JPH06109847A - Optical distance-measuring apparatus - Google Patents

Optical distance-measuring apparatus

Info

Publication number
JPH06109847A
JPH06109847A JP4262534A JP26253492A JPH06109847A JP H06109847 A JPH06109847 A JP H06109847A JP 4262534 A JP4262534 A JP 4262534A JP 26253492 A JP26253492 A JP 26253492A JP H06109847 A JPH06109847 A JP H06109847A
Authority
JP
Japan
Prior art keywords
light receiving
light
preceding vehicle
distance
turntable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4262534A
Other languages
Japanese (ja)
Inventor
Tsukasa Harada
司 原田
Kunihiko Matsumura
邦彦 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP4262534A priority Critical patent/JPH06109847A/en
Publication of JPH06109847A publication Critical patent/JPH06109847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To capture an object under test such as a preceding vehicle or the like by a method wherein the existence direction of the object under test such as the preceding vehicle or the like is estimated and an optical system is operated automatically to the direction. CONSTITUTION:A light-emitting element 2 and a plurality of photodetectors 3, 4 are arranged transversely on a turntable 14, and photodetection areas 43, 44 for the individual photodetectors 3, 4 are set in respectively different ranges so as to be overlapped partly with each other. A mechanism which turns the turntable 14 and its driving motor as well as an operating and control part which turns and controls the driving motor on the basis of the combination of magnitude relationships of the distance measured value or the photodetection intensity of the individual photodetectors 3, 4 are installed. They are operated so that a reflecting body 40 such as a preceding vehicle or the like is always captured inside the overlapped region of the photodetection areas 43, 44.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両に搭載して車両の
進行方向に存在する先行車や障害物までの距離を測定す
るのに有用な光学式距離計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical distance measuring device which is mounted on a vehicle and is useful for measuring the distance to a preceding vehicle or an obstacle existing in the traveling direction of the vehicle.

【0002】[0002]

【従来の技術】一般に、車両の進行方向に存在する先行
車や障害物等を検出し、先行車や障害物等までの距離を
測定する光学式距離計測装置においては、センシング領
域を広げる必要がある。
2. Description of the Related Art Generally, it is necessary to widen a sensing area in an optical distance measuring device that detects a preceding vehicle or an obstacle existing in a traveling direction of a vehicle and measures a distance to the preceding vehicle or the obstacle. is there.

【0003】上記要請に対し、光学系の工夫で発光領域
を広げるのでは、発光パワー密度の低下により受光が難
くなることから、従来、細い発光ビームを広角度でスキ
ャニングする方式(ビームスキャン方式)が知られてい
る。しかし、このビームスキャン方式では、発光ビーム
の位置(方向)と受光情報を光速で処理する必要があ
り、信号処理系が大規模なものとなる。そこで、発光素
子を複数個備え、広角度の発光領域を得る方式(複数ビ
ーム方式)が検討されている。
In response to the above demand, if the light emitting area is expanded by devising an optical system, it becomes difficult to receive light due to a decrease in light emitting power density. Therefore, conventionally, a method of scanning a narrow light emitting beam at a wide angle (beam scanning method). It has been known. However, in this beam scanning method, it is necessary to process the position (direction) of the emission beam and the light reception information at the speed of light, and the signal processing system becomes large-scale. Therefore, a method (a multi-beam method) that includes a plurality of light emitting elements to obtain a wide-angle light emitting region is being studied.

【0004】図4に複数ビーム方式の光学式距離計測装
置を示す(特開昭61−259185号公報)。この装
置は、送光器50内にレーザダイオード等から成る複数
の発光素子a,b,cを設け、駆動回路51で駆動され
る各発光素子a,b,cからの光ビームA,B,Cを集
光レンズ52を通して放射するようになっている。ま
た、受光器53側においては、上記光ビームA,B,C
が先行車や障害物等の反射体53で反射して来る光を、
集光レンズ54を通して受光素子55で受光し、その出
力信号を増幅回路56を通して測距回路57に送り、該
測距回路で、光の放射から受光までの伝播遅延時間を基
に反射体53までの距離を測定する構成となっている。
この送光器50の構成によれば、広い範囲内での測定が
行えると共に、集光レンズ系52が発光素子a,b,c
に共通であるので、装置全体を小形化できる。
FIG. 4 shows a multi-beam type optical distance measuring device (JP-A-61-259185). This device is provided with a plurality of light emitting elements a, b, c, such as laser diodes, in a light transmitter 50, and light beams A, B, from the respective light emitting elements a, b, c driven by a drive circuit 51. C is emitted through the condenser lens 52. On the side of the light receiver 53, the light beams A, B, C
Light reflected by the reflector 53 such as a preceding vehicle or an obstacle,
Light is received by the light receiving element 55 through the condenser lens 54, and the output signal is sent to the distance measuring circuit 57 through the amplifier circuit 56, and the distance measuring circuit reaches the reflector 53 based on the propagation delay time from light emission to light reception. It is configured to measure the distance.
According to the configuration of the light transmitter 50, the measurement can be performed in a wide range, and the condenser lens system 52 is used for the light emitting elements a, b, c.
The size of the entire device can be reduced.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記した複数
ビーム方式の場合、レーザダイオード等の発光素子を複
数個備えることが不可欠である。現状のレーザダイオー
ドの単価は受光素子に比べ非常に高価であり、複数個設
置することは量産品としてコスト高の装置となる。ま
た、受光素子が1つの場合、先行車両の存在する方向に
受光エリアを偏向させて効率よく先行車両を捕捉するこ
とが出来ない。
However, in the case of the above-described multiple beam system, it is indispensable to provide a plurality of light emitting elements such as laser diodes. The unit price of the current laser diode is much higher than that of the light receiving element, and installing a plurality of laser diodes makes a mass-produced device with high cost. Further, if there is only one light receiving element, the light receiving area cannot be deflected in the direction in which the preceding vehicle exists and the preceding vehicle cannot be captured efficiently.

【0006】本発明は、上記問題点に鑑みなされたもの
で、単価の安い受光素子を複数備えることで所望の広い
センシング領域を確保でき、その受光エリアが異なるこ
とで先行車等の測定対象物の存在方向を推定し、その方
向に光学系を自動操作して測定対象物を捕捉することが
できる、小形、省スペースの光学式距離計測装置を提供
することにある。
The present invention has been made in view of the above problems, and a desired wide sensing area can be secured by providing a plurality of light-receiving elements having a low unit price, and the light-receiving areas are different from each other so that a measurement object such as a preceding vehicle is An object of the present invention is to provide a small-sized, space-saving optical distance measuring device capable of estimating the existing direction and capturing an object to be measured by automatically operating the optical system in that direction.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、発光素子と受光素子とを備え、発光素子
による光の放射から受光素子による受光までの伝播遅延
時間に基づいて先行車等の反射体までの距離を測定する
距離計測装置において、一つの発光素子と複数個の受光
素子とをターンテーブル上に搭載し、該複数個の受光素
子の受光エリアは隣同士で一部重なるように各々異なる
範囲に設定し、ターンテーブルを回転させる駆動手段
と、各受光素子についての距離計測値の大小関係の組合
わせに基づいて、常に受光エリアの重なり領域内で上記
反射体を捕捉するように上記駆動手段を制御する制御手
段とを設けた構成のものである。
In order to achieve the above object, the present invention comprises a light emitting element and a light receiving element, and is based on a propagation delay time from light emission by the light emitting element to light reception by the light receiving element. In a distance measuring device for measuring a distance to a reflector such as a car, one light emitting element and a plurality of light receiving elements are mounted on a turntable, and the light receiving areas of the plurality of light receiving elements are partially adjacent to each other. The reflectors are always captured within the overlapping area of the light receiving areas based on the combination of the driving means for rotating the turntable and the size relationship of the distance measurement values for each light receiving element, which are set in different ranges so that they overlap. And a control means for controlling the drive means.

【0008】本発明において、上記駆動手段を制御する
制御手段は、各受光素子についての受光強度の大小関係
の組合わせに基づいて、常に受光エリアの重なり領域内
に上記反射体を捕捉するように動作する制御手段とする
ことができる。
In the present invention, the control means for controlling the driving means always captures the reflector in the overlapping area of the light receiving areas based on the combination of the magnitude relations of the light receiving intensities of the respective light receiving elements. It may be an operating control means.

【0009】[0009]

【作用】先行車等からの反射光がなく受光素子がこれを
受光しないときは、当該受光素子系統についての距離計
測値は「距離最大」となり、反射光を受光した場合に
は、何がしかの距離計測値がある状態、即ち「距離小」
となる。従って、この各受光素子についての距離計測値
の大小関係の組合わせに基づいて、先行車等が左右いず
れの方向にあるのかが推定できる。制御手段は、この判
断の基に先行車等が左右いずれかにずれている場合は、
駆動手段を駆動してターンテーブルを回転させることに
より受光エリアの方向を偏向し、受光エリアの重なり領
域内で上記反射体が捕捉された時点でターンテーブルを
停止する。
[Function] When there is no reflected light from a preceding vehicle or the like and the light receiving element does not receive this, the distance measurement value for the light receiving element system becomes "maximum distance". There is a distance measurement value of, that is, "small distance"
Becomes Therefore, based on the combination of the magnitude relations of the distance measurement values for each light receiving element, it can be estimated whether the preceding vehicle is in the left or right direction. If the preceding vehicle or the like is deviated to the left or right based on this judgment, the control means
The direction of the light receiving area is deflected by driving the driving means to rotate the turntable, and the turntable is stopped when the reflector is captured in the overlapping area of the light receiving areas.

【0010】上記先行車等が左右いずれの方向にあるの
かの推定は、各受光素子についての受光強度の大小関係
の組合わせに基づいても行うことができ、これによって
も同様に上記反射体を常に受光エリアの重なり領域内に
捕捉させることができる。
The left-right direction of the preceding vehicle or the like can be estimated based on the combination of the magnitude relations of the received light intensities of the respective light-receiving elements. It can always be captured in the overlapping area of the light receiving area.

【0011】[0011]

【実施例】以下、本発明を図示の一実施例に基づいて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment shown in the drawings.

【0012】図1に光学式距離計測装置のシステム構成
を示す。本実施例の場合、この距離計測装置は車両に搭
載されるものとする。
FIG. 1 shows the system configuration of the optical distance measuring device. In the case of this embodiment, this distance measuring device is assumed to be mounted on a vehicle.

【0013】図1において、距離計測装置は、レーザー
レーダヘッド1,時間計測ユニット20,信号処理ユニ
ット30の3部分に分れている。
In FIG. 1, the distance measuring device is divided into three parts: a laser radar head 1, a time measuring unit 20, and a signal processing unit 30.

【0014】レーザーレーダヘッド1は、LD(レーザ
ーダイオード)から成る1つの発光素子2と、PD(ピ
ンフォトダイオード)から成る2つの受光素子3,4と
を有し、発光素子2の前側には発光用レンズ(集光レン
ズ)5が配置され、各受光素子3,4の前側にはそれぞ
れ格子状のメカニカルフィルタ8を備えた受光用レンズ
(集光レンズ)6,7が配置されている。9はLDの駆
動回路、10は受光回路である。
The laser radar head 1 has one light emitting element 2 composed of an LD (laser diode) and two light receiving elements 3 and 4 composed of a PD (pin photodiode). A light-emitting lens (condensing lens) 5 is arranged, and light-receiving lenses (condensing lenses) 6 and 7 having lattice-shaped mechanical filters 8 are arranged in front of the respective light-receiving elements 3 and 4. Reference numeral 9 is an LD drive circuit, and 10 is a light receiving circuit.

【0015】上記1つの発光素子2と2つの受光素子
3,4は、図2に示す如くターンテーブル14上に載置
され、それらに属するレンズ5,6,7及びメカニカル
フィルタ8もターンテーブル14上に搭載されている。
図2から判るように、発光素子2及びそのレンズ5は、
図1ではレーザーレーダヘッド1の片側に描いてある
が、実際には図2の如く2つの受光素子3,4及びその
レンズ6,7の中間に位置する。
The one light emitting element 2 and the two light receiving elements 3 and 4 are mounted on the turntable 14 as shown in FIG. 2, and the lenses 5, 6, and the mechanical filter 8 belonging to them are also included in the turntable 14. Mounted on.
As can be seen from FIG. 2, the light emitting element 2 and its lens 5 are
Although it is drawn on one side of the laser radar head 1 in FIG. 1, it is actually located between the two light receiving elements 3 and 4 and the lenses 6 and 7 thereof as shown in FIG.

【0016】時間計測ユニット20は、LDの駆動回路
に対するスタートパルスを発生するパルス発生部21
と、該スタートパルスにより計時を開始し受光回路10
からのストップパルスで計時を終了する時間計測部22
と、電源部23とを有する。また、信号処理ユニット3
0は、時間計測部22で得られた時間データを基に距離
を算出する距離計側部31と、その結果を表示する表示
部32とを備えている。
The time measuring unit 20 includes a pulse generator 21 for generating a start pulse for the LD drive circuit.
And the light-receiving circuit 10 starts timing by the start pulse.
Time measuring unit 22 that finishes time measurement with a stop pulse from
And a power supply unit 23. In addition, the signal processing unit 3
Reference numeral 0 includes a rangefinder side unit 31 that calculates a distance based on the time data obtained by the time measuring unit 22, and a display unit 32 that displays the result.

【0017】更に、上記レーザーレーダヘッド1は、上
記ターンテーブル14を回転させて、受光素子3,4の
受光エリア43,44及び発光素子2の発光エリア(図
示せず)を図2(A)から図2(B)の如く偏向させる
ためのサーボ機構11と、その駆動モータ12とを備え
ている。尚、サーボ機構11の現在回転角度は駆動モー
タ12と連動するポテンショメータ13により検出され
るようになっている。
Further, the laser radar head 1 rotates the turntable 14 so that the light receiving areas 43 and 44 of the light receiving elements 3 and 4 and the light emitting area (not shown) of the light emitting element 2 are shown in FIG. 2A to 2B, a servo mechanism 11 for deflecting and a drive motor 12 thereof are provided. The current rotation angle of the servo mechanism 11 is detected by the potentiometer 13 that works in conjunction with the drive motor 12.

【0018】また信号処理ユニット30は、先行車の反
射体40を、常に図2(B)の如く2つの受光素子3,
4の受光エリア43,44の重なり領域内に捕捉するよ
うにターンテーブル14を回転させる制御手段として、
サーボ機構11の駆動モータ12に対し適切な指令を与
えるサーボ操作部33を備えている。このサーボ操作部
33は、具体的には、距離計側部31で計測される受光
素子3,4毎の計測値の大小関係の組合わせから、サー
ボ機構11に対し、その駆動モータ12の回転の有無及
び回転方向についての指令を与える。
In the signal processing unit 30, the reflector 40 of the preceding vehicle is always provided with the two light receiving elements 3 as shown in FIG.
As a control means for rotating the turntable 14 so as to capture it in the overlapping area of the four light receiving areas 43 and 44,
A servo operation unit 33 that gives an appropriate command to the drive motor 12 of the servo mechanism 11 is provided. Specifically, the servo operating unit 33 rotates the drive motor 12 relative to the servo mechanism 11 based on the combination of the magnitudes of the measured values of the light receiving elements 3 and 4 measured by the distance meter side unit 31. It gives a command about the presence or absence of and the direction of rotation.

【0019】次に上記構成の作用について説明する。Next, the operation of the above configuration will be described.

【0020】図1において、時間計測ユニット20のパ
スル発生部21からレーザーレーダヘッド1のLD駆動
回路9にスタートパルスが出力される。LD駆動回路9
は、このスタートパルスのトリガーにより発光素子2た
るLDを駆動し、レーザーパルスを発生させる。また、
上記スタートパルスは時間計測部22に与えられ、時間
計測部22の計時を開始する。先行車の反射体40(図
2)で反射したレーザパルスは、受光素子3,4の一方
又は両方により受光され、電流を発生し、受光回路10
で増幅された後、ストップパルスを時間計測部22に出
力する。時間計測部22ではパルス発生部21からのス
タートパルスと、受光回路10からのストップパルスと
の間の時間間隔を計測し、時間データとして距離計側部
31に出力する。距離計側部31では時間データから先
行車との距離を演算し、距離データとして車両の制御ユ
ニット(ASC ECU)へ出力する。
In FIG. 1, a pulse generator 21 of the time measuring unit 20 outputs a start pulse to the LD drive circuit 9 of the laser radar head 1. LD drive circuit 9
Drives the LD which is the light emitting element 2 by the trigger of this start pulse to generate a laser pulse. Also,
The start pulse is given to the time measuring unit 22 and the time measuring unit 22 starts counting time. The laser pulse reflected by the reflector 40 (FIG. 2) of the preceding vehicle is received by one or both of the light receiving elements 3 and 4 to generate a current, and the light receiving circuit 10
After being amplified by, the stop pulse is output to the time measuring unit 22. The time measuring unit 22 measures the time interval between the start pulse from the pulse generating unit 21 and the stop pulse from the light receiving circuit 10, and outputs it as time data to the distance meter side unit 31. The distance meter side unit 31 calculates the distance to the preceding vehicle from the time data and outputs it as distance data to the vehicle control unit (ASC ECU).

【0021】ここで、受光素子が反射光を受光しないと
きは、距離計側部31における該当する受光素子系統で
の距離計測値が「最大」となり、距離データは“先行車
がない”旨の信号として取り扱われる。しかし、何がし
かの距離計測値がある場合は“先行車あり”と判断さ
れ、その旨の信号ととして取り扱われる。
Here, when the light receiving element does not receive the reflected light, the distance measurement value in the corresponding light receiving element system in the distance meter side portion 31 becomes "maximum", and the distance data indicates "no preceding vehicle". Treated as a signal. However, if there is some distance measurement value, it is determined that there is a preceding vehicle, and it is treated as a signal to that effect.

【0022】次に、光学系の操作との関連について説明
する。
Next, the relationship with the operation of the optical system will be described.

【0023】図2(A)は左側の受光素子4の受光エリ
ア44内にだけ先行車の反射体40が位置する場合を、
また図2(B)は左右両方の受光素子3,4の受光エリ
ア43,44内に反射体40が位置する場合を示してい
る。
FIG. 2A shows the case where the reflector 40 of the preceding vehicle is located only within the light receiving area 44 of the left light receiving element 4,
Further, FIG. 2B shows a case where the reflector 40 is located in the light receiving areas 43 and 44 of the left and right light receiving elements 3 and 4, respectively.

【0024】説明の便宜上、最初は先行車の反射体40
が、図2(A)の如く、受光素子4の受光エリア44内
にのみ位置するものとする。この場合、先行車の反射体
40からの反射光は受光素子4のみにより受光され、受
光素子3,4の出力状態は図3(A)の如くになる。こ
のとき、距離計側部31における距離計測値は、受光素
子3について「距離最大」、受光素子4について「距離
小」の関係となる。信号処理ユニット30のサーボ制御
部33は、上記距離計測値の信号の大小関係から、先行
車は左方向にあると推定し、サーボ機構11に対しター
ンテーブル14を反時計方向に回転させる「左移動指
令」を与える。これにより、駆動モータ12が正回転
し、ターンテーブル14が図2(B)の矢印方向に回転
移動し、受光エリア43,44が左に移動して行く。先
行車の反射体40が、図2(B)の如く受光エリア4
3,44の重なり領域内に入ると、受光素子3,4の出
力状態は図3(B)の如くになり、距離計測値は受光素
子3,4のいずれについても「距離小」の関係となる。
ここで、サーボ制御部33は「左移動指令」を停止す
る。
For convenience of description, the reflector 40 of the preceding vehicle is first shown.
However, as shown in FIG. 2 (A), it is supposed to be located only within the light receiving area 44 of the light receiving element 4. In this case, the reflected light from the reflector 40 of the preceding vehicle is received only by the light receiving element 4, and the output states of the light receiving elements 3 and 4 are as shown in FIG. At this time, the distance measurement value on the distance meter side portion 31 has a relationship of “maximum distance” for the light receiving element 3 and “small distance” for the light receiving element 4. The servo control unit 33 of the signal processing unit 30 estimates that the preceding vehicle is in the left direction from the magnitude relationship of the signals of the distance measurement values, and causes the servo mechanism 11 to rotate the turntable 14 counterclockwise "left". "Move command" is given. As a result, the drive motor 12 rotates forward, the turntable 14 rotates in the direction of the arrow in FIG. 2B, and the light receiving areas 43 and 44 move to the left. As shown in FIG. 2B, the reflector 40 of the preceding vehicle receives the light receiving area 4
When the light receiving elements 3 and 4 enter the overlapping area, the output states of the light receiving elements 3 and 4 are as shown in FIG. 3B, and the measured distance values are in the “small distance” relationship for both the light receiving elements 3 and 4. Become.
Here, the servo control unit 33 stops the "left movement command".

【0025】上記とは逆に、反射光が受光素子3のみに
より受光された場合には、距離計測値は受光素子3につ
いて「距離小」、受光素子4について「距離最大」の関
係となり、サーボ制御部33は先行車が右方向にあると
判断し、サーボ機構11に対しターンテーブル14を時
計方向に移動させる「右移動指令」を与える。これによ
り、駆動モータ12が逆回転し、ターンテーブル14が
図2(A)から時計方向に回転移動し、受光エリア4
3,44が右方向に移動する。先行車の反射体40が、
受光エリア43,44の重なり領域内に入ると、距離計
測値は受光素子3,4についていずれも「距離小」の関
係となり、その時点でサーボ制御部33は「右移動指
令」を停止する。尚、距離計測値が受光素子3,4につ
いていずれも「距離最大」の場合、サーボ制御部33は
サーボ機構11に対し何の指示も与えない。
Contrary to the above, when the reflected light is received only by the light receiving element 3, the distance measurement values have a relationship of "small distance" for the light receiving element 3 and "maximum distance" for the light receiving element 4, and The control unit 33 determines that the preceding vehicle is in the right direction and gives the servo mechanism 11 a “right movement command” for moving the turntable 14 in the clockwise direction. As a result, the drive motor 12 rotates in the reverse direction, the turntable 14 rotates in the clockwise direction from FIG.
3,44 moves to the right. The reflector 40 of the preceding vehicle
When entering the overlapping area of the light receiving areas 43 and 44, the distance measurement values for both the light receiving elements 3 and 4 have a "small distance" relationship, and at that time, the servo control unit 33 stops the "right movement command". When the distance measurement values are “maximum distance” for the light receiving elements 3 and 4, the servo control unit 33 does not give any instruction to the servo mechanism 11.

【0026】このように、2つの受光素子3,4の系統
について、共に何がしかの距離計測値がある状態、即ち
上記「距離小」が得られるまでターンテーブル14を回
転変位させることにより、常に先行車をレーザレータヘ
ッド1の光学系の真正面で捕捉することができる。従っ
て、むやみに発光視野を広げることなく、また、広範囲
なスキャニングをして不必要なデータ処理を行うことも
なく、距離計測エリアを広げることが可能となる。
As described above, in the system of the two light receiving elements 3 and 4, the turntable 14 is rotationally displaced until a certain distance measurement value is obtained, that is, the above "small distance" is obtained. The preceding vehicle can always be captured directly in front of the optical system of the laserator head 1. Therefore, it is possible to widen the distance measurement area without unnecessarily widening the light emission field and without performing unnecessary data processing by scanning a wide range.

【0027】上記実施例では、距離計測値の大小関係か
らサーボ機構11に対する指示を与えたが、2つの受光
素子の受光信号レベル差を計測して、その信号を基に比
例回転制御を行うこともできる。この場合、サーボ操作
部33の代わりに、時間計測部22で観測される2つの
受光素子3,4の受光強度の大小関係の組合わせに基づ
いて、常に受光エリア43,44の重なり領域内に反射
体40を捕捉するように上記駆動モータ12を制御する
制御手段を設けることになる。
In the above embodiment, an instruction is given to the servo mechanism 11 based on the magnitude relationship of the distance measurement values, but the light receiving signal level difference between the two light receiving elements is measured, and proportional rotation control is performed based on the signal. You can also In this case, instead of the servo operating unit 33, the light receiving areas 43 and 44 are always in the overlapping region based on the combination of the magnitude relations of the light receiving intensities of the two light receiving elements 3 and 4 observed by the time measuring unit 22. A control means for controlling the drive motor 12 so as to capture the reflector 40 will be provided.

【0028】また上記実施例では、水平方向の捕捉をな
す場合について説明したが、実際には道路状況により上
下方向の捕捉も必要となるので、上下方向に受光エリア
の異なる受光素子を更に1つ設置することが実際的であ
る。
Further, in the above embodiment, the case of capturing in the horizontal direction has been described. However, in actuality, it is necessary to capture in the vertical direction depending on the road condition. It is practical to install.

【0029】[0029]

【発明の効果】以上述べた通り本発明によれば、請求項
1又は2のいずれの構成の下でも、次のような優れた効
果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained under either structure of claim 1 or 2.

【0030】1)単価の安い受光素子を複数備えること
で所望の広いセンシング領域を確保できると共に、従来
のように細い発光ビームを広角度でスキャニングする必
要がないので、信号処理が容易になり、また発光手段を
増やさずに済むため安価なシステムを構築できる。 2)各受光素子の受光エリアが異なることから、先行車
等の測定対象物の存在方向が推定でき、その方向に光学
系を自動操作して測定対象物を捕捉することができる。
この捕捉制御は簡単な自動制御系で済み、システムを安
価に提供できるようになる。また捕捉操作はターンテー
ブルの回転による簡単な構成であるため、小形、省スペ
ースの光学式距離計測装置が提供される。
1) Since a desired wide sensing area can be secured by providing a plurality of light receiving elements having a low unit price, it is not necessary to scan a narrow emission beam at a wide angle as in the conventional case, so that signal processing becomes easy. Moreover, since it is not necessary to increase the number of light emitting means, an inexpensive system can be constructed. 2) Since the light receiving areas of the respective light receiving elements are different, the direction in which the measurement target such as a preceding vehicle exists can be estimated, and the measurement target can be captured by automatically operating the optical system in that direction.
This capture control requires only a simple automatic control system, and the system can be provided at low cost. Further, since the capturing operation has a simple structure by rotating the turntable, a compact and space-saving optical distance measuring device is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のシステム構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing a system configuration of an embodiment of the present invention.

【図2】図1におけるレーザレーダヘッドの回転位置と
受光エリアの向きとの関係を示す説明図である。
FIG. 2 is an explanatory diagram showing the relationship between the rotational position of the laser radar head in FIG. 1 and the direction of a light receiving area.

【図3】図2における発光素子と受光素子の発光・受光
動作を示すタイミング図である。
FIG. 3 is a timing chart showing light emitting / light receiving operations of a light emitting element and a light receiving element in FIG.

【図4】従来の光学式距離計測装置を示す図である。FIG. 4 is a diagram showing a conventional optical distance measuring device.

【符号の説明】[Explanation of symbols]

1 レーザーレーダヘッド 2 発光素子(レーザーダイオード) 3,4 受光素子(ピンフォトダイオード) 5 発光用レンズ(集光レンズ) 6,7 受光用レンズ(集光レンズ) 8 メカニカルフィルタ 9 LDの駆動回路 10 受光回路 11 サーボ機構 12 駆動モータ 13 ポテンショメータ 14 ターンテーブル 20 時間計測ユニット 21 パルス発生部 22 時間計測部 30 信号処理ユニット 31 距離計側部 33 サーボ操作部 40 先行車の反射体 43,44 受光エリア 1 Laser Radar Head 2 Light-Emitting Element (Laser Diode) 3,4 Light-Receiving Element (Pin Photodiode) 5 Light-Emitting Lens (Condensing Lens) 6,7 Light-Receiving Lens (Condensing Lens) 8 Mechanical Filter 9 LD Drive Circuit 10 Light receiving circuit 11 Servo mechanism 12 Drive motor 13 Potentiometer 14 Turntable 20 Time measuring unit 21 Pulse generator 22 Time measuring unit 30 Signal processing unit 31 Distance meter side 33 Servo operation unit 40 Reflector 43,44 Light receiving area of preceding vehicle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発光素子と受光素子とを備え、発光素子
による光の放射から受光素子による受光までの伝播遅延
時間に基づいて先行車等の反射体までの距離を測定する
距離計測装置において、一つの発光素子と複数個の受光
素子とをターンテーブル上に搭載し、該複数個の受光素
子の受光エリアは隣同士で一部重なるように各々異なる
範囲に設定し、ターンテーブルを回転させる駆動手段
と、各受光素子についての距離計測値の大小関係の組合
わせに基づいて、常に受光エリアの重なり領域内で上記
反射体を捕捉するように上記駆動手段を制御する制御手
段とを設けたことを特徴とする光学式距離計測装置。
1. A distance measuring device comprising a light emitting element and a light receiving element, for measuring a distance to a reflector such as a preceding vehicle based on a propagation delay time from light emission by the light emitting element to light reception by the light receiving element, One light emitting element and a plurality of light receiving elements are mounted on a turntable, and the light receiving areas of the plurality of light receiving elements are set to different ranges so that they partially overlap each other, and the turntable is driven to rotate. And a control means for controlling the driving means so as to always capture the reflector in the overlapping area of the light receiving areas based on a combination of the magnitude relationship of the distance measurement values for each light receiving element. Optical distance measuring device characterized by.
【請求項2】 上記駆動手段を制御する制御手段が、各
受光素子についての受光強度の大小関係の組合わせに基
づいて、常に受光エリアの重なり領域内に上記反射体を
捕捉するように動作する制御手段であることを特徴とす
る請求項1記載の光学式距離計測装置。
2. The control means for controlling the driving means operates so as to always capture the reflector in the overlapping area of the light receiving areas based on the combination of the magnitude relations of the light receiving intensities of the respective light receiving elements. The optical distance measuring device according to claim 1, which is a control means.
JP4262534A 1992-09-30 1992-09-30 Optical distance-measuring apparatus Pending JPH06109847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4262534A JPH06109847A (en) 1992-09-30 1992-09-30 Optical distance-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4262534A JPH06109847A (en) 1992-09-30 1992-09-30 Optical distance-measuring apparatus

Publications (1)

Publication Number Publication Date
JPH06109847A true JPH06109847A (en) 1994-04-22

Family

ID=17377141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4262534A Pending JPH06109847A (en) 1992-09-30 1992-09-30 Optical distance-measuring apparatus

Country Status (1)

Country Link
JP (1) JPH06109847A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115182A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Laser radar
CN107966704A (en) * 2016-10-19 2018-04-27 罗伯特·博世有限公司 Laser radar sensor for detection object
JP2019158598A (en) * 2018-03-13 2019-09-19 パイオニア株式会社 Distance measurement apparatus
CN113589260A (en) * 2021-09-29 2021-11-02 盎锐(常州)信息科技有限公司 High-precision closed-loop rotary table for laser radar and laser radar

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115182A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Laser radar
CN107966704A (en) * 2016-10-19 2018-04-27 罗伯特·博世有限公司 Laser radar sensor for detection object
CN107966704B (en) * 2016-10-19 2023-12-29 罗伯特·博世有限公司 Lidar sensor for detecting objects
JP2019158598A (en) * 2018-03-13 2019-09-19 パイオニア株式会社 Distance measurement apparatus
CN113589260A (en) * 2021-09-29 2021-11-02 盎锐(常州)信息科技有限公司 High-precision closed-loop rotary table for laser radar and laser radar
CN113589260B (en) * 2021-09-29 2022-01-11 盎锐(常州)信息科技有限公司 High-precision closed-loop rotary table for laser radar and laser radar

Similar Documents

Publication Publication Date Title
US5760886A (en) Scanning-type distance measurement device responsive to selected signals
JP6111617B2 (en) Laser radar equipment
JPH0798381A (en) Scanning type distance measuring device, vehicle mounted with it, and light detecting device
WO2017040066A1 (en) Range-finder apparatus, methods, and applications
KR20100019576A (en) Distance sensor system and method
US11681033B2 (en) Enhanced polarized light collection in coaxial LiDAR architecture
JPH10170637A (en) Light scanner
JPS586886B2 (en) distance measuring device
JP4960599B2 (en) Collision prevention device and vehicle equipped with collision prevention device
CN113933811B (en) Laser radar detection method, laser radar and computer storage medium
JP2003090759A (en) Light detection apparatus and distance-measuring apparatus
JPH11160436A (en) Obstacle detecting device
JP2907139B2 (en) In-vehicle laser radar device
JP3265449B2 (en) Distance sensor
JPH10105869A (en) Vehicle type discrimination device
JPH06109847A (en) Optical distance-measuring apparatus
JPH10105868A (en) Vehicle measuring device/method
JPH08261753A (en) Optical radar device
JPH10170636A (en) Optical scanner
JPH06102343A (en) Detection method and device for state of body, and ranging method and device using the detection method
JP3253137B2 (en) Optical distance measuring device
JP2002022830A (en) Apparatus for measuring distance and its method of measuring distance
JP3249003B2 (en) Distance measuring device
JP3201898B2 (en) Obstacle detection device
US20210165078A1 (en) Distance-measuring unit