JPH0583909A - Ac generator for car - Google Patents

Ac generator for car

Info

Publication number
JPH0583909A
JPH0583909A JP26882691A JP26882691A JPH0583909A JP H0583909 A JPH0583909 A JP H0583909A JP 26882691 A JP26882691 A JP 26882691A JP 26882691 A JP26882691 A JP 26882691A JP H0583909 A JPH0583909 A JP H0583909A
Authority
JP
Japan
Prior art keywords
groove
magnetic pole
pitch
rotor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26882691A
Other languages
Japanese (ja)
Other versions
JP3214508B2 (en
Inventor
Takahide Hamashima
孝英 濱嶋
Seiji Hayashi
誠司 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP26882691A priority Critical patent/JP3214508B2/en
Publication of JPH0583909A publication Critical patent/JPH0583909A/en
Application granted granted Critical
Publication of JP3214508B2 publication Critical patent/JP3214508B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)

Abstract

PURPOSE:To provide an AC generator for a car, mandays for machining of which are decreased, and eddy current loss in a magnetic pole of which is reduced and which has excellent power generation efficiency. CONSTITUTION:In an Ac generator for a car composed of a Randel type rotor 1 and a stator 3, grooves 21 interrupting eddy currents are formed in its path on the surface of the magnetic pole 11 of the rotor 1 in the axial direction of the magnetic pole 11. The pitches R of the grooves 21 are set to the quarter or less of the slot pitches T of the stators 3. The grooves take an arbitrary shape such as a V shape, a U shape, a square shape, etc. The depth of the grooves is set to 0.5mm or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,車両に用いる交流発電
機,特に回転子の磁極表面の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alternator used in a vehicle, and more particularly to a structure of a magnetic pole surface of a rotor.

【0002】[0002]

【従来技術】一般に,回転電機は,固定子と回転子との
間の空隙部において,電機子反作用によって高調波磁界
が生じることが知られている。また,回転角に対して
は,スロットリップルと言われる小磁束脈動が生ずる。
この脈動は,固定子と回転子との間の対向面間磁器抵抗
が変化することに基づくものである。これらの交番磁界
は,積層板よりなる固定子には殆ど悪影響を及ぼさない
が,鋼塊よりなる回転子磁極に対してはうず電流損失や
ヒステリシス損失をもたらす。また,近年は,車両の低
燃費化が叫ばれ,車両用交流発電機においても,その高
効率化,低うず電流損失化が求められている。そして,
上記要求に対応するため,磁極の表面に,うず電流の通
路にあってその妨げとなる凹凸表面を設けた,車両用交
流発電機が提案されている(特開平3−139149
号)。
2. Description of the Related Art Generally, it is known that in a rotary electric machine, a harmonic magnetic field is generated by an armature reaction in a gap between a stator and a rotor. Also, with respect to the rotation angle, small magnetic flux pulsation called slot ripple occurs.
This pulsation is due to the change in the porcelain resistance between the facing surfaces between the stator and the rotor. These alternating magnetic fields have almost no adverse effect on the stator composed of laminated plates, but cause eddy current loss and hysteresis loss on the rotor magnetic poles composed of steel ingot. Further, in recent years, there has been a demand for lower fuel consumption of vehicles, and there is a demand for higher efficiency and lower eddy current loss in vehicle alternators. And
In order to meet the above requirements, a vehicle AC generator has been proposed in which the surface of the magnetic pole is provided with an uneven surface that interferes with the passage of the eddy current (Japanese Patent Laid-Open No. 3-139149).
issue).

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来の車
両用交流発電機においては,うず電流損失に対する一応
の効果は認められるが,加工工数が多い割には,顕著な
発電効果が得られないという問題があった。本発明は,
かかる従来の問題点に鑑み,固定子のスロットピッチと
回転子の表面構造との関係につき検討を重ねた結果なさ
れたものである。本発明は,加工工数が少なく,磁極に
おけるうず電流損失を低減し,発電効率に優れた車両用
交流発電機を提供しようとするものである。
[Problems to be Solved] However, in the above-described conventional vehicle alternator, although a temporary effect on the eddy current loss is recognized, a significant power generation effect cannot be obtained despite the large number of processing steps. was there. The present invention is
In view of the above-mentioned conventional problems, it was made as a result of repeated studies on the relationship between the slot pitch of the stator and the surface structure of the rotor. An object of the present invention is to provide an automotive alternator which has a small number of processing steps, reduces eddy current loss in magnetic poles, and has excellent power generation efficiency.

【0004】[0004]

【課題の解決手段】本発明は,低炭素鋼製爪状磁極を有
する,いわゆるランデル型回転子とこれに対面して配設
した固定子とよりなる車両用交流発電機において,上記
回転子の磁極の表面にはうず電流の通路にあってその妨
げとなる溝を該磁極の軸方向に設けてなり,かつ該溝の
ピッチが上記固定子のスロットピッチの1/4以下であ
り,更に溝深さが0.5mm以上であることを特徴とす
る車両用交流発電機にある。本発明において最も注目す
べきことは,磁極表面に設けた上記溝は,そのピッチが
固定子のスロットピッチの1/4以下であることであ
る。
The present invention provides a vehicular AC generator comprising a so-called Lundell type rotor having claw-shaped magnetic poles made of low carbon steel and a stator arranged facing the so-called Lundell type rotor. The surface of the magnetic pole is provided with a groove in the axial direction of the magnetic pole in the path of the eddy current, and the pitch of the groove is 1/4 or less of the slot pitch of the stator. A vehicle AC generator characterized in that the depth is 0.5 mm or more. What is most noticeable in the present invention is that the pitch of the grooves provided on the magnetic pole surface is 1/4 or less of the slot pitch of the stator.

【0005】上記スロットピッチが1/4を越えると,
うず電流の発生が多くなり発電効率が低下する(後述の
図5参照)。ここに,上記固定子のスロットピッチと
は,固定子の配置間隔(ピッチ)のことをいう。また,
上記回転子の溝ピッチは,固定子のスロットピッチの1
/4以下で,かつ該溝の幅の17/4以上であることが
好ましい。溝のピッチが,その幅の17/4未満では,
磁極表面において溝部分を除いた表面の面積が少なくな
りすぎ,発電効率が低下してしまう(図5参照)。
When the slot pitch exceeds 1/4,
Generation of eddy currents increases and power generation efficiency decreases (see FIG. 5 described later). Here, the slot pitch of the stator means the arrangement interval (pitch) of the stator. Also,
The groove pitch of the rotor is 1 of the stator slot pitch.
It is preferably / 4 or less and 17/4 or more of the width of the groove. If the groove pitch is less than 17/4 of its width,
The area of the surface of the magnetic pole excluding the groove is too small, and the power generation efficiency is reduced (see FIG. 5).

【0006】また,上記溝は磁極の軸方向に設ける。ま
た,該溝の形状としては,図3に示すごとく,底部が鋭
角を有するV字状溝,図6に示すごとく,底部が円弧状
を有するU字状溝,底部が直角状を呈する角溝,或いは
これらの組み合わせなどがある。また,溝ピッチは同一
でなくとも,上記範囲内において任意に形成することが
できる(図8参照)。
The groove is provided in the axial direction of the magnetic pole. The shape of the groove is, as shown in FIG. 3, a V-shaped groove having an acute angled bottom, a U-shaped groove having an arcuate bottom as shown in FIG. 6, and a rectangular groove having a right angled bottom. , Or a combination of these. Further, even if the groove pitches are not the same, they can be formed arbitrarily within the above range (see FIG. 8).

【0007】また,上記溝の深さは,図9の特性図よ
り,0.5mm以上とするのが良く,0.5〜1.0m
mとすることが好ましい。0.5mm未満ではうず電流
防止効果が少なく,一方1.0mmを越えるとうず電流
防止効果は飽和する。また,溝は,磁束変化の激しい磁
極側縁部にのみ,上記のピッチで設け,その他は大きな
ピッチで形成しておくこともできる。この場合には,溝
の加工工数がより少なくなる。
From the characteristic diagram of FIG. 9, it is preferable that the depth of the groove is 0.5 mm or more, which is 0.5 to 1.0 m.
It is preferably m. If it is less than 0.5 mm, the eddy current preventing effect is small, while if it exceeds 1.0 mm, the eddy current preventing effect is saturated. Further, the grooves can be provided at the above-mentioned pitch only in the magnetic pole side edge portion where the magnetic flux changes drastically, and can be formed at a large pitch in other portions. In this case, the number of man-hours for processing the groove is reduced.

【0008】[0008]

【作用及び効果】前記のごとく,車両用交流発電機の回
転子が回転すると,回転子と固定子との間の空隙部での
磁束の脈動によって,磁極表面に平行にうず電流が生じ
る。そして,このうず電流は,磁極材料の電気抵抗が大
きい程,小さくなる。しかし,本発明においては,磁極
表面に,上記スロットピッチとの関係において定められ
た所定ピッチの溝が設けてある。そのため,該溝によっ
てうず電流の流線が分断される。それ故,うず電流損失
が低下する。また,上記磁極表面上の溝は,スロットピ
ッチの1/4以下としているので,加工工数が少なくて
良い。したがって,本発明によれば,加工工数が少なく
磁極におけるうず電流損失を低減し,発電効率に優れた
車両用交流発電機を提供することができる。
As described above, when the rotor of the vehicular AC generator rotates, an eddy current is generated in parallel with the magnetic pole surface due to the pulsation of the magnetic flux in the gap between the rotor and the stator. The eddy current becomes smaller as the electric resistance of the magnetic pole material becomes larger. However, in the present invention, the magnetic pole surface is provided with a groove having a predetermined pitch determined in relation to the slot pitch. Therefore, the flow line of the eddy current is divided by the groove. Therefore, the eddy current loss is reduced. Further, since the groove on the surface of the magnetic pole is set to 1/4 or less of the slot pitch, the number of processing steps can be reduced. Therefore, according to the present invention, it is possible to provide an AC generator for a vehicle, which has a small number of processing steps, reduces an eddy current loss in a magnetic pole, and is excellent in power generation efficiency.

【0009】[0009]

【実施例】実施例1 本発明の実施例にかかる車両用交流発電機につき,図1
〜図5により説明する。本例の車両用交流発電機は,図
1〜図3に示すごとく,コイルを巻回した励磁巻線12
とその表面を包むように設けた磁極11とからなる回転
子1と,該回転子1の外周に配設した固定子3(図1,
図3)とよりなる。また,上記回転子1の磁極11の表
面にはうず電流(図4)の通路にあってその妨げとなる
溝21を,磁極11の軸方向に設けてなる。
EXAMPLE 1 FIG. 1 shows an AC generator for a vehicle according to an example of the present invention.
~ It demonstrates by FIG. As shown in FIGS. 1 to 3, the vehicle alternator of this example has an excitation winding 12 in which a coil is wound.
And a rotor 1 composed of a magnetic pole 11 provided so as to wrap the surface thereof, and a stator 3 arranged on the outer periphery of the rotor 1 (see FIG.
(Fig. 3). The surface of the magnetic pole 11 of the rotor 1 is provided with a groove 21 in the path of the eddy current (FIG. 4) that interferes with the eddy current in the axial direction of the magnetic pole 11.

【0010】上記回転子1は,磁極11の後方にファン
15を有する。該磁極11は,その幅が先端に向かって
縮小する略台形の爪状磁極である。該磁極は,いわゆる
ランデル型多極爪状磁極であり,低炭素鋼塊にて作製さ
れ,その表面は固定子鉄心3の内側に対面している。上
記固定子は,三相電機子巻線を集中巻きした,通常板厚
0.5〜1mmの積層板よりなる。本例では0.6mm
である。また,固定子と,磁極表面との間の空隙は,通
常0.3〜0.5mmであり,本例では平均0.35m
mである。
The rotor 1 has a fan 15 behind the magnetic pole 11. The magnetic pole 11 is a substantially trapezoidal claw-shaped magnetic pole whose width decreases toward the tip. The magnetic pole is a so-called Lundell-type multipolar claw-shaped magnetic pole, which is made of a low carbon steel ingot, and the surface thereof faces the inside of the stator core 3. The stator is usually made of a laminated plate having a thickness of 0.5 to 1 mm in which three-phase armature windings are concentratedly wound. 0.6 mm in this example
Is. The gap between the stator and the surface of the magnetic pole is usually 0.3 to 0.5 mm, and in this example, the average is 0.35 m.
m.

【0011】上記溝21は,回転方向に螺旋状に形成し
てある。この螺旋状の溝21は,図1,図2に示すごと
く,左右方向より交互に入った各磁極11に対して,そ
の回転方向に沿って1本の螺旋状となるよう,ピッチR
で設けてある。また,溝深さは0.8mmである。ま
た,図1に示すごとく,該溝ピッチRと固定子3のスロ
ットピッチTとの関係は,R≦T/4である。また,図
3に示すごとく,溝ピッチRと溝幅Wとの関係は,W×
17/4≦Rである。
The groove 21 is formed in a spiral shape in the rotating direction. As shown in FIGS. 1 and 2, the spiral groove 21 has a pitch R so as to form one spiral along the rotation direction for each magnetic pole 11 that is alternately inserted from the left and right directions.
It is provided in. The groove depth is 0.8 mm. Further, as shown in FIG. 1, the relationship between the groove pitch R and the slot pitch T of the stator 3 is R ≦ T / 4. Further, as shown in FIG. 3, the relationship between the groove pitch R and the groove width W is W ×
17/4 ≦ R.

【0012】次に,回転子1の回転とうず電流との関係
につき,図4を用いて説明する。本例の車両用交流発電
機においては,固定子3に対して回転子1が回転する
と,両者の間の空隙に存在する合成起磁力による空隙磁
束分布は,奇数次高調波磁束成分を有する歪波となる。
上記空隙磁束分布は,磁極11より固定子鉄心に与えら
れる略正弦波起磁力分布と,これを受けて固定子鉄心に
より回転子鉄心に与えられる略矩形状起磁力分布とによ
って生ずる。そして,上記奇数次高調波磁束は,前記磁
極11の表面に侵入するが,その際,図4に示すごと
く,うず電流17が発生するので,高調波磁束は磁極表
面近傍でうず電流損を生じせしめることとなる。
Next, the relationship between the rotation of the rotor 1 and the eddy current will be described with reference to FIG. In the vehicle alternator of this example, when the rotor 1 rotates with respect to the stator 3, the air gap magnetic flux distribution due to the combined magnetomotive force existing in the air gap between the two is a distortion having an odd-order harmonic magnetic flux component. Become a wave.
The air gap magnetic flux distribution is generated by a substantially sinusoidal magnetomotive force distribution given to the stator core from the magnetic poles 11 and a substantially rectangular magnetomotive force distribution given to the rotor core by the stator core. The odd-order harmonic magnetic flux enters the surface of the magnetic pole 11, but at that time, an eddy current 17 is generated as shown in FIG. 4, so that the harmonic magnetic flux causes eddy current loss near the magnetic pole surface. It will be impatient.

【0013】また,上記の略矩形状起磁力は,固定子鉄
心より回転子鉄心に与えられるのでその周期は,1スロ
ットピッチの繰り返し時間となり,よって高調波磁束及
びその磁束密度Bの周期も1スロットピッチの繰り返し
時間となる。また,回転子円周方向(θ方向)には,1
スロットピッチの周期で磁束密度Bが分布している。し
たがって,磁極表面近傍に生ずるうず電流17は,図4
に示すごとく,(dB/dθ)2 〔又,(dB/dt)
2 ともいえる〕に比例するので,θ方向にT/2のピッ
チで生ずる。また,磁極表面近傍に生ずるうず電流は,
その生じせしめる磁束を受ける面積に対して,最小の長
さ(低抵抗)で流れようとするため,真円となる。よっ
て,軸方向のピッチもT/2となる。結局,うず電流1
7は,図4に示すごとく,磁極11の表面において,T
/2のブロック毎に生ずることとなる。
Further, since the above-mentioned approximately rectangular magnetomotive force is applied to the rotor core from the stator core, its cycle becomes a repetition time of one slot pitch, and therefore the cycle of the harmonic magnetic flux and its magnetic flux density B is also one. It is the repetition time of the slot pitch. Also, in the rotor circumferential direction (θ direction), 1
The magnetic flux density B is distributed in the period of the slot pitch. Therefore, the eddy current 17 generated near the magnetic pole surface is
As shown in (dB / dθ) 2 [or (dB / dt)
It can be said that it is also 2 ], so it occurs at a pitch of T / 2 in the θ direction. In addition, the eddy current generated near the magnetic pole surface is
Since it tries to flow with the minimum length (low resistance) with respect to the area that receives the magnetic flux that is generated, it becomes a perfect circle. Therefore, the pitch in the axial direction is also T / 2. After all, eddy current 1
7 is T on the surface of the magnetic pole 11 as shown in FIG.
It will occur every / 2 block.

【0014】そして,本例においては,磁極鉄心表面に
前記溝21をR≦T/4で設けているので,該溝21
が,上記のごとく,表面に生ずるうず電流の流線を必ず
分断することとなる。その結果,うず電流損失が低減さ
れる。一方,溝幅Wを一定にした場合,溝ピッチRが小
さくなると,磁極表面において溝部分を除いた残りの面
積Sが小さくなる。すると,磁束密度B(=Φ/S)が
大きくなる。そして,うず電流損ZはZ∝B2 で表され
るので,うず電流Zは大きくなる。そのため,溝ピッチ
の下限も考慮しておくことが好ましい。
In the present embodiment, the groove 21 is provided on the surface of the magnetic pole core so that R≤T / 4.
However, as mentioned above, the streamline of the eddy current generated on the surface must be divided. As a result, eddy current loss is reduced. On the other hand, when the groove width W is constant and the groove pitch R becomes smaller, the remaining area S of the magnetic pole surface excluding the groove portion becomes smaller. Then, the magnetic flux density B (= Φ / S) increases. Since the eddy current loss Z is represented by Z∝B 2 , the eddy current Z becomes large. Therefore, it is preferable to consider the lower limit of the groove pitch.

【0015】以下,この点に関して,説明すると,固定
子と磁極表面との間の空隙が0.3〜0.5mmの場合
には,通例磁極表面最大磁束密度が13Kガウス程度で
ある。また,通例の磁極内部の平均磁束密度は17Kガ
ウス程度である。そこで,溝がない場合の磁極表面積を
Soとすると,S/So≧13/17となる。また,磁
極表面において溝と溝との間にある残り幅をDとすると
(図3),D/R=(1−w/R)≧13/17であ
る。書き換えるとw×17/4≦Rとなる。
This point will be described below. When the gap between the stator and the magnetic pole surface is 0.3 to 0.5 mm, the maximum magnetic flux density on the magnetic pole surface is usually about 13 K gauss. The average magnetic flux density inside the magnetic pole is usually about 17 K gauss. Therefore, if the magnetic pole surface area in the case where there is no groove is So, then S / So ≧ 13/17. When the remaining width between the grooves on the magnetic pole surface is D (FIG. 3), D / R = (1-w / R) ≧ 13/17. When rewritten, w × 17/4 ≦ R.

【0016】そこで,w=0.3mm=3.4×10-2
×Tの場合の,上記うず電流低減効果について,図5に
交流発電機の溝ピッチRと発電効率との関係を示した。
図5は,100Aクラスのオルタネータで,固定子内径
は102mm,よって,T=102π/36=8.9
(36はスロット数),W=3.4×10-2×8.9=
0.3mmである。同図より,磁極の溝ピッチRが固定
子のスロットピッチTの1/4(0.25)以下の場合
には,発電効率が高いことが分かる。また,溝ピッチR
が溝幅W(上記のW=0.3mm=3.4×10-2×
T)の17/4倍,即ち3.4×10-2×T×17/4
=0.145Tよりも小さいと発電効率が59%より低
下することが分かる。
Therefore, w = 0.3 mm = 3.4 × 10 -2
Regarding the eddy current reduction effect in the case of × T, FIG. 5 shows the relationship between the groove pitch R of the AC generator and the power generation efficiency.
FIG. 5 is a 100 A class alternator with a stator inner diameter of 102 mm, so T = 102π / 36 = 8.9.
(36 is the number of slots), W = 3.4 × 10 −2 × 8.9 =
It is 0.3 mm. From the figure, it can be seen that the power generation efficiency is high when the groove pitch R of the magnetic pole is ¼ (0.25) or less of the slot pitch T of the stator. Also, the groove pitch R
Is the groove width W (W = 0.3 mm = 3.4 × 10 −2 ×
17/4 times T), that is, 3.4 × 10 −2 × T × 17/4
It can be seen that the power generation efficiency is lower than 59% when less than 0.145T.

【0017】これより知られるごとく,R≦T/4であ
り,w×17/4≦Rである場合,つまり0.145T
≦R≦T/4の場合には,磁極に溝を有しない比較交流
発電機(図5の棒グラフ)に比べて,発電効率が優れて
いることがわかる。そして,上記範囲で溝を形成すれば
ピッチ及び溝深さを限定したことにより,より少ない加
工の手間で最大の効果が得られることが分かる。
As is known from this, when R ≦ T / 4 and w × 17/4 ≦ R, that is, 0.145T
In the case of ≤R≤T / 4, it can be seen that the power generation efficiency is superior to that of the comparative AC generator (bar graph in Fig. 5) having no groove in the magnetic pole. Further, it is understood that if the grooves are formed within the above range, the pitch and the groove depth are limited, so that the maximum effect can be obtained with less labor of processing.

【0018】実施例2 本例は,図6(a)〜(c)に示すごとく,種々の形状
の溝21を示すものである。即ち,図6(a)は,底部
が円弧状であるU字状溝21を,図6(b)は底部が角
状である角形溝21を示している。また,図6(c)
は,底部が鋭角のV字状溝と,上記角形溝と,U字状溝
とを併用したものである。その他は,実施例1と同様で
ある。本例によれば,実施例1と同様の効果を得ること
ができる。
Embodiment 2 This embodiment shows grooves 21 of various shapes as shown in FIGS. 6 (a) to 6 (c). That is, FIG. 6A shows a U-shaped groove 21 having a circular arc bottom, and FIG. 6B shows a rectangular groove 21 having a square bottom. Also, FIG. 6 (c)
Is a combination of the V-shaped groove having an acute bottom, the above-mentioned rectangular groove, and the U-shaped groove. Others are the same as in the first embodiment. According to this example, the same effect as that of the first example can be obtained.

【0019】実施例3 本例は,図7に示すごとく,磁極11の表面において,
磁束変化の激しい磁極側縁部のみに,実施例1と同様の
所定ピッチの溝21を形成し,その他の部分はその2倍
の大きなピッチの溝21を設けたものである。その他
は,実施例1と同様である。本例によれば,実施例1と
同様の効果を得ることができる。また,本例では,所定
ピッチの溝は側縁部のみに設けるので,溝加工が容易で
ある。
Example 3 In this example, as shown in FIG. 7, on the surface of the magnetic pole 11,
The groove 21 having a predetermined pitch similar to that of the first embodiment is formed only on the side edge of the magnetic pole where the magnetic flux changes drastically, and the groove 21 having a pitch twice as large as that of the groove 21 is provided in the other portions. Others are the same as in the first embodiment. According to this example, the same effect as that of the first example can be obtained. Further, in this example, the grooves having the predetermined pitch are provided only on the side edge portions, so that the groove processing is easy.

【0020】実施例4 本例は図8に示すごとく,各溝21が各種のピッチR1
〜R4において形成されたものである。但し,これらの
ピッチR1〜R4は,本発明の範囲内にある。このよう
に,溝ピッチが本発明の範囲内にあれば,溝ピッチはバ
ラツキがあっても,本発明の効果が得られる。そのた
め,溝の加工時に,刃具が損傷した場合でも,継続加工
時に再び正確なピッチ合わせをする必要がなく,加工が
容易である。また,多条螺旋用の刃具を用いる場合で
も,刃具のピッチに多少のズレがあっても,それを無視
することができる。そのため,加工精度を下げて,加工
費を安くすることもできる。また,本例においても,実
施例1と同様の効果を得ることができる。
Embodiment 4 In this embodiment, as shown in FIG. 8, each groove 21 has various pitches R1.
To R4. However, these pitches R1 to R4 are within the scope of the present invention. Thus, if the groove pitch is within the range of the present invention, the effect of the present invention can be obtained even if the groove pitch varies. Therefore, even if the cutting tool is damaged during the groove processing, it is not necessary to perform accurate pitch alignment again during the continuous processing, and the processing is easy. Further, even when using a cutting tool for a multi-thread spiral, even if there is a slight deviation in the pitch of the cutting tool, it can be ignored. Therefore, it is possible to lower the processing accuracy and reduce the processing cost. Also, in this example, the same effect as that of the first embodiment can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の車両用交流発電機における,回転子
と固定子の展開説明図。
FIG. 1 is a development explanatory view of a rotor and a stator in a vehicle AC generator according to a first embodiment.

【図2】実施例1の車両用交流発電機の要部斜視図。FIG. 2 is a perspective view of a main part of the vehicle AC generator according to the first embodiment.

【図3】実施例1の車両用交流発電機の回転子と固定子
の断面説明図。
FIG. 3 is an explanatory cross-sectional view of a rotor and a stator of the vehicle AC generator according to the first embodiment.

【図4】車両用交流発電機における,磁極表面上のうず
電流の説明図。
FIG. 4 is an explanatory diagram of an eddy current on a magnetic pole surface in a vehicle AC generator.

【図5】実施例1における,スロットピッチに対する溝
ピッチ比と発電効率との関係を示す線図。
FIG. 5 is a diagram showing the relationship between groove pitch ratio with respect to slot pitch and power generation efficiency in Example 1.

【図6】実施例2における,各種溝の説明図。FIG. 6 is an explanatory diagram of various grooves according to the second embodiment.

【図7】実施例3における磁極上の溝の説明図。FIG. 7 is an explanatory diagram of a groove on a magnetic pole according to the third embodiment.

【図8】実施例4における溝ピッチの説明図。FIG. 8 is an explanatory diagram of a groove pitch according to the fourth embodiment.

【図9】本発明における車両用交流発電機の磁極の溝深
さとうず電流損失の関係を示す線図。
FIG. 9 is a diagram showing the relationship between the groove depth of magnetic poles and the eddy current loss of the vehicle AC generator according to the present invention.

【符号の説明】[Explanation of symbols]

1...回転子, 11...磁極, 17...うず電流, 21...溝, 3...固定子, D...残り幅, R...溝ピッチ, T...スロットピッチ, W...溝幅, 1. . . Rotor, 11. . . Magnetic pole, 17. . . Eddy current, 21. . . Groove, 3. . . Stator, D. . . Remaining width, R. . . Groove pitch, T.S. . . Slot pitch, W. . . Groove width,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低炭素鋼製爪状磁極を有する,いわゆる
ランデル型回転子と,これに対面して配設した固定子と
よりなる車両用交流発電機において,上記回転子の磁極
の表面にはうず電流の通路にあってその妨げとなる溝を
該磁極の軸方向に設けてなり,かつ該溝のピッチが上記
固定子のスロットピッチの1/4以下であり,更に溝深
さが0.5mm以上であることを特徴とする車両用交流
発電機。
1. A vehicle alternator comprising a so-called Lundell-type rotor having a low-carbon steel claw-shaped magnetic pole and a stator arranged so as to face the rotor, wherein a surface of the magnetic pole of the rotor is provided. A groove is provided in the passage of the eddy current to hinder the magnetic pole in the axial direction of the magnetic pole, the pitch of the groove is 1/4 or less of the slot pitch of the stator, and the groove depth is 0. An alternator for vehicles, which is at least 0.5 mm.
【請求項2】 請求項1において,回転子の溝は,その
ピッチが固定子のスロットピッチの1/4以下で,かつ
該溝幅の17/4以上であることを特徴とする車両用交
流発電機。
2. The alternating current for vehicles according to claim 1, wherein the pitch of the rotor groove is 1/4 or less of the slot pitch of the stator and 17/4 or more of the groove width. Generator.
JP26882691A 1991-09-19 1991-09-19 AC generator for vehicles Expired - Fee Related JP3214508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26882691A JP3214508B2 (en) 1991-09-19 1991-09-19 AC generator for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26882691A JP3214508B2 (en) 1991-09-19 1991-09-19 AC generator for vehicles

Publications (2)

Publication Number Publication Date
JPH0583909A true JPH0583909A (en) 1993-04-02
JP3214508B2 JP3214508B2 (en) 2001-10-02

Family

ID=17463794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26882691A Expired - Fee Related JP3214508B2 (en) 1991-09-19 1991-09-19 AC generator for vehicles

Country Status (1)

Country Link
JP (1) JP3214508B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545383B1 (en) * 2000-12-05 2003-04-08 Visteon Global Technologies, Inc. High efficiency rotor for electromechanical machines
JP2008220083A (en) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp Alternator for vehicle
EP2006977A2 (en) * 2007-06-19 2008-12-24 Hitachi, Ltd. Alternator for vehicle and rotating electrical machine
US7525233B2 (en) 2006-01-26 2009-04-28 Denso Corporation Vehicle alternator
DE102017201389A1 (en) 2017-01-30 2018-08-02 Seg Automotive Germany Gmbh Rotor of a claw-pole machine
DE102017201388A1 (en) 2017-01-30 2018-08-02 Seg Automotive Germany Gmbh Rotor of a claw-pole machine
KR20180123807A (en) * 2017-05-10 2018-11-20 현대일렉트릭앤에너지시스템(주) Rotator and motor having the same
CN110233557A (en) * 2018-03-05 2019-09-13 三菱电机株式会社 Rotating electric machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545383B1 (en) * 2000-12-05 2003-04-08 Visteon Global Technologies, Inc. High efficiency rotor for electromechanical machines
US7525233B2 (en) 2006-01-26 2009-04-28 Denso Corporation Vehicle alternator
JP2008220083A (en) * 2007-03-06 2008-09-18 Mitsubishi Electric Corp Alternator for vehicle
EP2006977A2 (en) * 2007-06-19 2008-12-24 Hitachi, Ltd. Alternator for vehicle and rotating electrical machine
DE102017201389A1 (en) 2017-01-30 2018-08-02 Seg Automotive Germany Gmbh Rotor of a claw-pole machine
DE102017201388A1 (en) 2017-01-30 2018-08-02 Seg Automotive Germany Gmbh Rotor of a claw-pole machine
KR20180123807A (en) * 2017-05-10 2018-11-20 현대일렉트릭앤에너지시스템(주) Rotator and motor having the same
CN110233557A (en) * 2018-03-05 2019-09-13 三菱电机株式会社 Rotating electric machine

Also Published As

Publication number Publication date
JP3214508B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
US6879075B2 (en) Trapezoidal shaped magnet flux intensifier motor pole arrangement for improved motor torque density
US7414343B2 (en) Hybrid-excited rotating machine, and vehicle with the hybrid-excited rotating machine
US7741750B1 (en) Induction motor with improved torque density
JP2946604B2 (en) AC generator
EP0823771B1 (en) Motor
US8067874B2 (en) Motor apparatus including Lundell motor having Lundell-type rotor
JP3282427B2 (en) Permanent magnet motor
US4471252A (en) Rotary dynamo electric machine with protection against demagnetization of low flux portion of permanent magnet poles
US6703744B2 (en) Generator-motor for vehicle
US20120086288A1 (en) Electric rotating machine
EP0237935B1 (en) Permanent magnet field dc machine
JP4670661B2 (en) AC generator for vehicles
US20030168924A1 (en) Permanent magnet synchronous motor
KR100399741B1 (en) Alternating current generator for vehicle
JP3214508B2 (en) AC generator for vehicles
JPH03139149A (en) Alternator for vehicle
US6847150B2 (en) Rotating electrical machine for vehicle
JPH05184088A (en) Alternator for vehicle
EP1276203B1 (en) Alternating current generator
GB2605560A (en) Stator assembly flux alignment
JP3303674B2 (en) Rotating electric machine and its cylindrical rotor
GB2110478A (en) Dynamo electric machines
JP3407529B2 (en) Two-pole turbine generator and its rotor
JP3103435B2 (en) AC generator for vehicles
JP2003304657A (en) Permanent magnet type synchronous motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees