipe 46 is opened again.

【0075】積層された改質器42と配管の関係は燃焼
燃料供給用形状記憶合金配管44と改質燃料供給用形状
記憶合金配管43を中心にし積層された改質器42が2
つ積層されており、改質器の温度変化により配管18及
び19の形状が変化する。また、このようにした外側は
断熱材82を巻き、熱効率を高める。
The relationship between the laminated reformer 42 and the pipes is such that the laminated reformer 42 is centered around the combustion fuel supply shape memory alloy pipe 44 and the reformed fuel supply shape memory alloy pipe 43.
The shapes of the pipes 18 and 19 are changed according to the temperature change of the reformer. In addition, the heat insulating material 82 is wound around the outer side in this way to improve the thermal efficiency.

【0076】メチルアルコールと水をモル比で1:1に
配合した燃料を作成した装置に取り付けた。運転始めに
電気を供給しヒータ47を加熱し燃料供給形状記憶合金
配管46を開け、燃料を供給する。加熱用と改質用に二
股配管80で分けられ、常温で開いている燃焼燃料供給
用形状記憶合金配管44を通り、空気供給配管81から
空気を補給し、燃料と混ぜて燃焼部に送られ触媒により
触媒燃焼し発熱した。
The fuel in which methyl alcohol and water were mixed at a molar ratio of 1: 1 was attached to the prepared apparatus. At the beginning of operation, electricity is supplied to heat the heater 47 to open the fuel supply shape memory alloy pipe 46 and supply fuel. It is divided by a forked pipe 80 for heating and reforming, passes through the shape-memory alloy pipe 44 for supplying fuel for combustion, which is open at room temperature, supplies air from the air supply pipe 81, mixes it with fuel, and sends it to the combustion section. The catalyst burned due to catalytic combustion.

【0077】その熱により形状記憶合金が加熱され温度
が120℃を越えた時点で閉じていた改質燃料供給用形
状記憶合金配管43が開き改質部に燃料が供給された。
140℃を越えると、燃焼燃料供給用形状記憶合金配管
44が閉じ温度上昇が停止した。改質し発生した水素は
燃料電池本体45に送られ発電が始った。改質された水
素により水素の電池内の圧力が2.1kg/cm2 を越
えるとヒータ47が切れて燃料供給形状記憶合金配管4
6が閉じ燃料の供給が停止された。圧力が1.8kg/
cm2 以下になると、再びヒータ47が加熱され燃料供
給用形状記憶合金配管15燃料が開き供給された。温度
が120℃から140℃に、改質された水素圧力は2.
1kg/cm2 から1.8kg/cm2 に保たれ連続的
に燃料電池の運転ができた。 (実施例6)本実施例においては、本発明の改質器と燃
料電池スタックとを積層した燃料電池システムについて
説明する。
The shape memory alloy was heated by the heat, and when the temperature exceeded 120 ° C., the shape memory alloy pipe 43 for supplying reformed fuel, which was closed, was opened and the fuel was supplied to the reforming section.
When the temperature exceeded 140 ° C, the shape-memory alloy pipe 44 for supplying the combustion fuel closed and the temperature rise stopped. The reformed and generated hydrogen was sent to the fuel cell main body 45 to start power generation. Due to the reformed hydrogen, the hydrogen pressure inside the battery is 2.1 kg / cm 2. When it exceeds the limit, the heater 47 is cut off and the fuel supply shape memory alloy pipe 4
6 was closed and the supply of fuel was stopped. Pressure is 1.8kg /
cm 2 In the following cases, the heater 47 was heated again and the fuel for supplying the shape memory alloy pipe 15 for fuel was opened and supplied. The temperature of 120 ° C. to 140 ° C., the reformed hydrogen pressure is 2.
1 kg / cm 2 To 1.8 kg / cm 2 The fuel cell could be operated continuously. (Embodiment 6) In this embodiment, a fuel cell system in which the reformer of the present invention and a fuel cell stack are stacked will be described.

【0078】図16に本実施例の燃料電池システムにお
ける炭化水素燃料の改質部を形成する平板の平面図を示
す。改質部は図16に示される円形の平板120,12
1,122から構成されている。図16は平板を上部よ
り見た図である。平板120,121,122には各々
流体の流路となる溝及び孔a〜hが形成されている。平
板120,121,122は各々アルミニウムよりなり
厚み2mm、直径100mmである。平板120及び1
22の溝の表面には、改質触媒が形成されており、また
平板121の溝の表面には燃焼触媒が形成されている。
各々の平板への触媒の形成は以下に示す方法にて行っ
た。
FIG. 16 is a plan view of a flat plate forming the reforming portion of hydrocarbon fuel in the fuel cell system of this embodiment. The reforming section is a circular flat plate 120, 12 shown in FIG.
It is composed of 1,122. FIG. 16 is a view of the flat plate as viewed from above. Grooves and holes a to h that serve as fluid flow paths are formed in the flat plates 120, 121, and 122, respectively. The flat plates 120, 121, 122 are each made of aluminum and have a thickness of 2 mm and a diameter of 100 mm. Flat plates 120 and 1
A reforming catalyst is formed on the surface of the groove 22 and a combustion catalyst is formed on the surface of the groove of the flat plate 121.
The catalyst was formed on each flat plate by the method described below.

【0079】まず平板120及び122は図16に示さ
れるように溝及び孔を形成した後、溝の表面を苛性ソー
ダー水溶液に浸せきして表面のアルミニウムの一部を溶
出させた後、過酸化水素水溶液で表面のアルミニウム層
を酸化し、水洗、乾燥して多孔質のアルミナ層を形成さ
せた。この多孔質アルミナ層を硝酸銅と硝酸亜鉛の水溶
液に含浸して乾燥・焼成した後、水素気流中で還元処理
して改質触媒を担持させた。また、平板121は上記平
板120及び122と同様にして多孔質のアルミナ層を
形成した後、同様な多孔質アルミナ層に硝酸パラジウム
水溶液を含浸して乾燥・焼成して燃焼触媒を担持させた
一方、図17には本実施例の燃料電池システムにおける
燃料電池部の燃料極及び酸化剤極を構成する平板の平面
図を示す。
First, the flat plates 120 and 122 are formed with grooves and holes as shown in FIG. 16, and then the surfaces of the grooves are immersed in an aqueous solution of caustic soda to elute part of the aluminum on the surfaces, and then hydrogen peroxide is added. The aluminum layer on the surface was oxidized with an aqueous solution, washed with water and dried to form a porous alumina layer. The porous alumina layer was impregnated with an aqueous solution of copper nitrate and zinc nitrate, dried and calcined, and then subjected to a reduction treatment in a hydrogen stream to support a reforming catalyst. On the flat plate 121, a porous alumina layer is formed in the same manner as the flat plates 120 and 122, and then a similar porous alumina layer is impregnated with an aqueous palladium nitrate solution, dried and fired to carry a combustion catalyst. FIG. 17 is a plan view of a flat plate forming the fuel electrode and the oxidizer electrode of the fuel cell section in the fuel cell system of this embodiment.

【0080】平板123は酸化剤極、平板124は燃料
極である。平板123,124は平板120〜122と
同サイズ、同素材であり、図17の如くに溝及び孔a〜
hが形成されている。
The flat plate 123 is an oxidizer electrode, and the flat plate 124 is a fuel electrode. The flat plates 123 and 124 have the same size and the same material as the flat plates 120 to 122, and as shown in FIG.
h is formed.

【0081】一方、厚さ0.2mmのパーフルオロカー
ボンスルフォン酸膜(商品名;Nafion)の両面に
触媒担持カーボン粉末とポリテトラフルオロエチレン
(PTFE:商品名;テフロン)とNafion溶液と
を混練したものを金めっきニッケルスクリーンと共にホ
ットプレスし、さらに、その上に多孔カーボン板を圧着
した水素イオン伝導膜を用意した。膜の両面には異なっ
た触媒が形成されており一方は白金/ルテニウムを用
い、もう一方は白金であった。
On the other hand, a catalyst-supporting carbon powder, polytetrafluoroethylene (PTFE: trade name; Teflon) and a Nafion solution were kneaded on both sides of a perfluorocarbon sulfonic acid film (trade name: Nafion) having a thickness of 0.2 mm. Was hot-pressed together with a gold-plated nickel screen, and a hydrogen ion conductive membrane was prepared by pressing a porous carbon plate thereon. Different catalysts were formed on both sides of the membrane, one using platinum / ruthenium and the other platinum.

【0082】また、燃料電池の電解質板として、厚さ
0.2mmのパーフルオロカーボンスルフォン酸膜(商
品名;Nafion)の両面に白金触媒担持カーボン粉
末とポリテトラフルオロエチレン(PTFE:商品名;
テフロン)とNafion溶液とを混練したものを金め
っきニッケルスクリーンと共にホットプレスし、さら
に、その上に多孔カーボン板を圧着した電解質板を用意
した。
As an electrolyte plate for a fuel cell, a platinum catalyst-supporting carbon powder and polytetrafluoroethylene (PTFE: trade name; both sides of a perfluorocarbon sulfonic acid film (trade name: Nafion) having a thickness of 0.2 mm were used.
A kneaded mixture of Teflon) and Nafion solution was hot pressed together with a gold-plated nickel screen, and an electrolyte plate was prepared by pressing a porous carbon plate thereon.

【0083】上記平板120〜平板124を上から平板
123、平板124、平板120、平板121、平板1
22の順番でかつ、各々の平板に設けた孔a〜eが各々
1本の通路を形成するように積層し、平板123(酸化
剤極)と平板124(燃料極)との間に前記電解質板を
挟み込み、平板124と平板120の間に前記水素イオ
ン導伝性膜を挟み1つのユニットを形成した。この際、
水素イオン導電性膜の白金/ルテニウム触媒が形成され
た面は、平板120と隣接させ、白金のみが形成された
面は平板124と隣接させて積層した。このユニットを
二段重ね、さらに上部と下部に配線を行い燃料電池シス
テムを形成した。
From the top of the flat plates 120 to 124, the flat plate 123, the flat plate 124, the flat plate 120, the flat plate 121, and the flat plate 1 are arranged.
22 and the holes a to e provided in each flat plate are stacked so as to form one passage, and the electrolyte is provided between the flat plate 123 (oxidant electrode) and the flat plate 124 (fuel electrode). The plate was sandwiched, and the hydrogen ion conductive film was sandwiched between the flat plate 124 and the flat plate 120 to form one unit. On this occasion,
The surface of the hydrogen ion conductive film on which the platinum / ruthenium catalyst was formed was adjacent to the flat plate 120, and the surface of only the platinum was adjacent to the flat plate 124. Two units of this unit were stacked, and wiring was further performed on the upper and lower parts to form a fuel cell system.

【0084】図18に本実施例に係る燃料電池システム
の概略図を示す。図中125は電解質板、126は水素
イオン伝導性膜である。また各平板により形成した孔a
〜eより形成される通路における供給物質及び排質物の
流れを矢印にて示した。
FIG. 18 shows a schematic view of the fuel cell system according to this embodiment. In the figure, 125 is an electrolyte plate, and 126 is a hydrogen ion conductive membrane. Also, the hole a formed by each flat plate
The flow of the feed material and the waste material in the passage formed by ~ e are shown by arrows.

【0085】まず、孔gを通じて平板124(燃料極)
の溝に水素を供給すると共に、平板121(燃焼触媒を
形成した平板)の溝に孔fを通じて水素及び孔eを通じ
て空気を、平板122(改質触媒を形成した平板)の溝
に孔dを通じてメタノールと水の混合物を供給した。ま
た平板123(酸化剤極)にも孔eを通じて空気を供給
した。
First, the flat plate 124 (fuel electrode) is passed through the hole g.
While supplying hydrogen to the groove of the flat plate 121 (flat plate on which the combustion catalyst is formed), hydrogen and air through holes e through the hole f, and d through the groove of the flat plate 122 (flat plate on which the reforming catalyst is formed). A mixture of methanol and water was fed. Air was also supplied to the flat plate 123 (oxidizer electrode) through the hole e.

【0086】平板121(燃焼触媒を形成した平板)で
は常温から燃焼が開始して熱を発生した。それにより平
板122で改質反応も開始した。平板122で生じた水
素ガス、二酸化炭素、一酸化炭素、未反応のメタノール
水は孔hを通じて平板120へ送られた。また平板12
4、平板123及び電解質板125からなる燃料電池部
では温度上昇と共に発電を開始した。作動の温度が15
0℃に達したところで孔gによる平板124(燃料極)
への水素の供給を停止し、平板121(改質触媒を形成
した平板)への孔fから供給していた水素をメタノール
に切り替えた。水素供給を全て停止した後も引き続き発
電が起こった。
On the flat plate 121 (flat plate on which a combustion catalyst was formed), combustion started at room temperature to generate heat. As a result, the reforming reaction also started on the flat plate 122. Hydrogen gas, carbon dioxide, carbon monoxide, and unreacted methanol water generated on the flat plate 122 were sent to the flat plate 120 through the holes h. The flat plate 12
4, the fuel cell unit including the flat plate 123 and the electrolyte plate 125 started power generation as the temperature increased. Operating temperature is 15
When the temperature reaches 0 ° C, the flat plate 124 is formed by the hole g (fuel electrode)
The supply of hydrogen to the plate was stopped, and the hydrogen supplied from the hole f to the flat plate 121 (the flat plate on which the reforming catalyst was formed) was switched to methanol. Power generation continued even after the hydrogen supply was completely stopped.

【0087】上記燃料システムの温度は121に供給す
るメタノール量を調整することにより150℃に保っ
た。平板120(改質触媒を形成した平板)にて生じる
二酸化炭素及び未反応の水素等を含む排ガスは孔cを通
じて外部へ排出された。平板124(燃料極)上から生
じた未反応の水素は孔bを通じて外部へ排出された平板
123(酸化剤極)にて生じた水蒸気は、孔aを通じて
外部へ排出された。以上詳述した如く改質器と燃料電池
を積層したコンパクトな燃料電池システムを得ることが
できた。
The temperature of the fuel system was maintained at 150 ° C. by adjusting the amount of methanol supplied to 121. The exhaust gas containing carbon dioxide, unreacted hydrogen and the like generated on the flat plate 120 (the flat plate on which the reforming catalyst was formed) was discharged to the outside through the hole c. Unreacted hydrogen generated on the flat plate 124 (fuel electrode) was discharged to the outside through the hole b, and water vapor generated on the flat plate 123 (oxidizer electrode) was discharged to the outside through the hole a. As described above in detail, a compact fuel cell system in which the reformer and the fuel cell are stacked can be obtained.

【0088】[0088]

【発明の効果】以上詳述した如く本願発明によれば、従
来の改質器に用いられていたバーナ、反応槽、反応管等
の設備を用いることなく、改質反応に必要な熱を供給で
き、改質器を小型化でき、また、効率良く改質反応を起
こさせることができる。また、本願発明の燃料電池シス
テムは、改質器と一体化したことによりコンパクトな発
電システムを提供できる。
As described above in detail, according to the present invention, the heat required for the reforming reaction can be supplied without using the equipment such as the burner, the reaction tank, the reaction tube and the like used in the conventional reformer. Therefore, the reformer can be downsized, and the reforming reaction can be efficiently caused. Further, the fuel cell system of the present invention can provide a compact power generation system by being integrated with the reformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本願発明の改質器の構成図。FIG. 1 is a block diagram of a reformer of the present invention.

【図2】 本願発明の改質器の部分断面図。FIG. 2 is a partial sectional view of a reformer of the present invention.

【図3】 触媒を担持した部分断面図。FIG. 3 is a partial cross-sectional view carrying a catalyst.

【図4】 本願発明の改質器の構成図。FIG. 4 is a configuration diagram of a reformer of the present invention.

【図5】 触媒担持体の断面図。FIG. 5 is a cross-sectional view of a catalyst carrier.

【図6】 触媒担持体の断面図。FIG. 6 is a cross-sectional view of a catalyst carrier.

【図7】 本発明の改質器の一部分を示す斜視図。FIG. 7 is a perspective view showing a part of the reformer of the present invention.

【図8】 形状記憶合金からなる配管を用いた改質シス
テムの概略図。
FIG. 8 is a schematic view of a reforming system using a pipe made of a shape memory alloy.

【図9】 形状記憶合金からなる配管を用いた燃料電池
システムの概略図。
FIG. 9 is a schematic view of a fuel cell system using a pipe made of a shape memory alloy.

【図10】 本願発明の改質器と燃料電池スタックを体
積した燃料電池システムの概略図。
FIG. 10 is a schematic view of a fuel cell system including a reformer and a fuel cell stack of the present invention in volume.

【図11】 シリコンウェーハの斜視図。FIG. 11 is a perspective view of a silicon wafer.

【図12】 実施例3に係る改質器の部分斜視図。FIG. 12 is a partial perspective view of a reformer according to a third embodiment.

【図13】 実施例3に係る改質器の断面図。FIG. 13 is a sectional view of a reformer according to a third embodiment.

【図14】 実施例5に係る平板の構成図。FIG. 14 is a configuration diagram of a flat plate according to a fifth embodiment.

【図15】 実施例5に係る燃料電池システムの概略
図。
FIG. 15 is a schematic diagram of a fuel cell system according to a fifth embodiment.

【図16】 実施例6に係る燃料電池システムの改質部
を構成する平板の平面図。
FIG. 16 is a plan view of a flat plate forming a reforming section of a fuel cell system according to a sixth embodiment.

【図17】 実施例7に係る燃料電池システムの燃料電
池部を構成する平板の平面図。
FIG. 17 is a plan view of a flat plate forming a fuel cell section of a fuel cell system according to a seventh embodiment.

【図18】 実施例7に係る燃料電池システムの概略
図。
FIG. 18 is a schematic diagram of a fuel cell system according to a seventh embodiment.

【図19】 従来の改質器の概略図。FIG. 19 is a schematic view of a conventional reformer.

【符号の説明】[Explanation of symbols]

1,2,20,22…平板 3,4,15,16,2
1,23,36…流体流路 5…燃焼触媒 6…改質触媒 11…触媒粒子 12…
多孔体 13…燃焼触媒粒子 14…改質触媒粒子 1
7…分離体 24…流体の流れる方向を示す矢印 2
5,26,27,28…孔 30,42…改質器 3
1,25…電解質板 32…燃料極 33…酸化剤極 34,35…ガス流路
37…水素ガス選択性透過膜、水素イオン伝導膜 4
1…燃料タンク 43…改質燃料供給用の形状記憶合金
配管 44…触媒燃焼燃料供給用の形状記憶合金配管
45…燃料電池 46…形状記憶合金からなる配管 47…ヒータ 4
8,80…配管 49…圧力センサ 51…シリコン基
板 52,55…溝 53,54…深溝 56,58…触媒燃焼用基板 57…改質反応用基板
59,60…シリコン基板 61…加熱用ガス入口 6
2…燃料ガス入口 63…加熱用ガス出口 64…水素含有ガス出口 65,66…固定治具 67,68…流体導入口 6
9,70…流体排出口 71…容器 72,73…マイクロバルブ 81…空気
供給配管 82,102…断熱材 89…細溝 90…燃料補給溝
91…排気溝 92…補給孔 93…排気孔 94…通気口 101…
改質槽本体 103…外管 104…内管 105…改
質触媒 106…バーナー 107…燃交換器 108…燃料タンク 109…ポンプ 110…反応管 120,121,122,123,124…平板 12
6…水素イオン伝導性膜
1, 2, 20, 22 ... Flat plate 3, 4, 15, 16, 2
1, 23, 36 ... Fluid flow path 5 ... Combustion catalyst 6 ... Reforming catalyst 11 ... Catalyst particles 12 ...
Porous substance 13 ... Combustion catalyst particles 14 ... Reforming catalyst particles 1
7 ... Separator 24 ... Arrow 2 showing the direction of fluid flow
5, 26, 27, 28 ... Hole 30, 42 ... Reformer 3
1, 25 ... Electrolyte plate 32 ... Fuel electrode 33 ... Oxidizer electrode 34, 35 ... Gas flow path 37 ... Hydrogen gas selective permeable membrane, hydrogen ion conductive membrane 4
DESCRIPTION OF SYMBOLS 1 ... Fuel tank 43 ... Shape memory alloy piping for reforming fuel supply 44 ... Shape memory alloy piping for catalytic combustion fuel supply
45 ... Fuel cell 46 ... Pipe made of shape memory alloy 47 ... Heater 4
8, 80 ... Piping 49 ... Pressure sensor 51 ... Silicon substrate 52, 55 ... Groove 53, 54 ... Deep groove 56, 58 ... Catalytic combustion substrate 57 ... Reforming reaction substrate
59, 60 ... Silicon substrate 61 ... Heating gas inlet 6
2 ... Fuel gas inlet 63 ... Heating gas outlet 64 ... Hydrogen-containing gas outlet 65, 66 ... Fixing jig 67, 68 ... Fluid inlet 6
9, 70 ... Fluid discharge port 71 ... Container 72, 73 ... Micro valve 81 ... Air supply piping 82, 102 ... Heat insulating material 89 ... Fine groove 90 ... Fuel supply groove 91 ... Exhaust groove 92 ... Supply hole 93 ... Exhaust hole 94 ... Vent 101 ...
Reforming tank body 103 ... Outer tube 104 ... Inner tube 105 ... Reforming catalyst 106 ... Burner 107 ... Fuel exchanger 108 ... Fuel tank 109 ... Pump 110 ... Reaction tube 120, 121, 122, 123, 124 ... Flat plate 12
6 ... Hydrogen ion conductive membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 槫松 一彦 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (72)発明者 羽中田 佳男 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Katsumatsu 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Toshiba Research Institute Co., Ltd. Toshiba Town No. 1 Incorporated company Toshiba Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溝を有する複数の平板を積層して流体通
路を形成し、その隣接する一方の平板の溝の表面に改質
触媒が形成され、他方の平板の溝の表面に燃焼触媒が形
成されていることを特徴とする改質器。
1. A plurality of flat plates having grooves are stacked to form a fluid passage, a reforming catalyst is formed on the surface of the groove of one of the adjacent flat plates, and a combustion catalyst is formed on the surface of the groove of the other flat plate. A reformer characterized by being formed.
【請求項2】 燃料を触媒反応させて発熱する触媒反応
層と、燃料改質を行う改質反応層とを積層した構造を有
する改質器において、前記燃料の触媒反応層及び改質反
応層への導入、及び触媒反応後の生成物及び改質反応後
生成物の外部への排出を内部マニホールドにて行うこと
を特徴とする改質器。
2. A reformer having a structure in which a catalytic reaction layer that generates heat by catalytically reacting fuel and a reforming reaction layer that reforms fuel are stacked, and a catalytic reaction layer and a reforming reaction layer of the fuel are provided. A reformer characterized in that an internal manifold is used to introduce the gas into the reactor and discharge the product after the catalytic reaction and the product after the reforming reaction to the outside.
【請求項3】 炭化水素基を有する化合物からなる燃料
を水素に変換させる触媒を担持した多孔質体を備えた改
質器において、触媒が多孔質体中に濃度傾斜を持って分
布していることを特徴とする改質器。
3. In a reformer equipped with a porous body carrying a catalyst for converting a fuel composed of a compound having a hydrocarbon group into hydrogen, the catalyst is distributed in the porous body with a concentration gradient. A reformer characterized by that.
【請求項4】 燃料を収納する燃料タンクと、燃料を改
質反応させ水素を発生させる改質器と、燃料タンクから
改質器への燃料を送る配管とを備えた改質器において、
前記配管の少なくとも一部が形状記憶合金よりなること
を特徴とする改質システム。
4. A reformer comprising a fuel tank for containing fuel, a reformer for reforming the fuel to generate hydrogen, and a pipe for sending fuel from the fuel tank to the reformer,
A reforming system, wherein at least a part of the pipe is made of a shape memory alloy.
【請求項5】 平板が導電体より成る請求項1記載の改
質器と、酸化剤極と燃料極と両電極間に挟持された電解
質板とを積層したことを特徴とする燃料電池システム。
5. A fuel cell system comprising a reformer according to claim 1, wherein the flat plate is made of a conductor, and an oxidizer electrode, a fuel electrode, and an electrolyte plate sandwiched between the electrodes.
JP4261415A 1992-09-30 1992-09-30 Reformer, reforming system, and fuel cell system Pending JPH06111838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4261415A JPH06111838A (en) 1992-09-30 1992-09-30 Reformer, reforming system, and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4261415A JPH06111838A (en) 1992-09-30 1992-09-30 Reformer, reforming system, and fuel cell system

Publications (1)

Publication Number Publication Date
JPH06111838A true JPH06111838A (en) 1994-04-22

Family

ID=17361558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4261415A Pending JPH06111838A (en) 1992-09-30 1992-09-30 Reformer, reforming system, and fuel cell system

Country Status (1)

Country Link
JP (1) JPH06111838A (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1000146C2 (en) * 1995-04-13 1996-10-15 Gastec Nv Method for performing a chemical reaction.
JP2002529359A (en) * 1998-11-10 2002-09-10 インターナショナル フュエル セルズ,エルエルシー Suppression of carbon deposition on the wall of fuel gas steam reformer
JP2002531363A (en) * 1998-11-10 2002-09-24 インターナショナル フュエル セルズ,エルエルシー Suppression of carbon deposition on the wall of a fuel gas steam reformer
JP2002284504A (en) * 2001-03-28 2002-10-03 Osaka Gas Co Ltd Carbon monoxide removing device and fuel reforming system having it
US6488838B1 (en) 1999-08-17 2002-12-03 Battelle Memorial Institute Chemical reactor and method for gas phase reactant catalytic reactions
EP1281922A2 (en) 1995-10-20 2003-02-05 Battelle Memorial Institute Microcomponent chemical process sheet architecture
JP2003034506A (en) * 2001-07-23 2003-02-07 Toyota Motor Corp Hydrogen extractor
JP2003045459A (en) * 2001-08-01 2003-02-14 Casio Comput Co Ltd Heating arrangement, reforming device and fuel cell system
JP2003073105A (en) * 2001-09-04 2003-03-12 Toyota Motor Corp Reformer with steam mixer having layered thin plate structure
JP2003089502A (en) * 2001-09-12 2003-03-28 Suzuki Motor Corp Methanol reformer
JP2004066008A (en) * 2002-08-01 2004-03-04 Casio Comput Co Ltd Chemical reaction apparatus
JP2004180488A (en) * 2002-11-11 2004-06-24 Matsushita Electric Works Ltd Combustion device and thermoelectric generator
JP2004518598A (en) * 2000-08-28 2004-06-24 モトローラ・インコーポレイテッド Hydrogen generator using ceramic technology
WO2004069738A1 (en) * 2003-02-06 2004-08-19 Dai Nippon Printing Co., Ltd. Microreactor and method of producing the same
JP2004356003A (en) * 2003-05-30 2004-12-16 Sony Corp Reactor, its manufacturing method, reformer, and power supply system
JP2005047794A (en) * 2003-07-14 2005-02-24 Dainippon Printing Co Ltd Microreactor for manufacturing hydrogen and manufacturing method thereof
JP2005097089A (en) * 2003-09-05 2005-04-14 Dainippon Printing Co Ltd Microreactor for producing hydrogen and method for manufacturing the same
US6893619B1 (en) * 2000-09-13 2005-05-17 Ford Global Technologies, Llc Plate-frame heat exchange reactor with serial cross-flow geometry
JP2005126286A (en) * 2003-10-24 2005-05-19 Dainippon Printing Co Ltd Membrane reactor for hydrogen production
JP2005132712A (en) * 2003-10-07 2005-05-26 Dainippon Printing Co Ltd Microreactor for producing hydrogen
JP2005243649A (en) * 2004-02-26 2005-09-08 Samsung Sdi Co Ltd Reformer of fuel cell system and fuel cell system
US6969506B2 (en) 1999-08-17 2005-11-29 Battelle Memorial Institute Methods of conducting simultaneous exothermic and endothermic reactions
JP2006010130A (en) * 2004-06-23 2006-01-12 T Rad Co Ltd Multi-fluid heat exchanger
JP2006059614A (en) * 2004-08-19 2006-03-02 Hitachi Ltd Fuel cell
US7045243B2 (en) 2001-05-22 2006-05-16 Nissan Motor Co., Ltd. Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell
KR100626619B1 (en) * 2005-05-27 2006-09-25 주식회사 두산 The manufacturing method of microchannel reactor with coated catalyst inside the metallic microchannel and reactor thereof
JP2006261120A (en) * 2005-03-16 2006-09-28 Samsung Sdi Co Ltd Stack for fuel cell, and fuel cell system comprising the same
JP2006265007A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Fuel reformer
JP2006290711A (en) * 2005-04-15 2006-10-26 Hitachi Ltd Hydrogen supply apparatus and hydrogen supply method
JP2007070180A (en) * 2005-09-08 2007-03-22 Casio Comput Co Ltd Reactor
JP2007095687A (en) * 2005-09-29 2007-04-12 Samsung Electro-Mechanics Co Ltd Reforming apparatus with superior heat characteristic for fuel cell
JP2007115677A (en) * 2005-10-17 2007-05-10 Samsung Electro-Mechanics Co Ltd Thin plate multilayer type hydrogen fuel battery
JP2007134347A (en) * 2002-02-28 2007-05-31 Casio Comput Co Ltd Power generation type power source and electronic device
JP2007204365A (en) * 2006-02-03 2007-08-16 Samsung Sdi Co Ltd Fuel reformer and method of manufacturing the same
JP2007227154A (en) * 2006-02-23 2007-09-06 Casio Comput Co Ltd Fuel cell device
JP2007268531A (en) * 2007-04-27 2007-10-18 Casio Comput Co Ltd Compact chemical reaction apparatus
JP2007277063A (en) * 2006-04-10 2007-10-25 Toyota Central Res & Dev Lab Inc Reactor
JP2007275823A (en) * 2006-04-10 2007-10-25 Toyota Central Res & Dev Lab Inc Reactor, manufacturing method for reactor and unit member of reactor
JP2007287695A (en) * 2006-04-19 2007-11-01 Samsung Electro-Mechanics Co Ltd Catalyst filling method and reformer for fuel cell manufractured by using this
JP2007290901A (en) * 2006-04-24 2007-11-08 Toyota Central Res & Dev Lab Inc Heat exchange type reformer
JP2007290900A (en) * 2006-04-24 2007-11-08 Toyota Central Res & Dev Lab Inc Heat exchange-type reformer
JP2007297238A (en) * 2006-04-28 2007-11-15 Toyota Central Res & Dev Lab Inc Heat exchanger type reformer and reforming apparatus
JP2007296546A (en) * 2006-04-28 2007-11-15 Toyota Central Res & Dev Lab Inc Soldering method
US7332139B2 (en) * 2000-08-31 2008-02-19 Degussa Ag Process and device for carrying out reactions in reactor with slot-shaped reaction spaces
JP2008101908A (en) * 1994-07-29 2008-05-01 Battelle Memorial Inst Microcomponent sheet architecture
JP2008529953A (en) * 2005-04-01 2008-08-07 エルジー・ケム・リミテッド Hydrogen production apparatus and hydrogen production method using the same
JP2008194689A (en) * 2008-02-18 2008-08-28 Casio Comput Co Ltd Small-sized chemical reaction device
US7431898B2 (en) 2002-03-29 2008-10-07 Casio Computer Co., Ltd. Chemical reaction apparatus and power supply system
WO2009011236A1 (en) * 2007-07-17 2009-01-22 Honda Motor Co., Ltd. NOx PURIFYING CATALYST
WO2009011237A1 (en) * 2007-07-17 2009-01-22 Honda Motor Co., Ltd. NOx PURIFYING CATALYST
US7531016B2 (en) 2002-03-29 2009-05-12 Casio Computer Co., Ltd. Chemical reaction apparatus and power supply system
JP2009534622A (en) * 2006-04-20 2009-09-24 コミッサリア タ レネルジー アトミーク Heat exchanger system with fluid circuit selectively coated with chemical reaction catalyst
DE102008023042A1 (en) * 2008-05-09 2009-11-12 Süd-Chemie AG A method for semi-adiabatic, semi-isothermal carrying out an endothermic reaction using a catalytic reactor and forming this reactor
JP2010012466A (en) * 2001-02-16 2010-01-21 Battelle Memorial Inst Integrated type reactor, method of making the same and method of conducting simultaneous exothermic and endothermic reactions
US7651669B2 (en) * 2000-06-06 2010-01-26 The United States Of America As Represented By The United States Department Of Energy Microsystem process networks
JP2010030890A (en) * 2004-03-31 2010-02-12 Casio Comput Co Ltd Reaction apparatus
US7691509B2 (en) 2004-06-23 2010-04-06 Samsung Sdi Co., Ltd. Reformer and fuel cell system having the same
US7763216B2 (en) 2002-10-25 2010-07-27 Casio Computer Co., Ltd. Chemical reactor and fuel cell system
JP2010201429A (en) * 2002-08-15 2010-09-16 Velocys Inc Integrated combustion reactor and method of conducting simultaneous endothermic and exothermic reaction
JP2011020118A (en) * 2002-03-11 2011-02-03 Battelle Memorial Inst Microchannel reactor with temperature control
KR101030042B1 (en) * 2004-06-07 2011-04-20 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having thereof
JP2011514873A (en) * 2008-02-14 2011-05-12 コンパクトジーティーエル パブリック リミテッド カンパニー Catalytic reaction module
US7972585B2 (en) 2001-03-28 2011-07-05 Osaka Gas Co., Ltd. Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover , fuel removal system having the carbon monoxide remover, and filter
JP2016501348A (en) * 2012-12-05 2016-01-18 インテリジェント エナジー リミテッドIntelligent Energy Limited Micro valve
JP2016031827A (en) * 2014-07-29 2016-03-07 株式会社村田製作所 Fuel battery module
WO2016199790A1 (en) * 2015-06-08 2016-12-15 株式会社Ihi Reactor
CN114899462A (en) * 2022-05-31 2022-08-12 成都岷山绿氢能源有限公司 Solid oxide fuel cell

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580422B2 (en) * 1994-07-29 2010-11-10 バッテル・メモリアル・インスティチュート Micro component sheet structure
JP2008101908A (en) * 1994-07-29 2008-05-01 Battelle Memorial Inst Microcomponent sheet architecture
US6482375B1 (en) 1995-04-13 2002-11-19 Gastec N. V. Method for carrying out a chemical reaction
WO1996032188A1 (en) * 1995-04-13 1996-10-17 Gastec N.V. Method for carrying out a chemical reaction
NL1000146C2 (en) * 1995-04-13 1996-10-15 Gastec Nv Method for performing a chemical reaction.
EP1281922A2 (en) 1995-10-20 2003-02-05 Battelle Memorial Institute Microcomponent chemical process sheet architecture
JP2002529359A (en) * 1998-11-10 2002-09-10 インターナショナル フュエル セルズ,エルエルシー Suppression of carbon deposition on the wall of fuel gas steam reformer
JP2002531363A (en) * 1998-11-10 2002-09-24 インターナショナル フュエル セルズ,エルエルシー Suppression of carbon deposition on the wall of a fuel gas steam reformer
JP2011173120A (en) * 1999-08-17 2011-09-08 Battelle Memorial Inst Chemical reactor and method for gas phase reactant catalytic reactions
US6969506B2 (en) 1999-08-17 2005-11-29 Battelle Memorial Institute Methods of conducting simultaneous exothermic and endothermic reactions
US6488838B1 (en) 1999-08-17 2002-12-03 Battelle Memorial Institute Chemical reactor and method for gas phase reactant catalytic reactions
US7803325B2 (en) * 1999-08-17 2010-09-28 Battelle Memorial Institute Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions
US7651669B2 (en) * 2000-06-06 2010-01-26 The United States Of America As Represented By The United States Department Of Energy Microsystem process networks
US7048897B1 (en) * 2000-08-28 2006-05-23 Motorola, Inc. Hydrogen generator utilizing ceramic technology
JP2004518598A (en) * 2000-08-28 2004-06-24 モトローラ・インコーポレイテッド Hydrogen generator using ceramic technology
US7332139B2 (en) * 2000-08-31 2008-02-19 Degussa Ag Process and device for carrying out reactions in reactor with slot-shaped reaction spaces
US6893619B1 (en) * 2000-09-13 2005-05-17 Ford Global Technologies, Llc Plate-frame heat exchange reactor with serial cross-flow geometry
JP2014131804A (en) * 2001-02-16 2014-07-17 Battelle Memorial Inst Integrated reactor, method for manufacturing the same, and method for simultaneously inducing an exothermic reaction and an endothermic reaction
JP2010012466A (en) * 2001-02-16 2010-01-21 Battelle Memorial Inst Integrated type reactor, method of making the same and method of conducting simultaneous exothermic and endothermic reactions
US7972585B2 (en) 2001-03-28 2011-07-05 Osaka Gas Co., Ltd. Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover , fuel removal system having the carbon monoxide remover, and filter
JP2002284504A (en) * 2001-03-28 2002-10-03 Osaka Gas Co Ltd Carbon monoxide removing device and fuel reforming system having it
US8591850B2 (en) 2001-03-28 2013-11-26 Osaka Gas Co., Ltd. Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel reforming system having the carbon monoxide remover, and filter
US8357341B2 (en) 2001-03-28 2013-01-22 Osaka Gas Co., Ltd. Carbon monoxide removal method, operating method for fuel reforming system, carbon monoxide remover, fuel removal system having the carbon monoxide remover, and filter
US7045243B2 (en) 2001-05-22 2006-05-16 Nissan Motor Co., Ltd. Cell plate structure for fuel cell, manufacturing method thereof and solid electrolyte type fuel cell
JP2003034506A (en) * 2001-07-23 2003-02-07 Toyota Motor Corp Hydrogen extractor
JP4682476B2 (en) * 2001-08-01 2011-05-11 カシオ計算機株式会社 Heating device, reforming device and fuel cell system
JP2003045459A (en) * 2001-08-01 2003-02-14 Casio Comput Co Ltd Heating arrangement, reforming device and fuel cell system
JP2003073105A (en) * 2001-09-04 2003-03-12 Toyota Motor Corp Reformer with steam mixer having layered thin plate structure
JP2003089502A (en) * 2001-09-12 2003-03-28 Suzuki Motor Corp Methanol reformer
JP2007134347A (en) * 2002-02-28 2007-05-31 Casio Comput Co Ltd Power generation type power source and electronic device
JP2014144453A (en) * 2002-03-11 2014-08-14 Battelle Memorial Inst Microchannel reactor with temperature control
JP2011020118A (en) * 2002-03-11 2011-02-03 Battelle Memorial Inst Microchannel reactor with temperature control
US7431898B2 (en) 2002-03-29 2008-10-07 Casio Computer Co., Ltd. Chemical reaction apparatus and power supply system
US7531016B2 (en) 2002-03-29 2009-05-12 Casio Computer Co., Ltd. Chemical reaction apparatus and power supply system
JP2004066008A (en) * 2002-08-01 2004-03-04 Casio Comput Co Ltd Chemical reaction apparatus
JP2010201429A (en) * 2002-08-15 2010-09-16 Velocys Inc Integrated combustion reactor and method of conducting simultaneous endothermic and exothermic reaction
US7763216B2 (en) 2002-10-25 2010-07-27 Casio Computer Co., Ltd. Chemical reactor and fuel cell system
JP2004180488A (en) * 2002-11-11 2004-06-24 Matsushita Electric Works Ltd Combustion device and thermoelectric generator
US8123825B2 (en) 2003-02-06 2012-02-28 Dai Nippon Printing Co., Ltd. Microreactor and production method thereof
WO2004069738A1 (en) * 2003-02-06 2004-08-19 Dai Nippon Printing Co., Ltd. Microreactor and method of producing the same
US7803328B2 (en) 2003-02-06 2010-09-28 Dai Nippon Printing Co., Ltd. Microreactor and method of producing the same
JP4587016B2 (en) * 2003-05-30 2010-11-24 ソニー株式会社 Reactor and manufacturing method thereof, reformer, power supply system
JP2004356003A (en) * 2003-05-30 2004-12-16 Sony Corp Reactor, its manufacturing method, reformer, and power supply system
JP2005047794A (en) * 2003-07-14 2005-02-24 Dainippon Printing Co Ltd Microreactor for manufacturing hydrogen and manufacturing method thereof
JP4486429B2 (en) * 2003-07-14 2010-06-23 大日本印刷株式会社 Microreactor for hydrogen production and method for producing the same
JP2005097089A (en) * 2003-09-05 2005-04-14 Dainippon Printing Co Ltd Microreactor for producing hydrogen and method for manufacturing the same
JP4559790B2 (en) * 2003-09-05 2010-10-13 大日本印刷株式会社 Microreactor for hydrogen production and method for producing the same
JP4504751B2 (en) * 2003-10-07 2010-07-14 大日本印刷株式会社 Microreactor for hydrogen production
JP2005132712A (en) * 2003-10-07 2005-05-26 Dainippon Printing Co Ltd Microreactor for producing hydrogen
JP4537685B2 (en) * 2003-10-24 2010-09-01 大日本印刷株式会社 Membrane reactor for hydrogen production
JP2005126286A (en) * 2003-10-24 2005-05-19 Dainippon Printing Co Ltd Membrane reactor for hydrogen production
JP2005243649A (en) * 2004-02-26 2005-09-08 Samsung Sdi Co Ltd Reformer of fuel cell system and fuel cell system
JP2010030890A (en) * 2004-03-31 2010-02-12 Casio Comput Co Ltd Reaction apparatus
KR101030042B1 (en) * 2004-06-07 2011-04-20 삼성에스디아이 주식회사 Reformer for fuel cell system and fuel cell system having thereof
JP4606786B2 (en) * 2004-06-23 2011-01-05 株式会社ティラド Multi-fluid heat exchanger
JP2006010130A (en) * 2004-06-23 2006-01-12 T Rad Co Ltd Multi-fluid heat exchanger
US7691509B2 (en) 2004-06-23 2010-04-06 Samsung Sdi Co., Ltd. Reformer and fuel cell system having the same
JP2006059614A (en) * 2004-08-19 2006-03-02 Hitachi Ltd Fuel cell
JP2006261120A (en) * 2005-03-16 2006-09-28 Samsung Sdi Co Ltd Stack for fuel cell, and fuel cell system comprising the same
JP2006265007A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Fuel reformer
JP2008529953A (en) * 2005-04-01 2008-08-07 エルジー・ケム・リミテッド Hydrogen production apparatus and hydrogen production method using the same
JP2006290711A (en) * 2005-04-15 2006-10-26 Hitachi Ltd Hydrogen supply apparatus and hydrogen supply method
KR100626619B1 (en) * 2005-05-27 2006-09-25 주식회사 두산 The manufacturing method of microchannel reactor with coated catalyst inside the metallic microchannel and reactor thereof
JP2007070180A (en) * 2005-09-08 2007-03-22 Casio Comput Co Ltd Reactor
JP4643533B2 (en) * 2005-09-29 2011-03-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fuel cell reformer with excellent thermal characteristics
JP2007095687A (en) * 2005-09-29 2007-04-12 Samsung Electro-Mechanics Co Ltd Reforming apparatus with superior heat characteristic for fuel cell
JP2007115677A (en) * 2005-10-17 2007-05-10 Samsung Electro-Mechanics Co Ltd Thin plate multilayer type hydrogen fuel battery
JP2007204365A (en) * 2006-02-03 2007-08-16 Samsung Sdi Co Ltd Fuel reformer and method of manufacturing the same
US8273141B2 (en) 2006-02-03 2012-09-25 Samsung Sdi Co., Ltd. Fuel reforming apparatus and manufacturing method thereof
JP2007227154A (en) * 2006-02-23 2007-09-06 Casio Comput Co Ltd Fuel cell device
JP2007277063A (en) * 2006-04-10 2007-10-25 Toyota Central Res & Dev Lab Inc Reactor
JP2007275823A (en) * 2006-04-10 2007-10-25 Toyota Central Res & Dev Lab Inc Reactor, manufacturing method for reactor and unit member of reactor
JP2007287695A (en) * 2006-04-19 2007-11-01 Samsung Electro-Mechanics Co Ltd Catalyst filling method and reformer for fuel cell manufractured by using this
US8025919B2 (en) 2006-04-19 2011-09-27 Samsung Electro-Mechanics Co., Ltd. Catalyst filling method in micro-channels and reforming apparatus manufactured by the method
JP2009534622A (en) * 2006-04-20 2009-09-24 コミッサリア タ レネルジー アトミーク Heat exchanger system with fluid circuit selectively coated with chemical reaction catalyst
JP2007290900A (en) * 2006-04-24 2007-11-08 Toyota Central Res & Dev Lab Inc Heat exchange-type reformer
JP2007290901A (en) * 2006-04-24 2007-11-08 Toyota Central Res & Dev Lab Inc Heat exchange type reformer
JP2007297238A (en) * 2006-04-28 2007-11-15 Toyota Central Res & Dev Lab Inc Heat exchanger type reformer and reforming apparatus
JP4675821B2 (en) * 2006-04-28 2011-04-27 株式会社豊田中央研究所 Brazing method
JP2007296546A (en) * 2006-04-28 2007-11-15 Toyota Central Res & Dev Lab Inc Soldering method
JP2007268531A (en) * 2007-04-27 2007-10-18 Casio Comput Co Ltd Compact chemical reaction apparatus
JP4605180B2 (en) * 2007-04-27 2011-01-05 カシオ計算機株式会社 Small chemical reactor
US8372366B2 (en) 2007-07-17 2013-02-12 Honda Motor Co., Ltd. NOx purifying catalyst
JP2009022820A (en) * 2007-07-17 2009-02-05 Honda Motor Co Ltd NOx PURIFYING CATALYST
WO2009011236A1 (en) * 2007-07-17 2009-01-22 Honda Motor Co., Ltd. NOx PURIFYING CATALYST
US8425869B2 (en) 2007-07-17 2013-04-23 Honda Motor Co., Ltd. NOx purifying catalyst
WO2009011237A1 (en) * 2007-07-17 2009-01-22 Honda Motor Co., Ltd. NOx PURIFYING CATALYST
JP2009022821A (en) * 2007-07-17 2009-02-05 Honda Motor Co Ltd NOx PURIFYING CATALYST
JP2011514873A (en) * 2008-02-14 2011-05-12 コンパクトジーティーエル パブリック リミテッド カンパニー Catalytic reaction module
JP2008194689A (en) * 2008-02-18 2008-08-28 Casio Comput Co Ltd Small-sized chemical reaction device
DE102008023042A1 (en) * 2008-05-09 2009-11-12 Süd-Chemie AG A method for semi-adiabatic, semi-isothermal carrying out an endothermic reaction using a catalytic reactor and forming this reactor
JP2016501348A (en) * 2012-12-05 2016-01-18 インテリジェント エナジー リミテッドIntelligent Energy Limited Micro valve
JP2016031827A (en) * 2014-07-29 2016-03-07 株式会社村田製作所 Fuel battery module
WO2016199790A1 (en) * 2015-06-08 2016-12-15 株式会社Ihi Reactor
TWI613007B (en) * 2015-06-08 2018-02-01 Ihi股份有限公司 reactor
JPWO2016199790A1 (en) * 2015-06-08 2018-03-29 株式会社Ihi Reactor
US10118148B2 (en) 2015-06-08 2018-11-06 Ihi Corporation Reactor
CN114899462A (en) * 2022-05-31 2022-08-12 成都岷山绿氢能源有限公司 Solid oxide fuel cell
CN114899462B (en) * 2022-05-31 2024-03-26 成都岷山绿氢能源有限公司 Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
JPH06111838A (en) Reformer, reforming system, and fuel cell system
CN100544099C (en) Have integrated catalytic fuel processor based on MEMS fuel cell and manufacture method thereof
JP4012514B2 (en) Chemical reactor and fuel processor using ceramic technology
US8057988B2 (en) Catalyst for microelectromechanical systems microreactors
JP4674099B2 (en) Fuel cell system reformer and fuel cell system including the same
JP2005522325A5 (en)
US20070015015A1 (en) Solid oxide fuel cell
US20030054215A1 (en) Compact integrated solid oxide fuel cell system
JP2003132906A (en) Single cell for fuel cell and solid electrolytic fuel cell
CN101807702A (en) Electrochemical power source designs and components
US20070068076A1 (en) Hydrogen generating device and fuel cell system
US20030194362A1 (en) Chemical reactor and fuel processor utilizing ceramic technology
JP2003301295A (en) Microreactor furnace constituent and its production method
KR100339795B1 (en) Direct Internal Reforming Molten Carbonate Fuel Cell with Membrane for Intercepting Carbonate Vapor
JP2008522382A (en) Fuel cell device assembly and method of making a frame
JP4484767B2 (en) Reforming apparatus and fuel cell system
JP2003142130A (en) Single cell for fuel cell and solid electrolyte type fuel cell
WO2003088389A2 (en) Combustion heater and fuel processor utilizing ceramic technology
JP2007115677A (en) Thin plate multilayer type hydrogen fuel battery
JP2793523B2 (en) Polymer electrolyte fuel cell and method of operating the same
KR100665123B1 (en) Micro Reforming Apparatus for Fuel Cell
JPH06349504A (en) Solid electrolyte type fuel cell
KR100786870B1 (en) Catalyst for oxidizing carbon monoxide for reformer used in for fuel cell, and fuel cell system comprising same
KR100616678B1 (en) Micro fuel cell and method for manufacturing the same
JP2002358989A (en) Gas preheating device for fuel cell