JPH058631B2 - - Google Patents

Info

Publication number
JPH058631B2
JPH058631B2 JP59215419A JP21541984A JPH058631B2 JP H058631 B2 JPH058631 B2 JP H058631B2 JP 59215419 A JP59215419 A JP 59215419A JP 21541984 A JP21541984 A JP 21541984A JP H058631 B2 JPH058631 B2 JP H058631B2
Authority
JP
Japan
Prior art keywords
signal
frequency
color
color signal
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59215419A
Other languages
Japanese (ja)
Other versions
JPS6194489A (en
Inventor
Yukio Nakagawa
Masao Tomita
Tokikazu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59215419A priority Critical patent/JPS6194489A/en
Priority to KR1019850007124A priority patent/KR900006490B1/en
Priority to CN85107257A priority patent/CN1010272B/en
Priority to US06/785,204 priority patent/US4724476A/en
Priority to EP85307312A priority patent/EP0178868B1/en
Priority to DE8585307312T priority patent/DE3586030D1/en
Publication of JPS6194489A publication Critical patent/JPS6194489A/en
Publication of JPH058631B2 publication Critical patent/JPH058631B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7921Processing of colour television signals in connection with recording for more than one processing mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal
    • H04N9/831Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal using intermediate digital signal processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気録画再生装置(VTR)の記録再
生に於て、記録または再生するカラー映像信号の
うち色信号の再生レベルや記録レベルを一定に制
御したり、記録・再生の際に搬送色信号または低
域変換色信号の周波数変換行なう周波数変換器に
入力される色信号を回路にとつて適当なレベルに
制御するACC動作の機能をもつ色信号処理装置
に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention is a method for controlling the playback level and recording level of a color signal among color video signals to be recorded or played back to a constant level during recording and playback of a magnetic recording/playback device (VTR). A color signal that has an ACC operation function that controls the color signal input to the frequency converter, which performs frequency conversion of the carrier color signal or low-frequency conversion color signal during recording and playback, to an appropriate level for the circuit. It relates to a processing device.

従来例の構成とその問題点 ACC動作の機能つ色信号処理装置の従来構成
例を第1図を参照して説明する。第1図はACC
動作の機能をもつ従来の色信号処理装置の構成を
示すブロツク図である。
Conventional configuration and its problems An example of the conventional configuration of a functional color signal processing device for ACC operation will be described with reference to FIG. Figure 1 shows ACC
1 is a block diagram showing the configuration of a conventional color signal processing device having operational functions.

まず、記録時には入力端子1よりカラー映像信
号から分離された搬送周波数SCの搬送色信号が
入力され、可変利得増幅器(ACC)3で適当な
レベルに増幅された後、周波数変換器4の一方の
入力に供給される。信号発生器(OSC1)5は前
記搬送色信号のバーストに位相同期した周波数
SCの搬送波発生するように周波数・位相制御さ
れ、前記周波数SCの搬送波は周波数変換器7の
一方の入力に供給され、また信号発生器
(OSC2)6は周波数C(NTSC方式のテレビジヨ
ン信号記録する場合、1水平周波数をHとして、
VHS方式でC=40Hでかつ1水平期間毎に位相
が90゜ずつシフトした、β方式でC=(44−1/4)
Hでかつ1水平期間毎に位相が反転した。)低域
変換搬送波を発生するもので記録時には前記カラ
ー映像信号の水平同期周波数の整数倍の周波数の
信号を作成し、さらに分周及び1水平期間毎に位
相シフトまたは位相反転の処理を行なつて低域変
換搬送波を作成し、周波数変換器7のもう一方の
入力に供給する。周波数変換器7は上記供給され
た周波数SCの搬送波と周波数Cの低域変換搬送
波を乗算し、その結果をバンドパスフイルタ
(BPF)8に供給する。前記乗算結果は周波数が
SCCの信号と周波数がSCCの信号の和とな
るがバンドバスフイルタ8により周波数SCC
の信号のみが抽出され周波数変換器4のもう一方
の入力に供給される。周波数変換器4は周波数変
換器7と同様、供給された2つの信号を乗算し、
乗算結果はローパスフイルタ(LPF)9により
搬送周波数Cの低域変換色号成分のみが抽出され
出力切換スイツチ10を介して出力端子2に記録
低域変換色信号が送出される。
First, during recording, a carrier color signal with a carrier frequency SC separated from the color video signal is input from the input terminal 1, and after being amplified to an appropriate level by the variable gain amplifier (ACC) 3, one of the frequency converters 4 supplied to the input. A signal generator (OSC1) 5 generates a frequency synchronized in phase with the burst of the carrier color signal.
The frequency and phase are controlled to generate a carrier wave of SC , and the carrier wave of frequency SC is supplied to one input of a frequency converter 7, and the signal generator (OSC2) 6 generates a carrier wave of frequency C (NTSC television signal recording). When 1 horizontal frequency is H ,
In the VHS system, C = 40 H , and the phase is shifted by 90 degrees every horizontal period, and in the β system, C = (44-1/4).
H and the phase was reversed every horizontal period. ) Generates a low frequency conversion carrier wave, and during recording, creates a signal with a frequency that is an integral multiple of the horizontal synchronization frequency of the color video signal, and further performs frequency division and phase shift or phase inversion processing for each horizontal period. A low frequency converted carrier wave is created by using the frequency converter 7, and is supplied to the other input of the frequency converter 7. The frequency converter 7 multiplies the supplied carrier wave of the frequency SC by the low frequency converted carrier wave of the frequency C , and supplies the result to the bandpass filter (BPF) 8. The frequency of the multiplication result is
The signal of SC + C and the frequency become the sum of the signal of SC - C , but due to the bandpass filter 8, the frequency SC + C
only the signal is extracted and supplied to the other input of the frequency converter 4. Like the frequency converter 7, the frequency converter 4 multiplies the two supplied signals,
A low-pass filter (LPF) 9 extracts only the low-frequency converted color component of the carrier frequency C from the multiplication result, and a recording low-frequency converted color signal is sent to the output terminal 2 via the output changeover switch 10.

再生時には入力端子1より磁気テープから再生
された記録信号より分離された搬送周波数Cの低
域変換色信号が入力され、可変利得増幅器3で適
当なレベルに増幅される。信号発生器5は基準の
色副搬送周波数SCの搬送波を発生し、周波数変
換器7の一方の入力に供給し、信号発生器6は、
入力端子1より入力された低域変換色信号のバー
ストと同期した周波数Cの低域変換搬送波を発生
し、周波数変換器7のもう一方の入力に供給す
る。周波数変換器7は記録時と同様に入力された
2つの信号乗算し、乗算結果はバンドパスフイル
タ8通過して周波数SCCの信号のみが抽出さ
れ、周波数変換器4の一方の入力に供給される。
周波数変換器4のもう一方の入力には前記可変利
得増幅器3で適当なレベルに増幅された低域変換
色信号が供給され、前記周波数SCCの信号と
乗算され、乗算結果からバンドパスフイルタ
(BPF)11により、信号発生器5の発生した搬
送波と同期した基準搬送周波数SCを持つ搬送色
信号が抽出され、出力切換スイツチ10を介して
出力端子2に再生搬送色信号が送出される。
During reproduction, a low frequency conversion color signal of a carrier frequency C separated from a recorded signal reproduced from a magnetic tape is inputted from an input terminal 1, and is amplified to an appropriate level by a variable gain amplifier 3. The signal generator 5 generates a carrier wave with a reference color subcarrier frequency SC and supplies it to one input of the frequency converter 7, and the signal generator 6
A low frequency conversion carrier wave of frequency C synchronized with the burst of the low frequency conversion color signal inputted from the input terminal 1 is generated and supplied to the other input of the frequency converter 7. The frequency converter 7 multiplies the two input signals in the same way as during recording, and the multiplication result passes through a bandpass filter 8 to extract only the signal with the frequency SC + C , which is supplied to one input of the frequency converter 4. be done.
The other input of the frequency converter 4 is supplied with the low-pass conversion color signal amplified to an appropriate level by the variable gain amplifier 3, multiplied by the signal of the frequency SC + C , and filtered from the multiplication result by a bandpass filter. A carrier color signal having a reference carrier frequency SC synchronized with the carrier wave generated by the signal generator 5 is extracted by the (BPF) 11, and a reproduced carrier color signal is sent to the output terminal 2 via the output changeover switch 10.

前記可変利得増幅器3の利得を制御し、入力端
子1から入力された色信号のレベルの大小や、レ
ベル変動を補正し、周波数変換器4に供給する色
信号のレベルや出力端子に送出される色信号のレ
ベル所定のレベルに保つのがACC動作であるが
従来次の様な方法で行なわれていた。
Controls the gain of the variable gain amplifier 3, corrects the level of the color signal input from the input terminal 1, and level fluctuations, and corrects the level of the color signal supplied to the frequency converter 4 and the level of the color signal sent to the output terminal. The ACC operation is used to maintain the color signal level at a predetermined level, and has conventionally been performed in the following manner.

まず、切換回路12により、記録時には可変利
得増幅器3を通過後の搬送色信号を取り込み、再
生時にはバンドパスフイルタ11を通過後の搬送
周波数SCに変換された搬送色信号を取り込み、
前記取り込まれた搬送色信号はバーストゲート
(BG)13により、バースト部分のみが抽出さ
れる。前記抽出されたバーストは検出回路
(ACCDET)14によりピークレベル検波され、
検波結果をローパスフイルタ(LPF)15に通
し、急激な変動を押さえた後、制御信号として可
変利得増幅器3に供給される。可変利得増幅器3
は例えば、制御信号のもとになる搬送色信号のピ
ーク値が高ければ利得を小さくし、ピーク値が低
ければ利得大きくするよう動作し、記録時には可
変利得増幅器3、切換回路12、バースゲート1
3、検出回路14、ローパスフイルタ15で形成
される帰還ループにより、再生時には、可変利得
増幅器3、周波数変換器4、バンナパスフイルタ
11、切換回路12、バーストゲート13、検出
回路14、ローパスフイルタ15で形成される帰
還ループにより、色信号のバーストレベルを一定
にしている。
First, the switching circuit 12 takes in the carrier color signal after passing through the variable gain amplifier 3 during recording, and takes in the carrier color signal converted to the carrier frequency SC after passing through the bandpass filter 11 during playback.
A burst gate (BG) 13 extracts only the burst portion of the captured carrier color signal. The extracted burst is subjected to peak level detection by a detection circuit (ACCDET) 14,
The detection result is passed through a low pass filter (LPF) 15 to suppress sudden fluctuations, and then supplied to the variable gain amplifier 3 as a control signal. variable gain amplifier 3
For example, if the peak value of the carrier color signal that is the source of the control signal is high, the gain is decreased, and if the peak value is low, the gain is increased.
3. A feedback loop formed by the detection circuit 14 and the low-pass filter 15 allows the variable gain amplifier 3, the frequency converter 4, the banner pass filter 11, the switching circuit 12, the burst gate 13, the detection circuit 14, and the low-pass filter 15 to be activated during reproduction. The feedback loop formed by this keeps the burst level of the color signal constant.

以上のような従来例の色信号処理装置おいて検
出回路14は記録・再生時とも、搬送周波数SC
(NTSC方式テレビジヨン信号で3.58MHz)のバ
ーストをピークレベル検波するため、速度応答性
が高いもが要求される消費電流が大きくなる欠点
があり、さらにバーストは間欠波であるため、ピ
ークホールド特性の良い、速度とは正反対の特性
が要求され回路が複雑になるという欠点もある。
また近年、色信号処理装置で従来アナログ処理を
行なつていた部分をデジタル化、MOSIC化し、
装置の高性能化、低消費電力化、外付部分の削減
を行なう傾向があるが、ACC検波回路に関して
は扱う周波数が高いため実現が困難となつてい
た。また可変利得増幅器3、検出回路14をリニ
ア回路で構成した場合、環境温度変化に対し
ACC動作により制御されるバーストレベルがド
リフトし、一定でなくなる欠点があり、さらに検
出回路14はバーストを整流し、かつそのピーク
値を保持するよう構成されているため、ホールド
特性はバーストレベルが小さくなる方向の変動に
応答できるよう時定数が小さくすることが必要
で、色信号レベルに1水平周期のリツプルを生じ
るという欠点がある。
In the conventional color signal processing device as described above, the detection circuit 14 detects the carrier frequency SC during both recording and reproduction.
(NTSC television signal: 3.58 MHz) bursts are detected at peak level, so high speed response is required, resulting in high current consumption.Furthermore, bursts are intermittent waves, so peak hold characteristics However, it also has the disadvantage that it requires characteristics that are the exact opposite of speed, making the circuit complex.
In addition, in recent years, the parts of color signal processing devices that traditionally performed analog processing have been digitized and converted to MOSIC.
There is a trend toward higher performance, lower power consumption, and fewer external components in devices, but this has been difficult to achieve with ACC detection circuits due to the high frequencies they handle. In addition, when the variable gain amplifier 3 and the detection circuit 14 are configured with linear circuits,
There is a drawback that the burst level controlled by the ACC operation drifts and becomes inconsistent, and the detection circuit 14 is configured to rectify the burst and hold its peak value, so the hold characteristic is such that the burst level is small. It is necessary to make the time constant small so as to be able to respond to fluctuations in different directions, which has the disadvantage that ripples of one horizontal period occur in the color signal level.

発明の目的 本発明の目的は前記従来例で欠点となつていた
色副搬送周波数SCでのバーストのピークレベル
検波を低い低域変換周波数Cでの検波で可能と
し、従来のキラー検波回路の簡略化と低消費電力
化を行ない、さらにデジタルIC化に適し、集積
化と性能の向上が可能な色信号処理装置を提供す
ることにある。
Purpose of the Invention The purpose of the present invention is to enable burst peak level detection at the color subcarrier frequency SC , which was a drawback in the conventional example, by detection at a low low-pass conversion frequency C , and to simplify the conventional killer detection circuit. The objective of the present invention is to provide a color signal processing device that is highly integrated and has low power consumption, is suitable for digital ICs, and is capable of integration and improved performance.

発明の構成 本発明の色信号処理装置は、カラー映像信号の
記録再生を行い、記録の際には前記カラー映像信
号から分離された搬送色信号を低域変換色信号に
周波数変換し、再生の際には再生された低域変換
色信号を送色信号に周波数変換して出力する記録
再生装置に於いて、前記記録再生時の周波数変換
を行う周波数変換器と、前記周波数変換器の入力
信号のレベルを可変する可変利得増幅器と、記録
時には前記周波数変換器の出力信号、再生時には
前記周波数変換器の入力信号を選択する切換回路
と、前記切換回路で選択された低域変換色信号の
バースト部分のレベルを検出し前記可変利得増幅
器に供給する利得制御信号を得る検出回路を具備
し、前記可変利得増幅器を通過後の色信号のバー
ストレベルを検出し、検出結果を制御信号として
可変利得増幅器に与える帰還ループにより、記
録・再生時の色信号を所定レベルに制御する
ACC動作を行なうものである。
Structure of the Invention The color signal processing device of the present invention records and reproduces a color video signal, and during recording, converts the frequency of a carrier color signal separated from the color video signal into a low frequency converted color signal, and performs frequency conversion on the carrier color signal separated from the color video signal during recording. In some cases, in a recording and reproducing device that frequency-converts a reproduced low-pass converted color signal into a sending color signal and outputs the same, a frequency converter that performs frequency conversion during recording and reproduction, and an input signal of the frequency converter are used. a variable gain amplifier that varies the level of the frequency converter; a switching circuit that selects the output signal of the frequency converter during recording and the input signal of the frequency converter during playback; and a burst of the low frequency converted color signal selected by the switching circuit. a detection circuit that detects the level of the color signal and obtains a gain control signal to be supplied to the variable gain amplifier, detects the burst level of the color signal after passing through the variable gain amplifier, and uses the detection result as a control signal to drive the variable gain amplifier. A feedback loop that controls the color signal during recording and playback to a predetermined level.
It performs ACC operation.

実施例の説明 以下本発明の一実施例について図面を参照しな
がら説明する。第2図は本発明の一実施例におけ
る色信号処理装置のブロツク図である。図におい
て入力端子1、出力端子2、可変利得増幅器3、
周波数変換器4、信号発生器5、信号発生器6、
周波数変換器7、バンドパスフイルタ8、ローパ
スフイルタ9、出力切換スイツチ10、バンドパ
スフイルタ11は記録・再生時とも従来例と同様
の動作を行なう。色信号のレベルの制御方法は、
まず、切換回路16により、記録時にはローパス
フイルタ9を通過した記録低域変換色信号が取り
込まれ、再生時には可変利得増幅器3を通可後の
周波数変換される前の低域変換色信号が取り込ま
れ、前記取り込まれた搬送色信号はバーストゲー
ト(BG)17によつてバースト部分のみが抽出
される。前記抽出されたバーストは検出回路
(ACC DET)18によりピークレベル検波され、
検波結果をローパスフイルタ(LPF)19に通
した後、制御信号として可換利得増幅器3に供給
される。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram of a color signal processing device in one embodiment of the present invention. In the figure, input terminal 1, output terminal 2, variable gain amplifier 3,
frequency converter 4, signal generator 5, signal generator 6,
The frequency converter 7, bandpass filter 8, lowpass filter 9, output changeover switch 10, and bandpass filter 11 operate in the same manner as in the conventional example during recording and reproduction. The method of controlling the color signal level is
First, the switching circuit 16 captures the recording low-pass converted color signal that has passed through the low-pass filter 9 during recording, and captures the low-frequency converted color signal that has passed through the variable gain amplifier 3 and has not been frequency-converted during playback. A burst gate (BG) 17 extracts only the burst portion of the captured carrier color signal. The extracted burst is subjected to peak level detection by a detection circuit (ACC DET) 18,
After passing the detection result through a low pass filter (LPF) 19, it is supplied to the variable gain amplifier 3 as a control signal.

以上のように本実施例によれば記録時には可変
利得増幅器3、周波数変換器4、切換回路16、
バーストゲート17、検出回路18、ローパスフ
イルタ19から成る帰還ループによりACC動作
が行なわれ、再生時には可変利得増幅器3、切換
回路16、バーストゲート17、検出回路18、
ローパスフイルタ19から成る帰還ループにより
ACC動作が行なわれる。
As described above, according to this embodiment, during recording, the variable gain amplifier 3, the frequency converter 4, the switching circuit 16,
The ACC operation is performed by a feedback loop consisting of the burst gate 17, the detection circuit 18, and the low-pass filter 19. During playback, the variable gain amplifier 3, the switching circuit 16, the burst gate 17, the detection circuit 18,
A feedback loop consisting of a low-pass filter 19
ACC operation is performed.

次に本発明の他の実施例について図面を参照し
ながら説明する。
Next, other embodiments of the present invention will be described with reference to the drawings.

第3図は本発明の他の実施例における色信号処
理装置のブロツク図である。
FIG. 3 is a block diagram of a color signal processing device in another embodiment of the present invention.

記録時に入力端子1より入力された搬送色信号
は可変利得増幅器3を通過後、従来例または本発
明の初めの実施例と同様な方法で搬送周波数C
低域変換色信号に変換され、出力端子2に記録低
域変換色信号として供給される。ただし、20,
22は信号発生器〔OSC1)(OSC2),21は1/4
分周器(1/4)、23は信号作成回路(PS/PI)
で信号発生器20は色副搬送周波数SCの4倍周
波数4SCの信号を発生し、前記4SCの信号は1/4分
周器21で分周され、周波数SCの色副搬送波が
作成されるが、信号発生器20は記録時、1/4分
周器21で作成された周波数SCの色副搬送波が
可変利得増幅器3を通過後の搬送色信号のバース
トに同期する様に発生信号の周波数・位相が制御
される。すなわち信号発生器20と1/4分周器2
1で従来例または本発明の初めの実施例の信号発
生器5の動作を行なう。また信号発生器22は記
録するカラー映像信号の水平同期信号を逓倍する
動作を行ない例えばVHS記録方式でNTSC方式
のカラー映像信号を記録する場合、水平同期信号
は周波数が160倍、つまり低域変換色信号C4倍
に逓倍され分周及び1水平期間毎に位相シフトま
たは位相反転の処理を行なう信号作成回路23に
供給され、信号作成回路23は上記したような処
理を行なつた結果周波数Cの低域変換搬送波を作
成し、周波数変換器7に供給している。すなわち
信号発生器22と信号作成回路23で従来例また
は本発明の初めの実施例の信号発生器6の動作を
行なう。
The carrier color signal inputted from the input terminal 1 during recording passes through the variable gain amplifier 3, and is converted into a low-frequency converted color signal with carrier frequency C in the same manner as in the conventional example or the first embodiment of the present invention, and is output. The signal is supplied to terminal 2 as a recording low frequency conversion color signal. However, 20,
22 is the signal generator [OSC1) (OSC2), 21 is 1/4
Frequency divider (1/4), 23 is signal generation circuit (PS/PI)
The signal generator 20 generates a signal with a frequency 4 SC that is four times the color subcarrier frequency SC , and the 4 SC signal is divided by a 1/4 frequency divider 21 to create a color subcarrier with a frequency SC . However, during recording, the signal generator 20 adjusts the generated signal so that the color subcarrier of frequency SC created by the 1/4 frequency divider 21 is synchronized with the burst of the carrier color signal after passing through the variable gain amplifier 3. Frequency and phase are controlled. That is, signal generator 20 and 1/4 frequency divider 2
1, the signal generator 5 of the conventional example or the first embodiment of the present invention operates. In addition, the signal generator 22 performs an operation of multiplying the horizontal synchronizing signal of the color video signal to be recorded. For example, when recording a color video signal of the NTSC system in the VHS recording system, the horizontal synchronizing signal has a frequency 160 times higher, that is, low frequency conversion. The color signal C is multiplied by 4 times and supplied to the signal generation circuit 23 which performs frequency division and phase shift or phase inversion processing every horizontal period, and the signal generation circuit 23 performs the above processing to obtain the frequency C A low frequency converted carrier wave is created and supplied to the frequency converter 7. That is, the signal generator 22 and the signal generating circuit 23 perform the operation of the signal generator 6 of the conventional example or the first embodiment of the present invention.

再生時には従来例または本発明の初めの実施例
と異なり、周波数変換器4,7及びバンドパスフ
イルタ8は使用しない。まず入力端子1から入力
された再生低域変換色信号は可変利得増幅器3で
適当なレベルに増幅された後、切換回路24を介
してA/D変換器(A/D)25に供給される。
A/D変換器25の変換クロツクには信号発生器
22からの低域変換色信号Cの4倍の周波数4C
の信号が使用される。前記信号発生器22からの
信号の周波数は、再生時には信号作成回路23を
通過して得られた低域変換搬送波が、可変利得増
幅器3を通過後の再生低域変換色信号のバースト
と周波数・位相が同期するように制御されてお
り、A/D変換器25でサンプリング及びA/D
変換された再生低域変換色信号は色差信号成分の
B−Y,R−Y,−(B−Y),−(R−Y)の繰り
返しデータとなる。デコーダ(DECODE)26
は前記繰り返しデータを信号作成回路23からの
低域変換搬送波のタイミングとその4倍の周波数
の信号を発生する信号発生器22からの信号との
タイミングに従つて前記データの符号反転及びデ
ータの分離を行ない、2つの色差信号データ、B
−YとR−Yにデジタル復調し、前記2つの色差
信号データは再生信号のクロストーク成分及びサ
ンプリングによる高調波成分を除去するデジタル
くし形フイルタ27,28にそれぞれ供給され
る。デジタルくし形フイルタ(COMB)27,
28を通過後の色差信号のR−Y及びB−Yデー
タは(R−Y)′,(B−Y)′となつてエンコー
ダ(NECODE)29に供給される。信号発生器
21は再生時、基準の色副搬送周波数SCの4倍
の周波数4SCの信号を発生する固定発振器となり、
エンコーダ29は色差信号データ(R−Y)′と
(B−Y)′の符号反転を行ないデジタルデータの
−(R−Y)′と−(B−Y)′を作成し、1/4分周
器21からのカウント情報をもとに(R−Y)′,
(B−Y)′,−(R−Y)′,−(B−Y)′のデー

の順に周期1/SCで繰り返し送出し、搬送色信
号データとしてD/A変換器(D/A)30に供
給する。前記搬送色信号データはD/A変換器3
0でアナログ信号に変換された後バンドパスフイ
ルタ(BPF)31でサンプリングによる高調波
が除去され、出力切換スイツチ10を介して出力
端子2に再生搬送色信号として送出される。上記
したように本発明の他の実施例の色信号処理装置
では再生時の周波数変換の方法として、可変利得
増幅器3を通過後の再生低域変換色信号をA/D
変換器25、デコーダ26、デジタルくし形フイ
ルタ27,28で構成されるデジタル復調回路で
2つの色差信号データにデジタル復調し、その後
に基準の周波数で変調することにより所定の搬送
色信号を得るようにしている。
Unlike the conventional example or the first embodiment of the present invention, the frequency converters 4, 7 and the bandpass filter 8 are not used during reproduction. First, the reproduced low frequency conversion color signal inputted from the input terminal 1 is amplified to an appropriate level by the variable gain amplifier 3, and then supplied to the A/D converter (A/D) 25 via the switching circuit 24. .
The conversion clock of the A/D converter 25 has a frequency 4 C that is four times the low frequency conversion color signal C from the signal generator 22.
signals are used. The frequency of the signal from the signal generator 22 is determined by the frequency of the low frequency converted carrier wave obtained by passing through the signal generation circuit 23 during reproduction and the burst of the reproduced low frequency converted color signal after passing through the variable gain amplifier 3. The phases are controlled to be synchronized, and the A/D converter 25 performs sampling and A/D.
The converted reproduced low frequency converted color signal becomes repeated data of color difference signal components BY, RY, -(B-Y), -(RY). Decoder (DECODE) 26
is to invert the sign of the repeated data and separate the data according to the timing of the low-frequency conversion carrier wave from the signal generation circuit 23 and the timing of the signal from the signal generator 22 that generates a signal with a frequency four times that of the low-frequency conversion carrier wave. The two color difference signal data, B
-Y and RY, and the two color difference signal data are supplied to digital comb filters 27 and 28, respectively, which remove crosstalk components of the reproduced signal and harmonic components due to sampling. Digital comb filter (COMB) 27,
The R-Y and BY data of the color difference signal after passing through 28 are supplied to an encoder (NECODE) 29 as (RY)' and (B-Y)'. The signal generator 21 becomes a fixed oscillator that generates a signal with a frequency of 4 SC , which is four times the reference color subcarrier frequency SC , during reproduction.
The encoder 29 inverts the sign of the color difference signal data (R-Y)' and (B-Y)' to create digital data -(R-Y)' and -(B-Y)'. Based on the count information from the frequency generator 21, (RY)',
The data of (B-Y)', -(R-Y)', -(B-Y)' are repeatedly sent out in the order of cycle 1/ SC and sent to the D/A converter (D/A) as carrier color signal data. Supply to 30. The carrier color signal data is transmitted to the D/A converter 3.
After the signal is converted into an analog signal at 0, harmonics caused by sampling are removed by a band pass filter (BPF) 31, and the signal is sent to the output terminal 2 via the output selector switch 10 as a reproduced carrier color signal. As described above, in the color signal processing device according to the other embodiment of the present invention, as a frequency conversion method during reproduction, the reproduced low-frequency converted color signal after passing through the variable gain amplifier 3 is converted into an A/D converter.
A digital demodulation circuit consisting of a converter 25, a decoder 26, and digital comb filters 27 and 28 digitally demodulates the data into two color difference signal data, and then modulates it at a reference frequency to obtain a predetermined carrier color signal. I have to.

ACC動作を行なう方法として復調された色差
信号データのバースト部分の値から振幅値を算出
し、その値を帰還することにより行なうが、以下
その動作を説明する。
The ACC operation is performed by calculating an amplitude value from the value of the burst portion of the demodulated color difference signal data and feeding back that value.The operation will be explained below.

まず、記録時には信号切換回路24を介して、
再生時に周波数変換のためのデジタル復調回路の
一部として使用していたA/D変換器25にロー
パスフイルタ9を通過後の棋記録低域変換色信号
が供給される。記録時、信号発生器22は前記し
たように水平同期周波数の整数倍でかつ低域変換
周波数Cの4倍の信号を発生するように制御され
ており、さらに記録低域変換色信号はその搬送波
が信号作成回路23で作成された低域変換搬送波
と同期するように、信号発生回路20が発生する
信号の周波数4SCを変化させることにより制御さ
れている。このためA/D変換器25とデコーダ
26によつて低域変換色信号を2つの色差信号デ
ータR−Y,B−Yに復調することが可能であ
る。再生時には前記説明したように周波数変換の
ために再生低域変換色信号を一担2つの色差信号
データR−Y,B−Yに復調する構成となつてい
る。このため記録・再生時の両方で低域変換色信
号を2つの色差信号データにデジタル復調し、バ
ーストの振幅値を出するための色差信号データと
する。前記バーストの振幅を算出するための色耳
信号データとしてはデジタルくし形フイルタ2
7,28を通過後の色差信号データ(R−Y)′
(B−Y)′を使用している。これは記録時と再生
時で回路を兼用したかつたため記録時にも色差信
号データR−Y,B−Yをくし形フイルタ27,
28に通す構成としているが低域変換色信号にク
ロストーク成分を含まない場合は特に通す必要は
ない。前記デジタルくし形フイルタ27,28を
通過後の色差信号データ(R−Y)′,(B−
Y)′は記録時、再生時ともバーストゲート
(BG)32でバースト部分の(R−Y)′,(B
−Y)′が抽出され検出回路33に供給される。
検出回路(ACCDET)33はデジタルデータの
演算回路及びD/A変換器で構成される回路と考
えて良く、例えばNTSC方式の搬送色信号を低域
変換した場合、第4図のベクトル図に示すように
低域変換バーストのベクトルBは色差信号復調軸
の(B−Y)′軸に対し一の方向をもつたベクト
ルとなり、前記本発明の初めの実施例における検
出回路18によるピークレベル検波結果はベクト
ルBの大きさと同等であり、第1の方法としてバ
ーストゲートでぬき取つた(B−Y)′データの
絶対値をD/A変換してピークレベル検波結果と
することが可能である。また第2の方法として
A/D変換器25及びデコーダ26に供給される
4Cのクロツクと低域変換色信号のバーストの位
相に信号発生器20,22の周波数・位相制御の
応答の遅れ等からずれを生じた場合、バーストは
第4図B′のように本来のベクトルに対し、角度
にΔαのずれを生じベクトルB′の大きさが求めら
れない場合があるがこれを防止するために第4図
のB′b,B′aが B′b=|B′|∞Δα B′a=|B′|sinΔα になることを利用してバースト部分の色差信号デ
ータ((R−Y)′(B−Y)′より B′=√(′)2+(′)2 =√(′)2+(′)2 をデジタル的に演算して得られた結果をD/A変
換し、ピークレベル検波結果としても良い。また
第3の方法として検出回路33の回路上でバース
トレベルの制御を行なう設定値を与えておき、例
えば設定値をBCとしてB′≦BCのときデジタルデ
ータの“H”,B′>BCのときデジタルデータ
“L”を出力するように検出回路33を構成し、
後のローパスフイルタ(LDF)34で平滑して
可変利得増幅器3に制御信号として供給してやれ
ばバーストレベルはその大きさが検出回路33で
設定したデジタルデータのBC付近になるよう制
御することも可能である。またバーストレベル
B′の求め方としてバースト区間に得られたデー
タのうち一番値の大きなデータをB′とする方法
やバースト区間のデータを平均してB′のデータ
とする方法など種々の方法が可能である。ここで
初めの実施例の検出回路18は本発明の他の実施
例におけるA/D変換器25、デコーダ26、く
し形フイルタ27,28、検出回路33で構成さ
れた回路ブロツクとほぼ同等と考えられ、ローパ
スフイルタ34を介してバーストレベルを可変利
得増幅器3に帰還してACC動作を行なう原理は、
従来例及び本発明の初めの実施例と同じである。
第5図はPAL方式の搬送色信号を低域変換した
ときの低域変換色信号のベクトルを示すもので
1H毎にa,bのようにR−Y軸が反転され、バ
ーストのベクトルもNTSCの場合と異なり、復調
軸の(R−Y)′軸方向のベクトルと(B−
Y)′軸に対し一方向のベクトルが1対1で加算
されたようなベクトルとなつている。しかしなが
らPAL方式の搬送色信号を低域変換した場合の
低域変換色信号のバーストレベルも B′=√(′)2+(′)2 =√(−)′2+(−)′2 でNTSC方式と同様に求められ、検出回路33も
NTSC方式の場合の第2、第3の方法と同じ構成
で実現できる。
First, during recording, via the signal switching circuit 24,
The shogi recording low-pass conversion color signal after passing through the low-pass filter 9 is supplied to the A/D converter 25, which is used as part of a digital demodulation circuit for frequency conversion during reproduction. During recording, the signal generator 22 is controlled to generate a signal that is an integral multiple of the horizontal synchronization frequency and four times the low frequency conversion frequency C , as described above, and furthermore, the recording low frequency conversion color signal is generated by its carrier wave. It is controlled by changing the frequency 4 SC of the signal generated by the signal generation circuit 20 so that it is synchronized with the low frequency converted carrier wave generated by the signal generation circuit 23. Therefore, the A/D converter 25 and the decoder 26 can demodulate the low frequency converted color signal into two color difference signal data RY and BY. During reproduction, as explained above, the reproduced low frequency converted color signal is demodulated into two color difference signal data RY and BY for frequency conversion. For this reason, the low frequency converted color signal is digitally demodulated into two color difference signal data during both recording and reproduction, and the color difference signal data is used to output the burst amplitude value. Digital comb filter 2 is used as color signal data for calculating the amplitude of the burst.
Color difference signal data (R-Y) after passing through 7 and 28
(B-Y)' is used. This is because the circuit is used both during recording and reproduction, and therefore, the color difference signal data R-Y, B-Y are passed through the comb filter 27,
28, but if the low-frequency conversion color signal does not include a crosstalk component, it is not necessary to pass it through. Color difference signal data (RY)', (B-) after passing through the digital comb filters 27 and 28
Y)' is the burst part (RY)', (B
-Y)' is extracted and supplied to the detection circuit 33.
The detection circuit (ACCDET) 33 can be thought of as a circuit composed of a digital data calculation circuit and a D/A converter. For example, when a carrier color signal of the NTSC system is low-frequency converted, it is shown in the vector diagram of Fig. 4. As shown in FIG. is equivalent to the size of vector B, and as a first method, it is possible to D/A convert the absolute value of the (BY)' data extracted by the burst gate to obtain the peak level detection result. Also, as a second method, the data is supplied to the A/D converter 25 and decoder 26.
4C clock and the phase of the burst of the low-frequency conversion color signal due to a delay in the response of the frequency/phase control of the signal generators 20 and 22, the burst will change to its original state as shown in Fig. 4B'. In some cases, the magnitude of vector B' cannot be determined due to an angle deviation of Δα with respect to the vector. To prevent this, B'b and B'a in Fig. 4 are set as B'b = |B' Using the fact that |∞Δα B′a=|B′|sinΔα, the color difference signal data of the burst part ((RY)′(B−Y)′, B′=√(′) 2 +(′ ) 2 =√(′) 2 +(′) 2 may be digitally calculated and the result obtained may be D/A converted and used as the peak level detection result.Also, as a third method, the circuit of the detection circuit 33 The setting value for controlling the burst level is given above, and for example, if the setting value is BC, when B'≦BC, the digital data is "H", and when B'>BC, the digital data is "L". configuring the detection circuit 33,
By smoothing the signal using a low-pass filter (LDF) 34 and supplying it to the variable gain amplifier 3 as a control signal, it is possible to control the burst level so that its magnitude is close to the BC of the digital data set by the detection circuit 33. be. Also burst level
Various methods can be used to obtain B', such as using the data with the largest value among the data obtained in the burst interval as B', or averaging the data in the burst interval to obtain B' data. be. Here, the detection circuit 18 of the first embodiment is considered to be almost equivalent to the circuit block composed of the A/D converter 25, decoder 26, comb filters 27, 28, and detection circuit 33 in other embodiments of the present invention. The principle of performing ACC operation by feeding back the burst level to the variable gain amplifier 3 via the low-pass filter 34 is as follows.
This is the same as the conventional example and the first embodiment of the present invention.
Figure 5 shows the vector of the low frequency converted color signal when the PAL carrier color signal is low frequency converted.
The R-Y axis is reversed every 1H like a and b, and the burst vector is also different from the vector in the (R-Y)' axis direction of the demodulation axis and (B-
The vector is a one-to-one addition of vectors in one direction with respect to the Y)' axis. However, when the PAL carrier color signal is low-frequency converted, the burst level of the low-frequency converted color signal is also B′=√(′) 2 +(′) 2 =√(−)′ 2 +(−)′ 2 It is obtained in the same way as the NTSC method, and the detection circuit 33 is also
This can be realized with the same configuration as the second and third methods in the case of the NTSC system.

発明の効果 以上の説明から明らかなように、本発明は、カ
ラー映像信号の記録再生を行い、記録の際には前
記カラー映像信号から分離された搬送色信号を低
域変換色信号に周波数変換し、再生の際には再生
された低域変換色信号を搬送色信号に周波数変換
して出力する記録再生装置に於いて、前記記録再
生時の周波数変換を行う周波数変換器と、前記周
波数変換器の入力信号のレベルを可変する可変利
得増幅器と、記録時には前記周波数変換器の出力
信号、再生時には前記周波数変換器の入力信号を
選択する切換回路と、前記切換回路で選択された
低域変換色信号のバースト部分のレベルを検出し
前記可変利得増幅器に供給する利得制御信号を得
る検出回路を具備して構成しているため、従来、
高い周波数の色副搬送周波数で行なつていたバー
ストのピークレベル検波が、低い周波数の低域変
換色信号で可能になり、低速の回路動作で実現で
きるため回路の消費電流を小さくすることができ
かつ低速でデジタル化、MOSIC化に適合できる
という効果が得られる。
Effects of the Invention As is clear from the above description, the present invention records and reproduces a color video signal, and during recording, frequency converts a carrier color signal separated from the color video signal into a low frequency converted color signal. In a recording and reproducing apparatus that converts the frequency of the reproduced low-pass converted color signal into a carrier color signal and outputs the same during reproduction, a frequency converter that performs frequency conversion during recording and reproduction, and a frequency converter that performs frequency conversion during recording and reproduction; a variable gain amplifier that varies the level of the input signal of the device; a switching circuit that selects the output signal of the frequency converter during recording and the input signal of the frequency converter during playback; and a low frequency conversion selected by the switching circuit. Conventionally, the configuration includes a detection circuit that detects the level of the burst portion of the color signal and obtains a gain control signal to be supplied to the variable gain amplifier.
Burst peak level detection, which was previously performed using a high-frequency color subcarrier frequency, can now be performed using a low-frequency, low-pass conversion color signal, and can be achieved with low-speed circuit operation, reducing circuit current consumption. Moreover, it has the advantage of being compatible with digitalization and MOSIC conversion at low speed.

さらに、検出回路を、低域変換色信号を低域変
換搬送波に同期した4倍の周波数のクロツクで2
つの色差信号にサンプリング復調するデコーダ
と、前記デコーダのバースト部分の2つの色差信
号の情報より可変利得増幅器に帰還するバースト
のレベルを演算する演算回路を具備して構成した
ことにより、検出回路のデジタル化が行なわれる
とともに従来のアナログ回路では困難であつた
種々のバーストレベルの検出方法が可能であり、
処理する低域変換色信号に適合した検出回路が提
供できるいう効果がある。また、ACC動作を行
なうバーストレベルのデジタルデータ検出回路内
で設定することが可能であり、これにより環温度
変化に対するバーストレベルのドリフトは、デジ
タルデータの部分では起こりえず、環温度変化に
よるACC動作を行なつた後の色信号のレベル変
動を減少させる効果がある。また従来のアナログ
処理でバーストのピークレベル検波を行なう場
合、バーストのレベルが小さくなる方向のレベル
変動に応答するためホールド時の時定数を大きく
することが困難であつたが、1水平周期ごとに、
バーストのレベルを検出し、その結果をもとに可
変利得増幅器の利得制御用の信号を作成するた
め、変換色信号のレベル変動に対し応答が早く、
ホールド特性もデジタルデータを保持すること
で、1水平期間の検出結果がそのまま保たれ1水
平周期のリツプルを生じない効果もある。
Furthermore, the detection circuit is clocked at four times the frequency of the low frequency conversion color signal synchronized with the low frequency conversion carrier wave.
This configuration includes a decoder that samples and demodulates the two color difference signals in the burst portion of the decoder, and an arithmetic circuit that calculates the level of the burst to be fed back to the variable gain amplifier from the information of the two color difference signals in the burst portion of the decoder. It has become possible to detect various burst levels, which was difficult with conventional analog circuits.
This has the advantage that a detection circuit suitable for the low-frequency conversion color signal to be processed can be provided. In addition, it is possible to set the burst level in the digital data detection circuit that performs ACC operation, so that drift of the burst level due to ring temperature changes will not occur in the digital data part, and ACC operation due to ring temperature changes will not occur. This has the effect of reducing level fluctuations in color signals after the process. Furthermore, when detecting the peak level of a burst using conventional analog processing, it was difficult to increase the time constant during hold because it responded to level fluctuations in the direction of decreasing the burst level. ,
Since the burst level is detected and a signal for controlling the gain of the variable gain amplifier is created based on the result, the response to level fluctuations of the converted color signal is quick.
By holding the digital data in the hold characteristic, the detection result for one horizontal period is maintained as it is, which has the effect of not causing ripples for one horizontal period.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の色信号処理装置のブロツク図、
第2図は発明の一実施例における色信号処理装置
のブロツク図、第3図は本発明の他の実施例にお
ける色信号処理装置のブロツク図、第4図は
NTSC方式の搬送色信号を低域変換した場合の低
域変換バーストのベクトル図、第5図はPAL方
式の搬送色信号を低域変換した場合の低域変換バ
ーストのベクトル図である。 1…入力端子、2…出力端子、3…可変利得増
幅器、4,7…周波数変換器、5,6…信号発生
器、8…バンドパスフイルタ、9…ローパスフイ
ルタ、10…出力切換スイツチ、11…バンドパ
スフイルタ、16…切換回路、17…バーストゲ
ート、18…検出回路、19…ローパスフイル
タ、20,22…信号発生器、21…1/4分周器、
23…信号作成回路、24…切換回路、25…
A/D変換器、26…デコーダ、27,28…デ
ジタルくし形フイルタ、29…エンコーダ、30
…D/A変換器、31…バンドパスフイルタ、3
2…バーストゲート、33…検出回路、34…ロ
ーパスフイルタ。
Figure 1 is a block diagram of a conventional color signal processing device.
FIG. 2 is a block diagram of a color signal processing device in one embodiment of the invention, FIG. 3 is a block diagram of a color signal processing device in another embodiment of the invention, and FIG. 4 is a block diagram of a color signal processing device in another embodiment of the invention.
FIG. 5 is a vector diagram of a low frequency conversion burst when a carrier color signal of the NTSC system is low frequency converted. FIG. 5 is a vector diagram of a low frequency conversion burst when a carrier color signal of the PAL system is low frequency converted. 1... Input terminal, 2... Output terminal, 3... Variable gain amplifier, 4, 7... Frequency converter, 5, 6... Signal generator, 8... Band pass filter, 9... Low pass filter, 10... Output selector switch, 11 ...Band pass filter, 16...Switching circuit, 17...Burst gate, 18...Detection circuit, 19...Low pass filter, 20, 22...Signal generator, 21...1/4 frequency divider,
23...Signal creation circuit, 24...Switching circuit, 25...
A/D converter, 26...decoder, 27, 28...digital comb filter, 29...encoder, 30
...D/A converter, 31...Band pass filter, 3
2... Burst gate, 33... Detection circuit, 34... Low pass filter.

Claims (1)

【特許請求の範囲】 1 カラー映像信号の記録再生を行い、記録の際
には前記カラー映像信号から分離された搬送色信
号を低域変換色信号に周波数変換し、再生の際に
は再生された低域変換色信号を搬送色信号に周波
数変換して出力する記録再生装置に於いて、前記
記録再生時の周波数変換を行う周波数変換器と、
前記周波数変換器の入力信号のレベルを可変する
可変利得増幅器と、記録時には前記周波数変換器
の出力信号、再生時には前記周波数変換器の入力
信号を選択する切換回路と、前記切換回路で選択
された低域変換色信号のバースト部分のレベルを
検出し前記可変利得増幅器に供給する利得制御信
号を得る検出回路を具備したことを特徴とする色
信号処理装置。 2 検出回路は、低域変換色信号を低域変換搬送
波に同期した4倍の周波数のクロツクで2つの色
差信号にサンプリング復調するデコーダと、前記
デコーダのバースト部分の2つの色差信号の情報
より可変利得増幅器に帰還するバーストのレベル
を演算する演算回路を具備して構成したことを特
徴とする特許請求の範囲第1項記載の色信号処理
装置。 3 再生時に低域変換色信号を周波数変換する周
波数変換器は、検出回路を構成するデコーダと、
前記デコーダで復調した2つの色差信号を直角二
相変調して搬送色信号に変換するエンコーダで構
成されていることを特徴とする特許請求の範囲第
2項記載の色信号処理装置。
[Scope of Claims] 1 Recording and reproducing a color video signal, converting the frequency of a carrier color signal separated from the color video signal into a low frequency converted color signal during recording, and converting the frequency of a carrier color signal separated from the color video signal into a low frequency converted color signal during playback. In a recording and reproducing apparatus that frequency converts a low frequency converted color signal into a carrier color signal and outputs the same, a frequency converter that performs frequency conversion during recording and reproduction;
a variable gain amplifier that varies the level of the input signal of the frequency converter; a switching circuit that selects the output signal of the frequency converter during recording and the input signal of the frequency converter during playback; A color signal processing device comprising a detection circuit that detects the level of a burst portion of a low frequency converted color signal and obtains a gain control signal to be supplied to the variable gain amplifier. 2. The detection circuit includes a decoder that samples and demodulates the low frequency conversion color signal into two color difference signals using a clock with a frequency four times higher than the low frequency conversion carrier wave, and a decoder that samples and demodulates the low frequency conversion color signal into two color difference signals, and a signal that is variable based on the information of the two color difference signals in the burst portion of the decoder. 2. The color signal processing device according to claim 1, further comprising an arithmetic circuit that calculates the level of the burst that is fed back to the gain amplifier. 3. The frequency converter that converts the frequency of the low frequency conversion color signal during reproduction includes a decoder that constitutes a detection circuit,
3. The color signal processing device according to claim 2, further comprising an encoder that performs orthogonal two-phase modulation on the two color difference signals demodulated by the decoder and converts them into a carrier color signal.
JP59215419A 1984-10-12 1984-10-15 Chrominance components processing device Granted JPS6194489A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59215419A JPS6194489A (en) 1984-10-15 1984-10-15 Chrominance components processing device
KR1019850007124A KR900006490B1 (en) 1984-10-12 1985-09-27 Chrominance signal processing device
CN85107257A CN1010272B (en) 1984-10-12 1985-09-28 Chrominance signal processing apparatus
US06/785,204 US4724476A (en) 1984-10-12 1985-10-07 Chrominance signal processing apparatus
EP85307312A EP0178868B1 (en) 1984-10-12 1985-10-11 Chrominance signal processing apparatus
DE8585307312T DE3586030D1 (en) 1984-10-12 1985-10-11 DEVICE FOR PROCESSING A COLOR SIGNAL SIGNAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215419A JPS6194489A (en) 1984-10-15 1984-10-15 Chrominance components processing device

Publications (2)

Publication Number Publication Date
JPS6194489A JPS6194489A (en) 1986-05-13
JPH058631B2 true JPH058631B2 (en) 1993-02-02

Family

ID=16672022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215419A Granted JPS6194489A (en) 1984-10-12 1984-10-15 Chrominance components processing device

Country Status (1)

Country Link
JP (1) JPS6194489A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681330B2 (en) * 1985-02-25 1994-10-12 ソニー株式会社 Video signal recorder

Also Published As

Publication number Publication date
JPS6194489A (en) 1986-05-13

Similar Documents

Publication Publication Date Title
JPS6222318B2 (en)
US4724476A (en) Chrominance signal processing apparatus
US3681518A (en) Color video signal correction system
JPH058631B2 (en)
US5440349A (en) Color signal demodulation circuit and method therefor
US4672426A (en) Chrominance signal processing apparatus
JPH0748873B2 (en) Magnetic recording / reproducing device
KR0142291B1 (en) Apparatus for generating carrier in order to conversion of frequency band of chroma signal
JPS6412156B2 (en)
US5070398A (en) Contour compensator for carrier chrominance signal
JPH058629B2 (en)
JPH065944B2 (en) Magnetic recording / reproducing system
JPH058632B2 (en)
JPH058630B2 (en)
JPS646617Y2 (en)
KR880000412Y1 (en) Recording apparatus of colour picture signal
JP2918603B2 (en) Color signal processing device
KR910003283B1 (en) Reproducing apparatus of color signal for vcr
JP2565253B2 (en) Video player
JPH01164191A (en) Time base collector
JPH05130644A (en) Semiconductor integrated circuit device for image processing
JPS5812793B2 (en) Eizoushingouno Kirokusaiseiki
JPS60223279A (en) Chrominance signal processor
JPS6115491A (en) Color video signal recording device
JPS62249593A (en) Time base correcting device