JPH0595062A - Air-cooling mechanism for lsi - Google Patents

Air-cooling mechanism for lsi

Info

Publication number
JPH0595062A
JPH0595062A JP3253333A JP25333391A JPH0595062A JP H0595062 A JPH0595062 A JP H0595062A JP 3253333 A JP3253333 A JP 3253333A JP 25333391 A JP25333391 A JP 25333391A JP H0595062 A JPH0595062 A JP H0595062A
Authority
JP
Japan
Prior art keywords
lsi
air
cooling mechanism
cooling
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3253333A
Other languages
Japanese (ja)
Inventor
Masahiro Mochizuki
優宏 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3253333A priority Critical patent/JPH0595062A/en
Publication of JPH0595062A publication Critical patent/JPH0595062A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PURPOSE:To provide an air-cooling mechanism for LSI capable of enhancing in parallel the cooling efficiency of electronic components mounted to a specific LSI and its peripheral parts with regards to an air cooling mechanism for LSI designed to cool a specific LSI installed in an engineering work station or the like. CONSTITUTION:This air cooled mechanism is provided with a fin penetration hole which allows a heat dissipation fin 60, which is mounted to a specific LSI 50, to be engaged in a freely fitting state on the bottom and a duct 10 whose sectional configuration is equivalent to the width and height of the heat dissipation fin 60. Furthermore, a fan 65, which generates an air flow 80 to cool an LSI 50 selectively, is mounted to at least either an air inlet 9 or an air outlet 11 installed to both ends of the dust 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はエンジニアリングワーク
ステーション等に装備された特定のLSIを冷却するた
めのLSI空冷機構に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an LSI air cooling mechanism for cooling a specific LSI mounted on an engineering workstation or the like.

【0002】[0002]

【従来の技術】図3(a) と(b) は従来のLSI空冷機構
の一構造例を示す斜視図、図4は従来のLSI空冷機構
を装備したLSIの一実装例を示す模式的要部側断面図
をそれぞれ示す。
2. Description of the Related Art FIGS. 3 (a) and 3 (b) are perspective views showing a structural example of a conventional LSI air cooling mechanism, and FIG. 4 is a schematic diagram showing a mounting example of an LSI equipped with a conventional LSI air cooling mechanism. Sectional sectional views are respectively shown.

【0003】図3(a) と(b) に示すように、従来のLS
I空冷機構70は、放熱フィン60の上にファン65を積み重
ねるように配置してこれらを固定ネジ63で結合した構造
になっている。このLSI空冷機構70は図3(b) に示す
ように、特定のLSI(以下LSIと称する)50の上面
に装着されて当該LSI50のみを選択的に冷却する。こ
のように1個のLSI50を1台のファン65によって冷却
するようにしているのは当該LSI50が大規模のLSI
でその発熱量が特に大きいためである。図中、66は固定
ネジ63が遊嵌状態で係入するネジ挿通孔、61は固定ネジ
63が螺入されるねじ孔をそれぞれ示す。
As shown in FIGS. 3 (a) and 3 (b), a conventional LS is used.
The I-air cooling mechanism 70 has a structure in which the fan 65 is arranged so as to be stacked on the radiating fins 60, and these are joined by a fixing screw 63. As shown in FIG. 3B, this LSI air cooling mechanism 70 is mounted on the upper surface of a specific LSI (hereinafter referred to as LSI) 50 and selectively cools only the LSI 50. In this way, one LSI 50 is cooled by one fan 65 because the LSI 50 is a large-scale LSI.
This is because the calorific value is particularly large. In the figure, reference numeral 66 is a screw insertion hole into which the fixing screw 63 is loosely fitted, and 61 is a fixing screw.
63 shows screw holes into which 63 is screwed.

【0004】このLSI空冷機構70は放熱フィン60の熱
吸収面(下側の平面部分)をLSI50の放熱面(上側の
平面部分)に接触させる形で当該LSI50に装着され
る。図3(a) はこのLSI空冷機構70の構成を示す分解
図であり、図3(b) はこのLSI空冷機構70をLSI50
に装着した状態を示す組立図である。なお、このLSI
空冷機構70は例えば接着剤或いは専用の取付け部材(図
示せず)を用いてLSI50に装着される。
The LSI air-cooling mechanism 70 is mounted on the LSI 50 so that the heat absorption surface (lower flat surface portion) of the heat radiation fin 60 is in contact with the heat radiation surface (upper flat surface portion) of the LSI 50. FIG. 3 (a) is an exploded view showing the configuration of this LSI air cooling mechanism 70, and FIG. 3 (b) shows this LSI air cooling mechanism 70 as an LSI50.
It is an assembly drawing showing the state where it was attached to. This LSI
The air cooling mechanism 70 is attached to the LSI 50 by using, for example, an adhesive or a dedicated mounting member (not shown).

【0005】図4はこのLSI空冷機構70を装着したL
SI50の一実装例を示す図である。最近の電子機器は複
数枚の基板を所定の基板間隔Kを隔てて配置するのが通
例になっている。図4に示す例は、基板20及びその上に
重なる形で配置された他の基板20Aに点線矢印で示す空
気流40を送ってこれら各基板20,20Aに実装されている
LSI50と電子部品5を冷却している例である。なお、
基板20に搭載されているLSI50のみは専用のファン65
と前記空気流40とによって冷却されることになる。
FIG. 4 shows an L equipped with this LSI air cooling mechanism 70.
It is a figure which shows one mounting example of SI50. In recent electronic devices, it is customary to arrange a plurality of substrates at a predetermined substrate interval K. In the example shown in FIG. 4, an air flow 40 indicated by a dotted arrow is sent to the board 20 and another board 20A arranged so as to overlap the board 20 and the LSI 50 and the electronic component 5 mounted on these boards 20, 20A. This is an example of cooling. In addition,
Only the LSI 50 mounted on the board 20 has a dedicated fan 65
And is cooled by the air flow 40.

【0006】この場合、基板20Aに実装されている電子
部品5を冷却する空気流40は途中に何ら障害物が無いこ
とからスムーズに流れる。しかしLSI50が搭載されて
いる基板20に実装されている電子部品5を冷却する空気
流40はLSI50を冷却するファン65の回転によって生じ
る循環流(実線矢印で示す)45によって流れを妨害され
るため正常には流れない。このため、基板20A側に実装
されている電子部品5に比して基板20側に実装されてい
る電子部品5の冷却度は極めて悪い。
In this case, the airflow 40 for cooling the electronic components 5 mounted on the board 20A flows smoothly because there is no obstacle in the middle. However, the air flow 40 that cools the electronic component 5 mounted on the substrate 20 on which the LSI 50 is mounted is obstructed by the circulation flow 45 (shown by the solid arrow) generated by the rotation of the fan 65 that cools the LSI 50. It does not flow normally. Therefore, the degree of cooling of the electronic component 5 mounted on the substrate 20 side is extremely poor as compared with the electronic component 5 mounted on the substrate 20A side.

【0007】[0007]

【発明が解決しようとする課題】以上の説明から明らか
なように、前記従来のLSI空冷機構70の場合は、基板
20側の電子部品5を冷却する空気流40がファン65の回転
によって生じる循環流45に妨害されて正常な流れ方をし
ないために当該基板20に実装されている電子部品5の冷
却度は極めて悪い。また、このLSI空冷機構70は、放
熱フィン60の上にファン65が配置されていることからそ
の背丈が高い上,循環流45と空気流40の流れを確保する
ための空間Gをファン65と基板20A間に設けなければな
らないことから基板間隔Kが大きくなる。
As is apparent from the above description, in the case of the conventional LSI air cooling mechanism 70, the substrate
Since the air flow 40 for cooling the electronic component 5 on the 20 side is disturbed by the circulation flow 45 generated by the rotation of the fan 65 and does not flow normally, the cooling degree of the electronic component 5 mounted on the substrate 20 is extremely high. bad. Further, the LSI air cooling mechanism 70 is tall because the fan 65 is arranged on the heat radiation fins 60, and the space G for ensuring the flow of the circulation flow 45 and the air flow 40 is provided as the fan 65. Since it has to be provided between the substrates 20A, the substrate distance K becomes large.

【0008】本発明はLSIを選択的に冷却する専用の
ダクト部を備えることによって同一基板に実装された他
の電子部品を含む全体的な冷却効率を格段に向上させた
LSI空冷機構を実現しようとする。
The present invention intends to realize an LSI air-cooling mechanism which is remarkably improved in overall cooling efficiency including other electronic components mounted on the same substrate by providing a dedicated duct portion for selectively cooling the LSI. And

【0009】[0009]

【課題を解決するための手段】本発明によるLSI空冷
機構1は、図1に示すように、特定のLSI50に装着さ
れた放熱フィン60が遊嵌状態で係入するフィン経通孔2
をその底面部分に備えると共に、当該放熱フィン60の幅
Wと背丈hに対応する断面形状を有するダクト部10を備
え、かつこのダクト部10の両側端部分に設けられた空気
送入口9と空気排出口11の少なくともその一方に、当該
LSI50を選択的に冷却するための空気流80を発生させ
るファン65を装備する。
As shown in FIG. 1, the LSI air-cooling mechanism 1 according to the present invention has a fin through hole 2 into which a radiation fin 60 mounted on a specific LSI 50 is loosely fitted.
And a duct portion 10 having a cross-sectional shape corresponding to the width W and the height h of the radiating fin 60, and an air inlet 9 and an air inlet provided at both end portions of the duct portion 10. At least one of the exhaust ports 11 is equipped with a fan 65 for generating an air flow 80 for selectively cooling the LSI 50.

【0010】[0010]

【作用】このLSI空冷機構1は、LSI50を冷却する
ための空気流80のみが流れるダクト部10を独立的に装備
していることからLSI50に対する冷却効率が極めて良
い。また、このLSI空冷機構1はLSI50を冷却する
ための空気流80と他の電子部品5を冷却する空気流40が
互いに干渉し合うことが無いために他の電子部品5の冷
却効率も必然的に向上する。
This LSI air-cooling mechanism 1 is equipped with the duct part 10 through which only the air flow 80 for cooling the LSI 50 flows independently, so that the cooling efficiency for the LSI 50 is extremely good. Further, in the LSI air cooling mechanism 1, the airflow 80 for cooling the LSI 50 and the airflow 40 for cooling the other electronic components 5 do not interfere with each other, so that the cooling efficiency of the other electronic components 5 is also inevitable. To improve.

【0011】[0011]

【実施例】以下実施例図に基づいて本発明を詳細に説明
する。図1(a) と(b) は本発明の一実施例を示す斜視図
と模式的要部側断面図、図2は本発明によるLSI空冷
機構の構成を示す斜視図であるが、前記図3,図4と同
一部分にはそれぞれ同一符号を付している。
The present invention will be described in detail below with reference to the drawings of the embodiments. 1 (a) and 1 (b) are a perspective view and a schematic side sectional view showing an embodiment of the present invention, and FIG. 2 is a perspective view showing the structure of an LSI air cooling mechanism according to the present invention. 3, the same parts as those in FIG. 4 are denoted by the same reference numerals.

【0012】図1(a) と(b) に示すように、本発明によ
るLSI空冷機構1は、LSI50に装着された放熱フィ
ン60が遊嵌状態で係入するフィン経通孔2をその底面部
分に備えると共に、前記放熱フィン60の幅Wと高さhに
対応する断面形状と基板20或いは基板20Aの幅α(以下
基板幅αと称する)よりも長いダクト長さLを有するダ
クト部10を備え、かつこのダクト部10の両端部分に設け
られた空気送入口9と空気排出口11にLSI50を選択的
に冷却する空気流80を発生させる一対のファン65を装備
する。図中、1aはダクト部10と空気送入口9と空気排出
口11とから成る本体部、1bはこの本体部1aを上から覆う
蓋部、1cはこの蓋部1bを本体部1aに固定するネジ、25は
基板20とダクト部10間の寸法を調整するために設けられ
た支柱、26は基板20をダクト部10に固定するためのネジ
をそれぞれ示す。
As shown in FIGS. 1 (a) and 1 (b), the LSI air-cooling mechanism 1 according to the present invention has a fin through hole 2 into which a heat radiation fin 60 mounted on an LSI 50 is inserted in a loosely fitted state. The duct portion 10 which is provided in a portion and has a cross-sectional shape corresponding to the width W and the height h of the radiation fin 60 and a duct length L longer than the width α of the substrate 20 or the substrate 20A (hereinafter referred to as substrate width α). In addition, a pair of fans 65 for generating an air flow 80 for selectively cooling the LSI 50 are provided at the air inlet 9 and the air outlet 11 provided at both ends of the duct portion 10. In the figure, 1a is a main body composed of a duct portion 10, an air inlet 9 and an air outlet 11, 1b is a lid that covers the main body 1a from above, and 1c is a lid that fixes the lid 1b to the main body 1a. A screw, 25 is a column provided to adjust the dimension between the substrate 20 and the duct portion 10, and 26 is a screw for fixing the substrate 20 to the duct portion 10.

【0013】このLSI空冷機構1は、LSI50に装備
された放熱フィン60のみをダクト部10内に収容する形で
基板20に装着される。なお、このLSI空冷機構1は、
ファン65によって発生させた空気流80で前記放熱フィン
60を選択的に冷却する構成になっていることからLSI
50の冷却効率が極めて良い。なお、このLSI空冷機構
1はLSI50を選択的に冷却するものであるから、基板
20,20Aに搭載されている他の電子部品5の冷却は装置
内を流動する空気流40(図4参照)によって冷却される
が、この場合,LSI50冷却用の空気流80と電子部品5
冷却用の空気流40が互いに干渉し合うことがないので冷
却効率は両方共に向上する。
The LSI air-cooling mechanism 1 is mounted on the substrate 20 so that only the radiation fins 60 mounted on the LSI 50 are accommodated in the duct portion 10. In addition, this LSI air cooling mechanism 1
The heat radiation fins are generated by the air flow 80 generated by the fan 65.
LSI is configured to selectively cool 60
Cooling efficiency of 50 is extremely good. Since this LSI air-cooling mechanism 1 selectively cools the LSI 50,
The other electronic components 5 mounted on the 20 and 20A are cooled by the air flow 40 (see FIG. 4) flowing in the apparatus. In this case, the LSI 50 cooling air flow 80 and the electronic component 5 are cooled.
Both cooling efficiencies are improved because the cooling air streams 40 do not interfere with each other.

【0014】このLSI空冷機構1は、放熱フィン60の
みをダクト部10内に収容する方式であることからダクト
部の背丈Hが極めて低い。このようにダクト部の背丈H
が低いと基板20,20A間の基板間隔Kを小さくすること
ができるので装置の小型化を図る上で有利である。この
LSI空冷機構1の特徴は、放熱フィン60だけをダクト
部10内に収容する形でLSI50を冷却するようにしてい
る点と、ダクト長さLが基板幅α〔図1参照〕よりも若
干大きい点に集約される。このダクト長さLが基板幅α
よりも大きいと基板間隔Kをファン65のサイズとは無関
係に縮小することができることから装置の小型化を図る
上で極めて有利である。
Since this LSI air cooling mechanism 1 is a system in which only the radiation fins 60 are accommodated in the duct portion 10, the height H of the duct portion is extremely low. As you can see, the height of the duct is H
If it is low, the substrate distance K between the substrates 20 and 20A can be made small, which is advantageous for downsizing the device. This LSI air cooling mechanism 1 is characterized in that only the radiation fins 60 are accommodated in the duct portion 10 to cool the LSI 50, and the duct length L is slightly smaller than the board width α (see FIG. 1). It is summarized in a big point. This duct length L is the substrate width α
If it is larger than this, the substrate interval K can be reduced regardless of the size of the fan 65, which is extremely advantageous in downsizing the device.

【0015】以下図2に基づいて本発明によるLSI空
冷機構の構成を説明する。このLSI空冷機構1は、底
面部分にフィン経通孔2が形成されたダクト部10を備
え,かつそのダクト部10の両側端部分に空気送入口9と
空気排出口11を装備してなる本体部1aと、これら空気送
入口9と空気排出口11にそれぞれ対となる形で配置され
たファン65と、前記ダクト部10と空気送入口9と空気排
出口11を覆う形で配置される蓋部1bとによって構成され
る。このLSI空冷機構1は、縫合ネジ(図示せず)を
用いてファン65を空気送入口9と空気排出口11に装着し
た後、ネジ1c(図1参照)を用いて蓋部1bを本体部1aに
取りつけることによって完成品となる。なお、この実施
例は2台のファン65を空気送入口9と空気排出口11にそ
れぞれ配置した構成になっているが、このファン65を空
気送入口9或いは空気排出口11の何れか一方に配置する
形にしてもかまわない。
The structure of the LSI air cooling mechanism according to the present invention will be described below with reference to FIG. This LSI air cooling mechanism 1 is provided with a duct portion 10 having a fin through hole 2 formed in a bottom surface portion thereof, and an air inlet 9 and an air outlet 11 provided at both end portions of the duct portion 10. A portion 1a, a fan 65 arranged in a pair with the air inlet 9 and the air outlet 11, and a lid arranged so as to cover the duct portion 10, the air inlet 9 and the air outlet 11. And part 1b. In this LSI air cooling mechanism 1, after attaching the fan 65 to the air inlet 9 and the air outlet 11 using a suture screw (not shown), the lid 1b is attached to the main body using a screw 1c (see FIG. 1). It becomes a finished product by attaching it to 1a. In this embodiment, two fans 65 are arranged at the air inlet 9 and the air outlet 11, respectively. However, the fan 65 is provided at either the air inlet 9 or the air outlet 11. It does not matter if they are arranged.

【0016】このLSI空冷機構1は、LSI50の冷却
のみを選択的に行う構造になっていることからLSI50
に対する冷却効率が高い上、同一基板に実装されている
他の電子部品5の冷却効率を阻害することが無いために
全体的な冷却効率が著しく向上する。
Since this LSI air cooling mechanism 1 has a structure for selectively cooling only the LSI 50, the LSI 50
The cooling efficiency is high and the cooling efficiency of other electronic components 5 mounted on the same substrate is not impaired, so that the overall cooling efficiency is significantly improved.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によるLSI空冷機構は、対象となるLSIの冷却を選
択的に行う構造になっていることから当該LSIに対す
る冷却効率が高い上、同一基板に実装されている他の電
子部品の冷却効率を阻害することが無いためにこのLS
I空冷機構を用いると全体的な冷却効率が著しく向上す
る。
As is apparent from the above description, the LSI air-cooling mechanism according to the present invention has a structure that selectively cools the target LSI, so that the cooling efficiency for the LSI is high and the same. This LS does not interfere with the cooling efficiency of other electronic components mounted on the board.
Using the I air cooling mechanism significantly improves the overall cooling efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す斜視図と模式的要部
側断面図である。
FIG. 1 is a perspective view and a schematic side sectional view showing an embodiment of the present invention.

【図2】 本発明によるLSI空冷機構の構成を示す斜
視図である。
FIG. 2 is a perspective view showing a configuration of an LSI air cooling mechanism according to the present invention.

【図3】 従来のLSI空冷機構の一構造例を示す斜視
図である。
FIG. 3 is a perspective view showing a structural example of a conventional LSI air cooling mechanism.

【図4】 従来のLSI空冷機構を装備したLSIの一
実装例を示す模式的要部側断面図である。
FIG. 4 is a schematic side sectional view of an essential part showing an example of mounting of an LSI equipped with a conventional LSI air cooling mechanism.

【符号の説明】[Explanation of symbols]

1,70 LSI空冷機構 1a 本体部 1b 蓋部 1c,26 ネジ 2 フィン経通孔 5 電子部品 9 空気送入口 10 ダクト部 11 空気排出口 20,20A 基
板 25 支柱 40,80 空気
流 45 循環流 50 LSI 60 放熱フィン 61 ねじ孔 63 固定ネジ 65 ファン 66 ネジ挿通孔 K 基板間隔 W 放熱フィン60の幅 h 放熱フィ
ン60の背丈 L ダクト長さ H ダクト部
10の背丈 α 基板幅 G 空気の流れを確保するための空間
1,70 LSI air cooling mechanism 1a Main body 1b Lid 1c, 26 Screw 2 Fin through hole 5 Electronic component 9 Air inlet 10 Duct 11 Air outlet 20, 20A substrate 25 Strut 40, 80 Air flow 45 Circulation flow 50 LSI 60 Radiation fin 61 Screw hole 63 Fixing screw 65 Fan 66 Screw insertion hole K Board space W Radiation fin 60 width h Radius fin 60 height L Duct length H Duct part
10 height α Substrate width G Space to secure air flow

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板(20)に実装されたLSI(50)を冷却
するためのLSI空冷機構であって、 前記LSI(50)に装着された放熱フィン(60)が遊嵌状態
で係入するフィン経通孔(2) をその底面部分に備えると
共に当該放熱フィン(60)の幅(W) と高さ(H) に対応する
断面形状を有するダクト部(10)を備え、かつこのダクト
部(10)の両側端部分に設けられた空気送入口(9) と空気
排出口(11)の少なくともその一方に当該LSI(50)を選
択的に冷却するための空気流(80)を発生させるファン(6
5)を装備してなることを特徴とするLSI空冷機構。
1. An LSI air cooling mechanism for cooling an LSI (50) mounted on a substrate (20), wherein a radiation fin (60) mounted on the LSI (50) is engaged in a loosely fitted state. The fin through hole (2) is provided on the bottom surface thereof, and the duct section (10) having a cross-sectional shape corresponding to the width (W) and height (H) of the heat radiation fin (60) is provided. An air flow (80) for selectively cooling the LSI (50) is generated at at least one of an air inlet (9) and an air outlet (11) provided at both ends of the section (10). Let fan (6
5) An LSI air cooling mechanism characterized by being equipped with.
JP3253333A 1991-10-01 1991-10-01 Air-cooling mechanism for lsi Withdrawn JPH0595062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253333A JPH0595062A (en) 1991-10-01 1991-10-01 Air-cooling mechanism for lsi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253333A JPH0595062A (en) 1991-10-01 1991-10-01 Air-cooling mechanism for lsi

Publications (1)

Publication Number Publication Date
JPH0595062A true JPH0595062A (en) 1993-04-16

Family

ID=17249857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253333A Withdrawn JPH0595062A (en) 1991-10-01 1991-10-01 Air-cooling mechanism for lsi

Country Status (1)

Country Link
JP (1) JPH0595062A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597035A (en) * 1995-08-18 1997-01-28 Dell Usa, L.P. For use with a heatsink a shroud having a varying cross-sectional area
US5630469A (en) * 1995-07-11 1997-05-20 International Business Machines Corporation Cooling apparatus for electronic chips
US5810072A (en) * 1995-09-08 1998-09-22 Semipower Systems, Inc. Forced air cooler system
US5815371A (en) * 1996-09-26 1998-09-29 Dell U.S.A., L.P. Multi-function heat dissipator
US5828549A (en) * 1996-10-08 1998-10-27 Dell U.S.A., L.P. Combination heat sink and air duct for cooling processors with a series air flow
GB2347020B (en) * 1999-02-02 2003-05-14 3Com Technologies Ltd Cooling equipment
JP2008091885A (en) * 2006-10-04 2008-04-17 Taida Electronic Ind Co Ltd Heat radiation module and its fan
CN101959391A (en) * 2010-06-02 2011-01-26 苏州工业园区胜欣电子有限公司 Heat-dissipating device
JP2014048201A (en) * 2012-08-31 2014-03-17 Advantest Corp Electronic component tester
JP2019165187A (en) * 2018-03-20 2019-09-26 新電元工業株式会社 Electronic equipment unit and electronic apparatus device
US10856444B2 (en) 2018-05-18 2020-12-01 Fujitsu Limited Cooling device and electronic apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630469A (en) * 1995-07-11 1997-05-20 International Business Machines Corporation Cooling apparatus for electronic chips
US5597035A (en) * 1995-08-18 1997-01-28 Dell Usa, L.P. For use with a heatsink a shroud having a varying cross-sectional area
US5810072A (en) * 1995-09-08 1998-09-22 Semipower Systems, Inc. Forced air cooler system
US5815371A (en) * 1996-09-26 1998-09-29 Dell U.S.A., L.P. Multi-function heat dissipator
US5828549A (en) * 1996-10-08 1998-10-27 Dell U.S.A., L.P. Combination heat sink and air duct for cooling processors with a series air flow
GB2347020B (en) * 1999-02-02 2003-05-14 3Com Technologies Ltd Cooling equipment
JP2008091885A (en) * 2006-10-04 2008-04-17 Taida Electronic Ind Co Ltd Heat radiation module and its fan
CN101959391A (en) * 2010-06-02 2011-01-26 苏州工业园区胜欣电子有限公司 Heat-dissipating device
JP2014048201A (en) * 2012-08-31 2014-03-17 Advantest Corp Electronic component tester
JP2019165187A (en) * 2018-03-20 2019-09-26 新電元工業株式会社 Electronic equipment unit and electronic apparatus device
US10856444B2 (en) 2018-05-18 2020-12-01 Fujitsu Limited Cooling device and electronic apparatus

Similar Documents

Publication Publication Date Title
US6002586A (en) Apparatus for adjustable mounting a cooling device to a computer enclosure
US5597034A (en) High performance fan heatsink assembly
US7613001B1 (en) Heat dissipation device with heat pipe
JP3097594U (en) Combination structure of CPU heat dissipation device and power supply
US7180747B2 (en) Heat dissipation device for a computer mother board
JP2006164274A (en) Portable computer power supply system
JPH0595062A (en) Air-cooling mechanism for lsi
US5873407A (en) Windblown-type heat-dissipating device for computer mother board
US6483704B2 (en) Microprocessor heat sink retention module
JPS6255000A (en) Heat sink apparatus
JPH08149621A (en) Sealed power source cooling device
JP2005085908A (en) Cooling device of integrated circuit and casing device
JP2001257494A (en) Electronic apparatus
JP2790044B2 (en) Power amplifier heat dissipation mounting structure
JP2796038B2 (en) Heating element cooling structure
JPH08125366A (en) Device for cooling electronic part
JPH11135970A (en) Radiator
JP3261820B2 (en) Heating element mounting board
JP2693251B2 (en) Power cooling module
JP3172138B2 (en) Heating element cooling structure
JPH07297583A (en) Heat sink equipped with fan
JP2002314278A (en) Air-cooling equipment for electronic component
JPH0727677Y2 (en) Refrigerant flow guide mechanism for heat sink
US20080068794A1 (en) Dissipation module and electronic device having the same
JPH04266091A (en) Cooling mechanism for electronic device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107