JPH06102785B2 - Coal liquefaction method - Google Patents

Coal liquefaction method

Info

Publication number
JPH06102785B2
JPH06102785B2 JP2189144A JP18914490A JPH06102785B2 JP H06102785 B2 JPH06102785 B2 JP H06102785B2 JP 2189144 A JP2189144 A JP 2189144A JP 18914490 A JP18914490 A JP 18914490A JP H06102785 B2 JPH06102785 B2 JP H06102785B2
Authority
JP
Japan
Prior art keywords
iron
catalyst
coal
liquefaction
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2189144A
Other languages
Japanese (ja)
Other versions
JPH0476096A (en
Inventor
光隆 河村
安則 栗木
哲 大嶋
守雄 湯村
文和 伊ヶ崎
隆夫 大森
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2189144A priority Critical patent/JPH06102785B2/en
Publication of JPH0476096A publication Critical patent/JPH0476096A/en
Publication of JPH06102785B2 publication Critical patent/JPH06102785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、石炭から液体燃料を製造する石炭液化法に関
するものである。
TECHNICAL FIELD The present invention relates to a coal liquefaction method for producing a liquid fuel from coal.

[従来技術] 石炭液化法の開発の歴史は、高温・高圧の反応条件にお
ける液化から反応条件を緩和するための触媒と溶剤を用
いる低温・低圧反応条件の探索の過程である。現在代表
的な石炭液化法であるNEDOL法においては450℃、20MPa
の温度、圧力下で鉄触媒を用いて液化する。
[Prior Art] The history of the development of a coal liquefaction method is a process of searching for low-temperature and low-pressure reaction conditions using a catalyst and a solvent for relaxing the reaction conditions from liquefaction under high-temperature and high-pressure reaction conditions. The NEDOL method, which is currently a typical coal liquefaction method, uses 450 ° C and 20 MPa.
It is liquefied using an iron catalyst under the temperature and pressure of.

アメリカにおいて、研究開発が進められている2段液化
法はより穏和な反応条件で、モリブデン系高活性触媒を
組み合わせ、高オイル収率を目指したプロセスである。
しかし現石炭液化技術では経済的に石油と競合できると
ころまでに達している技術はなく、その目的達成までの
道のりははるかに遠いと言わざるを得ない。すなわち石
炭液化技術の実用化への最大の課題は経済性の向上にあ
る。経済性向上のための手段としては、製造原価を低減
させる方向では固定費低減のための新規触媒等による反
応条件の穏和化、運転費軽減のための触媒消耗量・ユー
ティリティー使用量等の低減、水素使用効率の向上があ
る。
The two-stage liquefaction method, which is being researched and developed in the United States, is a process aiming at a high oil yield by combining molybdenum-based highly active catalysts under more mild reaction conditions.
However, with the current coal liquefaction technology, there is no technology that has reached the point where it can economically compete with petroleum, and it must be said that the road to achieving that purpose is far away. In other words, the biggest challenge in putting coal liquefaction technology to practical use is improving its economic efficiency. As means for improving economic efficiency, in the direction of reducing manufacturing costs, reaction conditions are moderated by new catalysts to reduce fixed costs, catalyst consumption and utility usage to reduce operating costs, etc. There is an improvement in hydrogen use efficiency.

また、プロセス全体の収益を上げる方向では触媒・反応
条件の最適化による生成油の品質・収率の向上、処理速
度の増大があり、これらの課題の解決には研究の積み重
ねが必要である。
In addition, in order to increase the profit of the whole process, the quality and yield of the produced oil are improved and the processing speed is increased by optimizing the catalyst and reaction conditions, and research is needed to solve these problems.

[発明が解決しようとする問題点] 現在石炭一次液化工程ではアメリカの2段液化法を除い
て、合成硫化鉄あるいは粉砕した酸化鉄を硫化した粉末
硫化鉄触媒を使用する方式が主流である。鉄系触媒の機
能に関しては活性及び反応器内での分散性から粒径が小
さいものほど優れている。触媒使用量に関しては石炭に
対し3重量%を添加する。実用プラントの規模として油
生産量10万バレル/日プラントを想定すると、処理石炭
量は1日当たり、約3万トンとなり、それに必要な触媒
量は1日当たり、900トンにも達する。粉砕法でこの量
の高活性触媒を得ようとすると、かなりのエネルギーを
要することになる。また合成法に関しては経済性に問題
がある。
[Problems to be Solved by the Invention] At present, in the primary liquefaction process of coal, except for the two-stage liquefaction method in the United States, a method of using a powdered iron sulfide catalyst obtained by sulfurizing synthetic iron sulfide or ground iron oxide is the mainstream. Regarding the function of the iron-based catalyst, the smaller the particle size is, the better the activity and the dispersibility in the reactor. Regarding the amount of catalyst used, 3% by weight is added to coal. Assuming an oil production capacity of 100,000 barrels / day as the scale of a practical plant, the amount of treated coal will be about 30,000 tons per day, and the amount of catalyst required for it will reach 900 tons per day. Attempting to obtain this amount of highly active catalyst by the grinding method requires a considerable amount of energy. In addition, there is a problem in economics regarding the synthetic method.

本発明は、触媒の機能発現について既存の概念に捕らわ
れることなく、新規な視点に基づいて研究した結果得ら
れたもので、前記の粉砕や合成を必要とせず、粉末触媒
と同等以上の触媒活性を動的に発現し、維持しながら、
かつ石炭を液化する方法を提供することを目的とするも
のである。
The present invention was obtained as a result of research based on a novel viewpoint, without being caught by the existing concept of the function expression of the catalyst, does not require the above-mentioned pulverization and synthesis, and has a catalytic activity equal to or higher than that of the powder catalyst. While dynamically expressing and maintaining
And it aims at providing the method of liquefying coal.

[問題点を解決するための手段] 前記の目的を達成する本発明の石炭液化方法は、金属鉄
粒子、鉄合金粒子のような鉄系粒子の平均粒径0.5〜20m
mのものを充填して形成された充填層において、これら
の鉄系粒子が衝突するように充填物を振動させ、充填層
に350〜450℃、10〜20MPaの初期水素圧の液化条件下に
水素、硫黄、溶剤及び石炭を供給して、その場で硫化鉄
触媒を生成させながら、石炭を液化することを特徴とす
るものである。
[Means for Solving Problems] The coal liquefaction method of the present invention that achieves the above-mentioned object is an average particle size of 0.5 to 20 m of iron-based particles such as metallic iron particles and iron alloy particles.
In a packed bed formed by packing m, the packing is vibrated so that these iron-based particles collide, and the packed bed is liquefied under the conditions of 350 to 450 ° C. and an initial hydrogen pressure of 10 to 20 MPa. It is characterized by supplying hydrogen, sulfur, a solvent and coal to liquefy the coal while producing an iron sulfide catalyst on the spot.

振動場では充填物相互あるいは充填物と壁面とが激しく
衝突する。この衝突の効果として、格子欠陥、格子不整
・無定形構造、比表面積、表面エネルギーに変化が起こ
り、固体の活性を向上させる。固体側のこれらの変化は
メカノケミカル効果と呼ばれる。本発明は、この効果を
メカノケミカル触媒として利用している。メカノケミカ
ル触媒効果としては前述活性向上効果ばかりでなく、新
しい破断面が恒常的に更新されることによる活性劣化の
防止、あるいは再生の効果が副次的に期待される。
In the vibration field, the fillings collide with each other or the fillings collide with the wall surface violently. As a result of this collision, changes in lattice defects, lattice irregularity / amorphous structure, specific surface area, and surface energy occur, and the activity of solid is improved. These changes on the solid side are called mechanochemical effects. The present invention utilizes this effect as a mechanochemical catalyst. As the mechanochemical catalyst effect, not only the above-mentioned activity improving effect but also the effect of preventing the activity deterioration due to the constant renewal of a new fracture surface or the regeneration effect is expected as a secondary effect.

本発明における触媒充填層を形成する鉄系粒子形状は、
球、棒、あるいは不規則形状、いずれでもよい。触媒活
性金属は鉄、モリブデン、コバルト、ニッケルあるいは
これらの混合物等が用いられる。また、不活性粒子の表
面を活性金属で被覆した触媒粒子も使用される。充填層
に関しては、セラミックス球、ガラス球と触媒粒子とを
混合して形成することもできる。
The iron-based particle shape forming the catalyst packed bed in the present invention is
It may be a sphere, a rod, or an irregular shape. As the catalytically active metal, iron, molybdenum, cobalt, nickel, a mixture thereof or the like is used. Further, catalyst particles in which the surfaces of the inert particles are coated with an active metal are also used. The packed bed can also be formed by mixing ceramic spheres, glass spheres, and catalyst particles.

鉄系粒子の平均粒径に関しては、衝突力を高めるため、
あまり小さいものは不適当であり、また、一方、大きく
なると単位体積当たりの衝突数が小さくなるので、0.5
〜20mmの範囲、好ましくは1〜5mmの範囲である。
Regarding the average particle size of iron-based particles, in order to increase the collision force,
If it is too small, it is unsuitable, and if it is too large, the number of collisions per unit volume decreases, so 0.5
It is in the range of -20 mm, preferably in the range of 1-5 mm.

充填物を振動させる方法は容器全体を振動させても、ま
た電磁誘導を利用して充填物のみを振動させることもで
きる。加振数は衝突回数が加振数の関数でもあり、また
衝突数が多ければ多いほどメカノケミカル触媒効果が発
揮されるので、10Hz以上、好ましくは20Hz以上である。
As a method of vibrating the filling, it is possible to vibrate the entire container, or use the electromagnetic induction to vibrate only the filling. The vibration frequency is 10 Hz or higher, preferably 20 Hz or higher because the number of collisions is also a function of the vibration frequency, and the more collisions the more the mechanochemical catalytic effect is exhibited.

充填層の加熱は、外熱もしくは内熱等既存技術を適用
し、水素、硫黄、溶剤、石炭の供給方法は、通常の方法
による。
For heating the packed bed, existing technology such as external heat or internal heat is applied, and the method for supplying hydrogen, sulfur, solvent, and coal is a usual method.

充填物収容容器としては、コンパートメント構造とし
て、各コンパートメントに異なる触媒粒子を充填し多段
反応器として、各コンパートメントの反応条件を最適化
して反応成績の向上を図ることも可能である。
It is also possible to improve the reaction results by optimizing the reaction conditions of each compartment as a multi-stage reactor in which each compartment is filled with different catalyst particles as the packing container, and each compartment is filled with different catalyst particles.

本発明の適用として、例えばNEDOL法一次液化反応工
程、2段液化の第一段液化工程等、他の液化プロセス1
次液化工程を本発明で代替えすることもできる。
As an application of the present invention, for example, another liquefaction process 1 such as a NEDOL-method primary liquefaction reaction step, a two-stage liquefaction first-stage liquefaction step, etc.
The sub-liquefaction process can be replaced by the present invention.

[実施例] 次に本発明を実施例により、更に詳細に説明する。EXAMPLES Next, the present invention will be described in more detail with reference to examples.

実施例1 内径14φ×180Lのマイクロオートクレーブを用いて、一
方には、3mmφ鉄球を約94g、参照側オートクレーブには
石炭に対し、金属鉄3wt%に相当する、平均粒径3μm
の酸化鉄触媒充填し、第1表に示す反応条件で太平洋炭
の液化実験を行った。オートクレーブの加振数は1600rp
m、振幅は4mmである。石炭/溶剤比は生成物取扱の都合
から通常の3/4よりはるかに小さな1.5/7と設定した。ま
た、助触媒であるSは、鉄触媒の硫化に必要な化学量論
比の割合で加えた。反応性生物はソックスレーによりTH
F可溶分、ベンゼン可溶分、ヘキサン可溶分を抽出し
た。反応時間を替えたときの各溶剤への可溶分への転化
率の推移を第1図に示す。
Example 1 A micro autoclave having an inner diameter of 14φ × 180 L was used, on one side of which 3 mmφ iron balls were about 94 g, and on the reference side autoclave, the average particle size was 3 μm, which corresponds to metallic iron 3 wt% with respect to coal.
The liquefaction experiment of Pacific coal was conducted under the reaction conditions shown in Table 1 after filling with the iron oxide catalyst of No. 1. Vibration frequency of autoclave is 1600rp
m, amplitude is 4 mm. The coal / solvent ratio was set to 1.5 / 7, which is much smaller than the usual 3/4 for convenience of product handling. Further, S, which is a co-catalyst, was added in a stoichiometric ratio required for sulfurization of the iron catalyst. Soxhlet reacts with TH
The F-soluble matter, benzene-soluble matter, and hexane-soluble matter were extracted. FIG. 1 shows the transition of the conversion rate to the soluble component in each solvent when the reaction time was changed.

実施例2 内径14mmφ×325mmLのオートクレーブを用い、1.2mmφ
の鉄球を1.5g充填し、石炭3g、溶剤7g、水素初期圧10MP
a、温度450℃で、触媒量と石炭の反応率の関係を調べ
た。振動法は、オートクレーブの中心を支点に水平から
頭底部が上下45゜の角度で振動する方法を用い、振動回
数45rpmで、60分間行った。参照の触媒として粉末酸化
鉄を用いた。その際それぞれ助触媒として硫化に必要な
化学量論比の硫黄を加えた。鉄球を1.5g充填した鉄球側
オートクレーブには、硫黄を最大1.7g迄加えた実験を行
った。反応生成物はソックスレー抽出法によりベンゼン
可溶分及びヘキサン可溶分を求め、それぞれ反応率を算
出した。
Example 2 Using an autoclave having an inner diameter of 14 mmφ × 325 mmL, 1.2 mmφ
1.5g of iron balls are filled, coal 3g, solvent 7g, hydrogen initial pressure 10MP
The relationship between the amount of catalyst and the reaction rate of coal was investigated at a temperature of 450 ℃. The vibration method was a method in which the center of the autoclave was used as a fulcrum and the bottom of the head vibrated at an angle of 45 ° from the horizontal, and the number of vibrations was 45 rpm for 60 minutes. Powdered iron oxide was used as a reference catalyst. At that time, sulfur was added as a cocatalyst in a stoichiometric ratio required for sulfurization. An experiment was performed in which sulfur was added up to 1.7 g in the iron ball side autoclave filled with 1.5 g of iron balls. For the reaction product, a benzene-soluble content and a hexane-soluble content were obtained by the Soxhlet extraction method, and the reaction rates were calculated.

第2図に粉末の酸化鉄と硫黄を用いた場合(○)と1.2m
mの鉄球と硫黄を用いた場合(●)の石炭液化の結果を
示す。○の横軸は酸化鉄の添加量、●の横軸は鉄球の減
少量(鉄球から微粒子として生成してきた触媒量)であ
る。
Fig. 2 shows 1.2m when using powdered iron oxide and sulfur (○)
The results of coal liquefaction when using iron balls of m and sulfur (●) are shown. The horizontal axis of ○ is the addition amount of iron oxide, and the horizontal axis of ● is the reduction amount of iron balls (the amount of catalyst produced as fine particles from iron balls).

第2図の結果から本発明(鉄球を用いた場合)と従来技
術(粉末酸化鉄を用いた場合)の触媒効果に差がないこ
とがわかる。これは添加した硫黄から生じた硫化水素の
作用により鉄球の表面に鉄の硫化物が生成し、表面から
微細な鉄の硫化物が剥離し、液化触媒として作用した結
果であると考えられる。
From the results shown in FIG. 2, it can be seen that there is no difference in the catalytic effect between the present invention (when using iron balls) and the conventional technique (when using powdered iron oxide). It is considered that this is because iron sulfide was generated on the surface of the iron ball due to the action of hydrogen sulfide generated from the added sulfur, and fine iron sulfide was separated from the surface and acted as a liquefaction catalyst.

[発明の効果] 前述したとおり、本発明によれば、次のような効果を得
ることができる。
[Effects of the Invention] As described above, according to the present invention, the following effects can be obtained.

1)反応時間が長くなるとメカノケミカル触媒効果によ
って、液化反応成績の改善が認められ、粉末触媒を凌賀
する結果が得られた。
1) When the reaction time became longer, the mechanochemical catalyst effect was observed to improve the liquefaction reaction result, and the result surpassed that of the powder catalyst.

2)粉末触媒を使用しなくても、活性金属充填層振動場
で、触媒活性の発現が期待できる。
2) Even if a powder catalyst is not used, the catalytic activity can be expected to be expressed in the active metal packed bed vibration field.

3)加振数・振幅を変化させることによって、活性の制
御が可能である。
3) The activity can be controlled by changing the number of vibrations and the amplitude.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明を実施して得られた石炭液化成績の結
果である。 ●は、本発明による液化成績であり、■は、既存の粉末
鉄触媒による液化成績である。 第2図は本発明を実施して得られた石炭液化実験の結果
である。第2図においては●は本発明による液化成績で
あり、○は既存の粉末鉄触媒による液化成績である。
FIG. 1 shows the results of coal liquefaction results obtained by carrying out the present invention. ● indicates the liquefaction result according to the present invention, and ■ indicates the liquefaction result using the existing powdered iron catalyst. FIG. 2 is a result of a coal liquefaction experiment obtained by carrying out the present invention. In FIG. 2, ● indicates the liquefaction result according to the present invention, and ○ indicates the liquefaction result using the existing powdered iron catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯村 守雄 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 伊ヶ崎 文和 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (72)発明者 大森 隆夫 茨城県つくば市東1丁目1番地 工業技術 院化学技術研究所内 (56)参考文献 米国特許4123348(US,A) 米国特許3867114(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Morio Yumura 1-1, Higashi, Tsukuba-shi, Ibaraki Industrial Technology Institute, Institute of Chemical Technology (72) Inventor Fumikazu Igasaki 1-1-chome, Tsukuba, Ibaraki Industrial Technology Institute of Chemical Technology In the laboratory (72) Inventor Takao Omori 1-1-1, Higashi, Tsukuba, Ibaraki Prefectural Institute of Chemical Technology (56) Reference US Patent 4123348 (US, A) US Patent 3867114 (US, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平均粒径0.5〜20mmの鉄系粒子からなる充
填物により形成される充填層において、鉄系粒子が衝突
するように充填物を振動させ、充填層に350〜450℃、10
〜20Mpaの初期水素圧の液化条件下に水素、硫黄、溶剤
及び石炭を供給して、その場で硫化鉄触媒を生成させな
がら、石炭を液化することを特徴とする石炭の液化方
法。
1. In a packed bed formed of a packing composed of iron-based particles having an average particle size of 0.5 to 20 mm, the packing is vibrated so that the iron-based particles collide, and the packed bed is heated to 350 to 450 ° C.
A method for liquefying coal, which comprises liquefying coal while supplying hydrogen, sulfur, a solvent and coal under the liquefaction condition of an initial hydrogen pressure of -20 Mpa to generate an iron sulfide catalyst on the spot.
JP2189144A 1990-07-17 1990-07-17 Coal liquefaction method Expired - Lifetime JPH06102785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189144A JPH06102785B2 (en) 1990-07-17 1990-07-17 Coal liquefaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189144A JPH06102785B2 (en) 1990-07-17 1990-07-17 Coal liquefaction method

Publications (2)

Publication Number Publication Date
JPH0476096A JPH0476096A (en) 1992-03-10
JPH06102785B2 true JPH06102785B2 (en) 1994-12-14

Family

ID=16236157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189144A Expired - Lifetime JPH06102785B2 (en) 1990-07-17 1990-07-17 Coal liquefaction method

Country Status (1)

Country Link
JP (1) JPH06102785B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101683018B (en) 2007-07-10 2011-09-21 株式会社安川电机 Electronic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867114A (en) 1972-04-27 1975-02-18 Unisearch Ltd Devices whereby the local fluid rates in a fluidised bed are made to fluctuate
US4123348A (en) 1975-11-18 1978-10-31 Saarbergwerke Aktiengesellschaft Process for catalytic hydrogenation of coal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3867114A (en) 1972-04-27 1975-02-18 Unisearch Ltd Devices whereby the local fluid rates in a fluidised bed are made to fluctuate
US4123348A (en) 1975-11-18 1978-10-31 Saarbergwerke Aktiengesellschaft Process for catalytic hydrogenation of coal

Also Published As

Publication number Publication date
JPH0476096A (en) 1992-03-10

Similar Documents

Publication Publication Date Title
CN103030143B (en) Iron carbide particle, and fabrication method and application thereof
Yadav et al. High-entropy alloys for solid hydrogen storage: potentials and prospects
CN102191498A (en) Preparation method for wear-resistant corrosion-resistant coating from coarse granular titanium-carbide-based powder
CN1315989C (en) Hydrocarbon synthesis process using an alkali promoted iron catalyst
CN106391028A (en) Methanation catalyst for fluidized bed and preparation method of methanation catalyst for fluidized bed
JP2001527017A (en) Method for producing nanocrystalline metal hydride
CN105772107B (en) A kind of carrier and preparation method thereof and cobalt-base catalyst and its preparation method and application
CN106238061B (en) Multi-function metal catalyst and methods for making and using same
CN105460892A (en) Method for enhancing dehydrogenating property of magnesium-based hydride
CN107233890A (en) A kind of nickel-base catalyst of attapulgite load of zinc modification and its preparation method and application
CN102248178A (en) Process for preparing 6AI4V titanium alloy powder by using mechanical alloying heat treatment method
Nandiyanto et al. Techno-economic analysis for the production of LaNi5 particles
JPH06102785B2 (en) Coal liquefaction method
CN109092321B (en) Catalyst system for preparing low-carbon olefin by synthesis gas one-step method
CN102982956B (en) High magnetic permeability and low loss metal soft magnetic material powder and preparation method thereof
CN102372304B (en) Physical preparation method of high density vanadium oxide powder
CN101190412B (en) Fe catalyst for preparing hydrocarbons with synthesis gas and preparation method thereof
CN115947306B (en) Method for producing magnesium hydride from magnesium-based raw material
CN111068687B (en) Catalyst for preparing low-carbon olefin by synthesis gas one-step method and application thereof
CN1586772A (en) Process for preparing nano grade super fine cobalt powder
CN107790195A (en) A kind of restoring method of iron-base fischer-tropsch catalyst
CN109092322B (en) Catalyst system for directly preparing low-carbon olefin from synthesis gas
CN105880584B (en) The method for producing qualified micro alloy iron powder with a reduced iron powder of high hydrogen loss high-carbon
CN1451035A (en) Hydrocarbon synthesis catalyst and process
JP2006290660A (en) Hydrogen generating medium and manufacturing method for the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term