JPH0582601B2 - - Google Patents

Info

Publication number
JPH0582601B2
JPH0582601B2 JP60086318A JP8631885A JPH0582601B2 JP H0582601 B2 JPH0582601 B2 JP H0582601B2 JP 60086318 A JP60086318 A JP 60086318A JP 8631885 A JP8631885 A JP 8631885A JP H0582601 B2 JPH0582601 B2 JP H0582601B2
Authority
JP
Japan
Prior art keywords
robot
room
point
self
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60086318A
Other languages
Japanese (ja)
Other versions
JPS61245215A (en
Inventor
Hitoshi Ogasawara
Junji Shiokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60086318A priority Critical patent/JPS61245215A/en
Publication of JPS61245215A publication Critical patent/JPS61245215A/en
Publication of JPH0582601B2 publication Critical patent/JPH0582601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4061Steering means; Means for avoiding obstacles; Details related to the place where the driver is accommodated
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Acoustics & Sound (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、自走ロボツトの制御装置に係り、正
確な情景認識が得られ、かつ走行制御の簡略化を
図ることのできる情景認識方法に関するものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device for a self-propelled robot, and relates to a scene recognition method that can obtain accurate scene recognition and simplify travel control. It is.

〔発明の背景〕[Background of the invention]

従来の自動掃除機に見られる限られた部屋の中
をくまなく走る自走ロボツトの情景認識方法は、
特開昭55−97608号に記載のように、超音波送信
器と受信器により障害物を検出する方法である。
そして障害物があれば、停止し進行方向を180゜変
える走行である。しかし、実際には部屋の中に障
害物が有る場合、本文の第2図に示すように走行
していない所が残るので、その未走行エリアを捜
し、走行しなければならない。従来技術では、こ
の点について配慮されていなかつた。
The scene recognition method of a self-propelled robot that runs throughout a limited room, as seen in conventional automatic vacuum cleaners, is
As described in Japanese Patent Application Laid-Open No. 55-97608, this is a method of detecting obstacles using an ultrasonic transmitter and a receiver.
If there is an obstacle, the vehicle will stop and change direction by 180 degrees. However, in reality, if there are obstacles in the room, there will be areas where the vehicle has not traveled, as shown in Figure 2 of the main text, and the vehicle must search for and travel to those untraversed areas. In the prior art, this point has not been taken into consideration.

第2図を説明すると、自走ロボツトは、長方形
の部屋abcd内をA点からB点まで直進とUター
ンの繰り返しで走行する。部屋abcdの中には、
斜線部efghの障害物がある場合とする。したがつ
て、部屋abcdの中をくまなく走行するには、ま
だ走行をしていない未走行エリアhgciを捜して、
B点から次に移動すべき目標点C点を設定しなけ
ればならない。従来技術では、この点が配慮され
ていない。
To explain FIG. 2, a self-propelled robot travels in a rectangular room ABCD from point A to point B by repeatedly going straight and making U-turns. Inside room abcd,
Assume that there is an obstacle in the shaded area efgh. Therefore, in order to travel throughout room ABCD, search for untraveled areas HGCI that have not been traveled yet,
The next target point to move from point B, point C, must be set. In the prior art, this point is not taken into consideration.

その未走行エリアを容易に捜す方法として、本
文の第3図に示すように、あらかじめ走行すべき
部屋の大きさと形状を制御装置にテイーチングし
ておく方法がある。このテイーチングする方法を
第3図により説明する。第3図で、abcdは実際
に走行する長方形の部屋(この例は、説明を容易
にするため第1図と同一形状とした。)また、部
屋abcdの中には、efghの障害物があるとする。
そして自走ロボツトは、A点からB点まで直進と
Uターンの繰り返して走行する。この場合、従来
の特開昭55−97608号の図面の第2図に示す超音
波送信器と受信器で、部屋の壁や障害物の位置を
検知し、それらの位置を合成すれば、本文第3図
の線ab,bc,id,da,feに沿つて、部屋の壁や
障害物が認識される。なお超音波送信器と受信器
は、障害物の超音波進行方向に対する垂直な反射
面の方向と距離を計測できるセンサである。そし
て、前記したように、あらかじめ走行すべき部屋
の大きさと形状として第3図の方形OPQRを制御
装置にテイーチングしておく。ここで、当然テイ
ーチングする部屋OPQRの大きさは、第3図の例
abcdのいかなる部屋に対しても対応できるよう
に、相当大きめに設定しなければならない。普通
は考えると3〜5倍の広さを設定せざるをえな
い。このような条件で、第3図のB点まで走行し
た自走ロボツトは、まだ走行していないエリアが
あるかどうか判断しなければならない。
As a method for easily searching for the untraversed area, there is a method of teaching the control device in advance the size and shape of the room in which the vehicle should travel, as shown in FIG. 3 of the main text. This teaching method will be explained with reference to FIG. In Figure 3, abcd is the rectangular room in which the vehicle actually travels (in this example, the shape is the same as in Figure 1 for ease of explanation.) Also, inside the room abcd, there is an obstacle efgh. shall be.
The self-propelled robot then travels from point A to point B by repeatedly going straight and making U-turns. In this case, if the positions of walls and obstacles in the room are detected using the ultrasonic transmitter and receiver shown in Figure 2 of the drawings of the conventional Japanese Patent Application Laid-Open No. 55-97608, and those positions are combined, the main text Walls and obstacles in the room are recognized along lines ab, bc, id, da, and fe in Figure 3. Note that the ultrasonic transmitter and receiver are sensors that can measure the direction and distance of a reflecting surface of an obstacle perpendicular to the ultrasonic traveling direction. As described above, the rectangle OPQR shown in FIG. 3 is taught to the control device in advance as the size and shape of the room in which the vehicle should travel. Here, of course, the size of the teaching room OPQR is as shown in Figure 3.
It must be set fairly large so that it can accommodate any room in ABCD. Normally, if you think about it, you would have no choice but to set it 3 to 5 times as wide. Under these conditions, the self-propelled robot that has traveled to point B in FIG. 3 must determine whether there is any area that it has not yet traveled.

この場合、ロボツトは、あらかじめ走行すべき
部屋として設定したOPQRの全範囲にロボツトが
走行できるエリアがあるか検索しなければならな
い。そして、B点から次に移動すべき目標点(例
えば、第3図で未走行エリアをhgciと検索した場
合の目標点C、あるいは未走行エリアをOPQRと
検索した場合の目標点D)を設定しなければなら
ない。
In this case, the robot must search to see if there is an area in which it can run within the entire range of OPQR, which has been set in advance as a room in which it should run. Then, set the target point to which you should move next from point B (for example, target point C when searching for the untraveled area as hgci in Figure 3, or target point D when searching for the untraveled area as OPQR). Must.

しかし、あらかじめ走行すべき部屋の大きさ、
形状をテイーチングしておく方法だと、テイーチ
ングする部屋の大きさを、いかなる部屋に対して
も対応できるように相当大きめに設定する必要が
ある。したがつて、自走ロボツトが第3図のB点
のように障害物に取り囲まれた時、未走行エリア
と次の移動目標点を検索する演算処理時間が非常
に長くかかる欠点があつた。このため、部屋の中
をくまなく走行し終るまでの所要時間が延びる欠
点があつた。
However, the size of the room you should run in advance,
If you use the method of teaching the shape, you need to set the size of the room in which you are teaching to be quite large so that it can accommodate any room. Therefore, when the self-propelled robot is surrounded by obstacles as at point B in FIG. 3, there is a drawback that the calculation processing time required to search for the untraveled area and the next moving target point is extremely long. For this reason, there was a drawback that the time required to completely travel through the room was extended.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、走行すべき部屋の範囲を使用
者があらかじめテイーチングする必要のない、す
なわち自走ロボツトが自分でその部屋の範囲を認
識する、かつ未走行エリアの検索時間を短縮した
自走ロボツトを提供することにある。
An object of the present invention is to provide a self-propelled robot that does not require the user to teach the range of the room in which the robot is to run, in other words, allows the self-propelled robot to recognize the range of the room by itself, and to shorten the time required to search for untraveled areas. Our goal is to provide robots.

〔発明の概要〕[Summary of the invention]

走行すべき部屋の大きさや形状を、あらかじめ
制御装置にテイーチングするのではなく、部屋の
左右の範囲を、超音波送受信器で検出した障害物
(部屋の壁をも含む)の位置の、xy座標系におけ
るx座標の最小値Xminと最大値Xmaxで設定し、
かつ部屋の上下の範囲をy座標の最大値Ymaxと
最小値Yminで設定する。そして未走行エリア
を、4本の直線x=Xmin,x=Xmax,y=
Ymin,y=Ymaxで囲まれた長方形の範囲内で
ロボツトが走行できるエリアを検索する方法を考
案した。したがつて、この方法によれば、使用者
が自走ロボツトに走行すべき部屋の範囲をあらか
じめテイーチングする必要がなくなるので、自走
ロボツトが完全に自動化できる。
Rather than teaching the control device the size and shape of the room in which the vehicle should travel in advance, the x and y coordinates of the positions of obstacles (including the walls of the room) detected by an ultrasonic transceiver are used to determine the left and right range of the room. Set the minimum value Xmin and maximum value Xmax of the x coordinate in the system,
Also, set the upper and lower range of the room using the maximum value Ymax and minimum value Ymin of the y-coordinate. Then, the untraveled area is defined by four straight lines x=Xmin, x=Xmax, y=
We devised a method to search for an area in which a robot can run within a rectangular area surrounded by Ymin and y = Ymax. Therefore, according to this method, there is no need for the user to teach the self-propelled robot in advance the range of the room in which it should travel, so that the self-propelled robot can be completely automated.

また、この方法であれば、走行すべき部屋の大
きさを実際に近い大きさに設定でき、自走ロボツ
トが部屋の壁や障害物に取り囲まれて走行できな
くなつた場合、未走行エリアを検索する演算処理
時間も短縮できる。
In addition, with this method, the size of the room in which the robot should run can be set to a size close to the actual size, and if the self-propelled robot becomes unable to run due to being surrounded by walls or obstacles in the room, it will be possible to set the size of the room it should run in to close to the actual size. The calculation processing time for searching can also be reduced.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面により説明す
る。なお、本発明の自走ロボツトの一実施例は掃
除用の自走ロボツトの例で説明する。
An embodiment of the present invention will be described below with reference to the drawings. An embodiment of the self-propelled robot of the present invention will be explained using an example of a self-propelled robot for cleaning.

第1図は、この発明の一実施例を示す掃除用自
走ロボツトの構成を示すブロツク図である。第1
図において、1は自走ロボツトを制御する演算処
理装置、2は演算処理装置1のプログラムおよび
データを蓄える記憶装置、3は演算処理装置1へ
入力装置から信号を取るための入力ポート、4は
演算処理装置1から各駆動装置に信号を出すため
の出力ポート、5は指向性のある超音波を発信す
る超音波送信器、6は超音波送信器で発信した超
音波の障害物に当たり反射して帰つて来た超音波
を受信する超音波受信器、7は超音波送信器5及
び受信器6の超音波送受信方向を計測する超音波
送受信器回転計、8は自走ロボツトの左右駆動車
輪の回転数を計測する車輪回転計、9は車輪駆動
装置、10は超音波送受信器の回転駆動装置、1
1は掃除用のごみ吸引駆動装置である。
FIG. 1 is a block diagram showing the configuration of a self-propelled cleaning robot according to an embodiment of the present invention. 1st
In the figure, 1 is an arithmetic processing unit that controls the self-propelled robot, 2 is a storage device that stores programs and data of the arithmetic processing unit 1, 3 is an input port for receiving signals from an input device to the arithmetic processing unit 1, and 4 is an input port for receiving signals from an input device to the arithmetic processing unit 1. An output port for outputting a signal from the processing unit 1 to each driving device; 5 is an ultrasonic transmitter that emits directional ultrasonic waves; and 6 is an ultrasonic transmitter that emits ultrasonic waves that hit an obstacle and are reflected. 7 is an ultrasonic transmitter/receiver tachometer that measures the ultrasonic transmitting/receiving direction of the ultrasonic transmitter 5 and receiver 6, and 8 is a left and right drive wheel of the self-propelled robot. 9 is a wheel drive device; 10 is a rotation drive device for an ultrasonic transceiver; 1
1 is a dust suction drive device for cleaning.

次に動作を説明する。前記第2図のような長方
形の部屋の中に障害物efghがある場合に、自走ロ
ボツトが、出発点Aよりスタートし、直進とUタ
ーンを繰返しながら走行し、障害物に取り囲まれ
て走行できなくなるB点まで走行し、さらに未走
行エリアhgciを検索し、次に移動すべき目標点C
を探索する例を、第4図,第5図の処理流れ図お
よび第6図,第7図,第8図の自走ロボツトの走
行軌跡、部屋形状、障害物位置を示す平面図によ
つて説明する。
Next, the operation will be explained. If there is an obstacle efgh in a rectangular room as shown in Figure 2 above, the self-propelled robot starts from starting point A, moves straight and repeatedly makes U-turns, and runs surrounded by the obstacles. Drive to point B where it is no longer possible, search the untraveled area hgci, and then find the target point C to which you should move next.
An example of searching will be explained using the processing flowcharts shown in FIGS. 4 and 5 and the plan views showing the traveling trajectory of the self-propelled robot, the room shape, and the position of obstacles in FIGS. 6, 7, and 8. do.

まず第4図で、第1図の演算処理装置1で行う
走行制御方法について述べる。この実施例の走行
パターンは、第2図と同様自走ロボツトの進行方
向前方に障害物がない場合に直進、障害物があれ
ばUターンさせるものである。第4図で、演算処
理装置1では、まず第1図の車輪回転計8から左
右車輪の回転数データを入力し、そのデータから
ロボツトの自己位置(xi,yi)と進行方向θを計
算し、記憶装置2に記憶する。第6図で上記自己
位置(xi,yiと進行方向θの例を示す。第6図
は、自走ロボツトが、xy座標系の出発点A点
(xp,yp)から走行し始めてE点(xi,yi)に動い
た状況を示す。
First, with reference to FIG. 4, a travel control method performed by the arithmetic processing device 1 of FIG. 1 will be described. The running pattern of this embodiment is similar to that shown in FIG. 2, in which the self-propelled robot moves straight if there is no obstacle in front of it in the direction of travel, and if there is an obstacle, it makes a U-turn. In FIG. 4, the arithmetic processing unit 1 first inputs rotation speed data of the left and right wheels from the wheel tachometer 8 shown in FIG . It is calculated and stored in the storage device 2. Figure 6 shows an example of the self-position (x i , y i and the traveling direction θ ) . The situation in which the robot moves to point E (x i , y i ) for the first time is shown.

第1図の車輪回転計8から左右車輪の回転数が
計測されるので、A点からE点までの走行距離と
左右車輪の回転数の違いからロボツトの進行方向
θは容易に計算(計算方法の説明は省略)され
る。第6図でθの値は、E点を通るy軸と平行な
線分FEとロボツトの進行方向EE′との間の角度で
表わす。
Since the rotation speed of the left and right wheels is measured from the wheel tachometer 8 shown in Fig. 1, the robot's traveling direction θ can be easily calculated from the distance traveled from point A to point E and the difference in the rotation speed of the left and right wheels (calculation method). (explanation omitted). In FIG. 6, the value of θ is expressed as an angle between a line segment FE passing through point E and parallel to the y-axis and the robot's advancing direction EE'.

そして上記で計算したロボツトの自己位置
(xi,yi)をもとに、第1図のごみ吸引駆動装置
11で掃除する掃除エリアを計算し、このデータ
も記憶装置2に記憶する。第6図で、その掃除エ
リアの例を示す。第6図で、ロボツトの掃除する
範囲は、出発点A点で示すと長方形STUVであ
るとする。したがつて、自走ロボツトが出発点の
A点からE点に走行した場合、その間に掃除をし
たエリアは長方形STWZの斜線部分になる。
Then, based on the self-position (x i , y i ) of the robot calculated above, the cleaning area to be cleaned by the dust suction drive device 11 shown in FIG. 1 is calculated, and this data is also stored in the storage device 2. FIG. 6 shows an example of the cleaning area. In FIG. 6, it is assumed that the range to be cleaned by the robot is a rectangle STUV as indicated by the starting point A. Therefore, when the self-propelled robot travels from the starting point A to point E, the area cleaned during that time is the shaded area of the rectangle STWZ.

次に演算処理装置1は、超音波送受信器回転計
7からロボツトから見た障害物の方向データαを
入力し、同時に超音波送信器5と受信器6とで、
超音波の発信してから障害物で反射して帰つて来
て受信されるまでの時間Tで計測される障害物ま
での距離データlを入力する。そして、障害物の
座標(xs,ys)を計算し、記憶装置に記憶する。
Next, the processing unit 1 inputs the direction data α of the obstacle as seen from the robot from the ultrasonic transmitter/receiver tachometer 7, and at the same time, the ultrasonic transmitter 5 and receiver 6
Distance data l to the obstacle, which is measured by the time T from when the ultrasonic wave is transmitted until it is reflected from the obstacle and received, is input. Then, the coordinates (x s , y s ) of the obstacle are calculated and stored in the storage device.

第6図で、その障害物の検知例について示す。
第6図で、ロボツトはE点(xi,yi)に走行した
時、障害物Gがロボツトの進行方向θから左に角
度αの方向に、距離lに検出されたとすると、座
標Gのxy障害物系における位置(xs,ys)は、xs
=xi−lsio(θ+α)、ys=yi+lcps(θ+α)で計算
される。なお、障害物までの距離lは、第1図の
超音波送信器5で超音波を発信してから、超音波
受信器6で受信するまでの時間Tのデータが計測
されるので、この時間Tより、超音波の伝播速度
をVONPとするとl=T/2・VONPで計算される。
FIG. 6 shows an example of detecting the obstacle.
In Figure 6, when the robot travels to point E (x i , y i ), if an obstacle G is detected at a distance l in the direction of angle α to the left from the robot's traveling direction θ, then The position (x s , y s ) in the xy obstacle system is x s
= x i −l sio (θ+α), y s =y i +l cps (θ+α). Note that the distance l to the obstacle is determined by measuring the time T from when the ultrasonic transmitter 5 in FIG. From T, if the propagation velocity of the ultrasonic wave is V ONP , it is calculated as l=T/2·V ONP .

以上の方法で、障害物Gの位置(xs,ys)は計
算される。したがつて、上記計算により自走ロボ
ツトは、第1図の記憶装置2にロボツトの自己位
置と進行方向、障害物の位置および掃除エリアの
データを、蓄えられたことになる。
The position (x s , y s ) of the obstacle G is calculated using the above method. Therefore, by the above calculation, the self-propelled robot has stored data on its own position, direction of movement, position of obstacles, and cleaning area in the storage device 2 shown in FIG.

次に演算処理装置1は、記憶装置2に記憶され
ているロボツトの自己位置と進行方向、障害物の
位置および掃除エリアのデータにより走行判断を
行い、車輪駆動装置9、超音波回転駆動装置10
およびごみ吸引駆動装置11に走行命令および制
御命令を出力する。
Next, the arithmetic processing unit 1 makes a running judgment based on the data of the robot's own position and direction of movement, the position of obstacles, and the cleaning area stored in the storage device 2, and drives the wheel drive device 9 and the ultrasonic rotary drive device 10.
and outputs travel commands and control commands to the dust suction drive device 11.

その走行判断の処理は第4図の以下に示す。
演算処理装置1は記憶装置2に記憶されているロ
ボツトの自己位置、進行方向と障害物の位置のデ
ータにより直進すべきかUターンすべきかを判断
する。実際のロボツトの走行方法を第8図で示
す。
The processing for determining whether the vehicle is running is shown below in FIG.
The arithmetic processing unit 1 determines whether the robot should go straight or make a U-turn based on the data stored in the storage device 2 about the robot's own position, direction of movement, and position of obstacles. Fig. 8 shows the actual running method of the robot.

第8図で、障害物はJ点で代表されるように長
方形abcdおよび線分efに沿つて点在するように
検出される。このような障害物のある状況の中で
自走ロボツトは出発点A点から走行し始める。そ
して第4図の以下に示すように前方に障害物が
あるかどうか判断する。前方に障害物がない場合
演算処理装置1は、車輪駆動装置9に直進命令を
出力する。もし前方に障害物がある場合には停止
し、右Uターンあるいは左Uターンが可能かどう
か判断し、右Uターン可能ならば右Uターン命令
を、左Uターン可能ならば左Uターン命令を車輪
駆動装置9に出力する。ただし第8図でわかるよ
うに右Uターンと左Uターンは交互に切換えて判
断する。そしてロボツトが右Uターンも左Uター
ンもできなくなつた第8図のB点まで走行する
と、演算処理装置1は、記憶装置2に記憶されて
いる障害物位置と掃除エリアのデータより未走行
エリアがあるかどうか判断する。未走行エリアが
なければロボツトは停止し、制御を終了する。も
し未走行エリアがあれば第4図の以下に示すよ
うに、未走行エリアの検索と第8図のロボツトが
障害物に取り囲まれて走行できなくなつたB点か
ら次に移動すべき目標点Cの検索を行い、つづい
てB点からC点への第8図BB1B2Cの例で示す目
標点Cへの走行経路を探索する。ただしこの走行
経路BB1B2Cはx軸y軸に沿つた走行をさせると
仮定した場合の例である。そして、演算処理装置
1はその探索した走行経路に沿つて走行する命令
を車輪駆動装置9に出力する。目標点Cに到着し
た後は、再び直進とUターンを繰返して、未走行
エリアhgciの中をくまなく走行する命令を出力す
る。
In FIG. 8, obstacles are detected scattered along a rectangle ABCD and a line segment EF, as represented by point J. In such a situation where there are obstacles, the self-propelled robot starts traveling from the starting point A. Then, as shown below in FIG. 4, it is determined whether there is an obstacle ahead. If there is no obstacle ahead, the processing unit 1 outputs a command to the wheel drive unit 9 to go straight. If there is an obstacle ahead, stop, judge whether a right U-turn or left U-turn is possible, and if a right U-turn is possible, issue a right U-turn command, and if a left U-turn is possible, issue a left U-turn command. Output to the wheel drive device 9. However, as shown in Fig. 8, right U-turns and left U-turns are determined by switching alternately. When the robot travels to point B in FIG. 8, where it can no longer make a right U-turn or a left U-turn, the processing unit 1 determines whether the robot has not traveled yet based on the data of the obstacle position and cleaning area stored in the storage device 2. Determine whether the area exists. If there is no untraversed area, the robot will stop and the control will end. If there is an untraversed area, as shown below in Figure 4, search for the untraversed area and find the next target point from point B in Figure 8, where the robot is surrounded by obstacles and cannot travel. C is searched, and then a travel route from point B to point C to the target point C shown in the example of BB 1 B 2 C in FIG. 8 is searched. However, this travel route BB 1 B 2 C is an example assuming that the vehicle travels along the x and y axes. Then, the arithmetic processing device 1 outputs a command to the wheel drive device 9 to run along the searched travel route. After reaching the target point C, the vehicle repeats going straight and making U-turns again, and outputs a command to travel throughout the untraveled area hgci.

次に本発明の特色である自走ロボツトがくまな
く走行すべき部屋の大きさと形状の認識方法につ
いて説明する。
Next, a method of recognizing the size and shape of a room in which a self-propelled robot should run throughout, which is a feature of the present invention, will be explained.

本発明では、くまなく走行すべき部屋の大きさ
を第7図に示すように、xy座標系のx=Xmin,
x=Xmax,y=Ymin,y=Ymaxで囲まれる
長方形abcdで表わす。そして上記Xmin,
Xmax,Ymin,Ymaxの値を、障害物が検知さ
れるごとに、障害物の位置のx座標およびy座標
と大小を比較し、Xminを障害物位置のx座標の
最小値、Xmaxを障害物位置のx座標の最大値、
Yminを障害物位置のy座標の最小値、Ymaxを
障害物位置のy座標の最大値に修正する。したが
つて走行すべき部屋のx軸方向の範囲(第7図の
左右方向)は直線x=Xminから直線x=Xmax
の範囲に、y軸方向の範囲(第7図の上下方向)
は直線y=Yminから直線y=Ymaxの範囲に把
握される。
In the present invention, the size of the room to be traveled through is determined by x=Xmin in the xy coordinate system, as shown in FIG.
It is represented by a rectangle abcd surrounded by x=Xmax, y=Ymin, and y=Ymax. And the above Xmin,
Each time an obstacle is detected, the values of Xmax, Ymin, and Ymax are compared with the x and y coordinates of the obstacle's position, and Xmin is the minimum value of the x-coordinate of the obstacle's position, and Xmax is the minimum value of the x-coordinate of the obstacle's position. The maximum value of the x-coordinate of the position,
Correct Ymin to the minimum value of the y-coordinate of the obstacle position, and Ymax to the maximum value of the y-coordinate of the obstacle position. Therefore, the range in the x-axis direction of the room in which you should run (left and right direction in Figure 7) is from straight line x = Xmin to straight line x = Xmax.
In the range of y-axis direction (vertical direction in Figure 7)
is grasped in the range from straight line y=Ymin to straight line y=Ymax.

次に上記部屋の範囲を示すXmin,Xmax,
Ymin,Ymaxの初期値の設定と、ロボツトの走
行中における障害物を検知するごとの修正方法を
説明する。Xmin,Xmax,Ymin,Ymaxの初期
値は、第4図の処理流れ図のSTART直後に示し
たように第6図,第7図,第8図における出発点
A点(xp,yp)のx座標とy座標に設定する。す
なわちXmin=Xmax=xpとYmin=Ymax=yp
する。
Next, Xmin, Xmax, which indicates the range of the above room,
We will explain how to set the initial values of Ymin and Ymax and how to correct them each time an obstacle is detected while the robot is running. The initial values of Xmin, Xmax, Ymin, and Ymax are the starting point A (x p , y p ) in FIGS. Set to x and y coordinates. That is, let Xmin=Xmax=x p and Ymin=Ymax=y p .

そして第4図の処理流れ図の〜で示す前記
障害物位置(xs,ys)を計算した後で走行制御の
判断をする前に、障害物を検知するごとに部屋の
範囲Xmin,Xmax,Ymin,Ymaxを障害物の
xy座標と大小を比較して修正する処理を行う。
第4図の処理流れ図の〜の計算方法を第5図
に示す。第5図で、まず障害物の座標(xs,ys
を読み、そのx座標xsがそれまでのXminより小
さいか判断し、もし小さければXminをxsに修正
し、同様にxsがXmaxより大きいか判断し、もし
大きければXmaxをxsに修正する。またy座標も
同様にy座標ysがそれまでのYminより小さいか
判断し、もし小さければYminをysに修正し、同
様にysがYmaxより大きいか判断し、もし大きけ
ればYmaxをysに修正する。
After calculating the obstacle position (x s , y s ) indicated by ~ in the processing flowchart of Fig. 4, and before making a decision on travel control, the room ranges Xmin, Xmax, Ymin, Ymax of the obstacle
Performs processing to compare and correct the xy coordinates and their sizes.
FIG. 5 shows a calculation method for .about. in the processing flowchart of FIG. 4. In Figure 5, first the coordinates of the obstacle (x s , y s )
Read, determine whether the x coordinate x s is smaller than the previous Xmin, and if it is smaller, correct Xmin to x s , similarly determine whether x s is larger than Xmax, and if larger, change Xmax to x s . Fix it. Similarly, for the y-coordinate, determine whether the y-coordinate y s is smaller than the previous Ymin, and if it is smaller, correct Ymin to y s , similarly determine whether y s is larger than Ymax, and if it is larger, change Ymax to y Correct to s .

そこで自走ロボツトの走行とからめて図的に修
正の状況を説明する。第6図で出発点A点付近に
おける修正の具体例を述べる。第6図は、ロボツ
トがA点から出発し、E点まで走行し、前記した
ように障害物G点(xs,ys)を検知した図であ
る。出発点A点では前記したようにXmin=
Xmax=xp,Ymin=Ymax=ypであり、すなわ
ち走行すべき部屋は長方形でなく点と把握され
る。そしてE点では、第5図による修正を行い、
すなわちxs<XminであるからXmin=xsに修正
され、かつys>YmaxであるからYmax=ysに修
正される。したがつてE点では走行すべき部屋
は、x=Xmin=xsとx=Xmax=xpとy=Ymin
=ypとy=Ymax=ysで囲まれる長方形HAIGと
把握される。
Therefore, the situation of correction will be explained graphically in connection with the running of a self-propelled robot. A specific example of correction near the starting point A will be described in FIG. FIG. 6 is a diagram in which the robot starts from point A, travels to point E, and detects an obstacle at point G (x s , y s ) as described above. At the starting point A, as mentioned above, Xmin=
Xmax=x p , Ymin=Ymax=y p , that is, the room in which the vehicle should run is understood to be a point, not a rectangle. Then, at point E, make the correction according to Figure 5,
That is, since x s <Xmin, it is corrected to Xmin=x s , and since y s >Ymax, it is corrected to Ymax=y s . Therefore, at point E, the rooms to travel through are x = Xmin = x s , x = Xmax = x p , and y = Ymin.
It can be understood as a rectangle HAIG surrounded by = y p and y = Ymax = y s .

次に、第7図でロボツトがある程度走行した時
の修正の具体例を述べる。第7図は、ロボツトが
A点から出発し、直進とUターンを繰返してH点
まで走行し、H点で障害物J点(xs,ys)が検知
された状況である。そしてH点に到達するまでは
走行すべき部屋の大きさを、x=Xmin,x=
Xmax,y=Ymin,y=Ymaxで囲まれた長方
形abcdで把握されていたとする。そしてH点で
障害物J(xs,ys)を検知したので、第5図によ
る修正を行い、xs>XmaxであるからXmax=xs
に修正される。したがつてH点では走行すべき部
屋が、それまでのabcdからab′c′dに変更して把握
される。なお第7図の斜線部SU2U3U4U5U6は、
ロボツトがAからHに走行した場合の掃除エリア
を示す。
Next, a specific example of correction when the robot has traveled to a certain extent will be described with reference to FIG. FIG. 7 shows a situation in which the robot starts from point A, travels straight ahead and repeatedly makes U-turns to point H, and at point H, an obstacle J point (x s , y s ) is detected. Then, the size of the room in which you need to run until you reach point H is x=Xmin, x=
Suppose that it is grasped by a rectangle abcd surrounded by Xmax, y=Ymin, and y=Ymax. Then, since an obstacle J (x s , y s ) was detected at point H, corrections were made according to Figure 5, and since x s > Xmax, Xmax = x s
will be corrected. Therefore, at point H, the room to be traveled is changed from abcd to ab'c'd. Note that the shaded area SU 2 U 3 U 4 U 5 U 6 in Fig. 7 is
The cleaning area when the robot travels from A to H is shown.

次に第8図で、未走行エリアの検索方法を示
す。第8図は、ロボツトがA点から出発し、直進
とUターンを繰返して障害物に取り囲まれて走行
できなくなるB点まで走行し、その間に、超音波
送受信器で検知した障害物の位置座標(Jで代
表)を同じ座標上にプロツトした図である。また
斜線部abfeidは、ロボツトがA点からB点まで走
行した場合の、ロボツトの掃除エリアである。た
だしロボツトは、A点を例にしてSTUVの範囲
を掃除するものとした。このB点において走行す
べき部屋の大きさは前記したように、x=
Xmin,x=Xmax,y=Ymin,y=Ymaxで囲
まれる長方形abcdと把握される。したがつてB
点では、長方形abcdの中に自走ロボツトの外形
をA点の例でSTUVとすれば、そのSTUVの走
行できるエリアがあるかどうか検索する。第8図
では、hgciにロボツトが走行できるエリアがある
のでそのhgciを未走行エリアとする。
Next, FIG. 8 shows a method of searching for untraveled areas. Figure 8 shows a robot starting from point A and repeatedly moving straight and making U-turns until it reaches point B, where it is surrounded by obstacles and cannot move. (represented by J) is plotted on the same coordinates. The shaded area abfeid is the cleaning area of the robot when the robot travels from point A to point B. However, the robot was supposed to clean the STUV range using point A as an example. As mentioned above, the size of the room in which you should run at point B is x=
It can be understood as a rectangle abcd surrounded by Xmin, x=Xmax, y=Ymin, and y=Ymax. Therefore B
For points, if the outline of the self-propelled robot is STUV in the example of point A within rectangle ABCD, a search is made to see if there is an area in which that STUV can run. In FIG. 8, since there is an area in HGCI where the robot can run, that HGCI is set as a non-running area.

さらにB点では上記未走行エリア内の適当な目
標点Cを選択する。そしてB点から次に移動する
目標点Cまで走行する走行経路BB1B2Cを探索す
る。この走行経路BB1B2Cは、x軸y軸に沿つて
走行させる例である。
Further, at point B, an appropriate target point C within the untraveled area is selected. Then, a traveling route BB 1 B 2 C is searched for traveling from point B to the next target point C. This traveling route BB 1 B 2 C is an example of traveling along the x-axis and y-axis.

本実施例によれば、使用者がロボツトにあらか
じめ走行すべき部屋の範囲を、テイーチングする
必要がなくなるので、自走ロボツトを完全に自動
化できる。したがつて自走ロボツトが使いやすく
なり、かつ制御の融通性が高くなる効果がある。
According to this embodiment, there is no need for the user to teach the robot in advance the range of rooms in which it should travel, so the self-propelled robot can be completely automated. Therefore, the self-propelled robot becomes easier to use and has the effect of increasing control flexibility.

また本実施例によれば、自走ロボツトがくまな
く走行しなければならない部屋の範囲を、障害物
の座標の最小値および最大値に修正するので、部
屋の大きさ形状を実際に近い形に設定できるた
め、ロボツトが部屋の壁や障害物に取り囲まれて
走行できなくなつた場合、まだ走行していない未
走行エリアを検索する演算処理時間が、従来の第
3図で示した部屋の大きさ形状を、あらかじめテ
イーチングしておくよりも短縮できる効果があ
る。
Furthermore, according to this embodiment, the range of the room that the self-propelled robot must travel through is corrected to the minimum and maximum values of the coordinates of obstacles, so the size and shape of the room can be made close to the actual size. Since the robot can be set, if the robot is surrounded by walls or obstacles in the room and cannot move, the calculation processing time to search for areas where it has not yet moved will be reduced compared to the conventional room size shown in Figure 3. This has the effect of shortening the length of the shape rather than teaching it in advance.

具体的に、1回の未走行エリアの検索に要する
演算処理時間を比較すると、10m×10mの部屋の
データをテイーチングして、第3図の未走行エリ
アhgciあるいはOP′Q′R′を検索する時間は、16ビ
ツトのマイクロプロセツサで5〜10秒かかる。し
かし本実施例の部屋の大きさ形状を障害物の位置
により把握する方法だと従来の約1/5の1〜2秒
まで短縮できる。実施例の第6図,第7図,第8
図では部屋の中に障害物が1個で単純な環境につ
いて説明したが、実際の部屋で自走ロボツトを走
行させた場合、ロボツトが障害物に取り囲まれて
動けなくなる回数は相当多くなると予想されるの
で本実施例の効果は大きい。
Specifically, if we compare the calculation processing time required for one search for an untraveled area, we can teach the data of a 10m x 10m room and search for the untraveled area hgci or OP'Q'R' in Figure 3. This takes 5 to 10 seconds on a 16-bit microprocessor. However, if the method of this embodiment is used to determine the size and shape of the room based on the positions of obstacles, the time can be reduced to 1 to 2 seconds, which is about 1/5 of the conventional method. Figures 6, 7, and 8 of the embodiment
In the figure, we explained a simple environment with one obstacle in the room, but if a self-propelled robot were to run in an actual room, it is expected that the number of times the robot would become unable to move due to being surrounded by obstacles is expected to be quite large. Therefore, the effect of this embodiment is great.

したがつて、前記未走行エリアを検索する演算
時間が短縮できれば、自走ロボツトが部屋の中を
くまなく走行するまでの時間、すなわちこの自走
ロボツトを部屋の中を掃除する掃除用自走ロボツ
トとして使用すると、掃除に要する時間を短縮す
ることができ経済的でもある。
Therefore, if the calculation time for searching the untraversed area can be shortened, the time it takes for the self-propelled robot to travel throughout the room, that is, the time it takes for the self-propelled robot to travel throughout the room, or the time it takes for the self-propelled robot to travel throughout the room, can be reduced. When used as a vacuum cleaner, the time required for cleaning can be shortened and it is also economical.

なお、本実施例は、掃除用の自走ロボツトを例
に上げて説明したが、部屋の中をくまなく走行さ
せることが要求されている例えば、塗装用の自走
ロボツトあるいは土砂採堀用の自走ロボツトなど
に応用できる。
Although this embodiment has been explained using a self-propelled robot for cleaning as an example, it is also applicable to a self-propelled robot for painting, or for excavating earth and sand, which is required to run all over the room. It can be applied to self-propelled robots, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、使用者がロボツトにあらかじ
め走行すべき部屋の範囲をテイーチングする必要
がなくなるので、自走ロボツトを完全に自動化で
き、自走ロボツトが使いやすくなる効果があり、
かつ制御の融通性が高くなる効果もある。
According to the present invention, there is no need for the user to teach the robot in advance the range of rooms in which it should travel, so the self-propelled robot can be completely automated, and the self-propelled robot is easier to use.
This also has the effect of increasing control flexibility.

また、本発明によれば、走行しなければならな
い部屋の範囲を、障害物が検知されるごとに、そ
の障害物の座標の最小値及び最大値で修正するの
で部屋の大きさ形状を実際に近い形に設定できる
ため、まだ走行していない未走行エリアを検索す
る演算処理装置を短縮できる効果がある。したが
つてロボツトの走行がスムーズになると同時に、
走行時間を短くできるので経済的でもある効果が
ある。
Furthermore, according to the present invention, each time an obstacle is detected, the range of the room in which the vehicle must travel is corrected by the minimum and maximum coordinates of that obstacle, so the size and shape of the room can be adjusted. Since it can be set to a similar shape, it has the effect of reducing the amount of processing equipment required to search for areas where the vehicle has not yet traveled. Therefore, the robot runs smoothly, and at the same time,
It also has an economical effect because the travel time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である掃除用自走ロ
ボツトの構成を示すブロツク図、第2図は自走ロ
ボツトの走行経路の平面図、第3図は従来の未走
行エリアを検索する方法を示す平面図、第4図,
第5図は実施例における演算処理流れ図、第6
図、第7図、第8図は実施例の走行しなければな
らない部屋の大きさ形状を認識する方法と未走行
エリアを検索方法を示す平面図である。 1…演算処理装置、2…記憶装置、3…入力ポ
ート、4…出力ポート、5…超音波送信器、6…
超音波受信器、7…超音波送受信器回転計、8…
車輪回転計、9…車輪駆動装置、10…超音波送
受信器の回転駆動装置、11…ごみ吸引駆動装
置。
Fig. 1 is a block diagram showing the configuration of a self-propelled cleaning robot that is an embodiment of the present invention, Fig. 2 is a plan view of the travel route of the self-propelled robot, and Fig. 3 is a conventional method for searching areas where the robot has not traveled. A plan view showing the method, Fig. 4,
Figure 5 is a flowchart of calculation processing in the embodiment;
7 and 8 are plan views showing a method of recognizing the size and shape of a room in which the vehicle must travel and a method of searching for an untraversed area, according to the embodiment. DESCRIPTION OF SYMBOLS 1... Arithmetic processing unit, 2... Storage device, 3... Input port, 4... Output port, 5... Ultrasonic transmitter, 6...
Ultrasonic receiver, 7... Ultrasonic transmitter/receiver tachometer, 8...
Wheel rotation meter, 9... Wheel drive device, 10... Ultrasonic transmitter/receiver rotation drive device, 11... Dust suction drive device.

Claims (1)

【特許請求の範囲】[Claims] 1 障害物の方向と距離を計測する超音波送信
器、超音波受信器、超音波送受信器回転計と、ロ
ボツトの自己位置および進行方向を測定する計測
装置と、計測データを演算処理する演算処理装置
と、演算結果を記憶する記憶装置とを設け、前記
演算処理装置は、演算結果に基づいて全障害物の
位置座標についてのx座標値の最小値Xminと最
大値Xmaxと、y座標値の最小値Yminと最大値
Ymaxを算出し、ロボツトの走行範囲をxy直角
座標系におけるx軸に平行な2直線x=Xmin、
x=Xmaxとy軸に平行な2直線y=Ymin,y
=Ymaxで囲まれる範囲を設定し、また、前記演
算処理装置は、前記超音波送信器と受信器で検知
した障害物の位置座標に関連させて、ロボツトの
駆動装置に走行命令を出力してロボツトを前記x
軸に平行な2直線x=Xmin,x=Xmaxおよび
y軸に平行な2直線y=Ymin,y=Ymaxを平
行移動して走行すべき範囲を修正するように構成
した自走ロボツト。
1 An ultrasonic transmitter, an ultrasonic receiver, an ultrasonic transmitter/receiver tachometer that measures the direction and distance of obstacles, a measuring device that measures the robot's own position and direction of movement, and arithmetic processing that processes the measurement data. and a storage device for storing the calculation results, and the calculation processing device calculates the minimum value Xmin and maximum value Xmax of the x-coordinate values and the y-coordinate value of the position coordinates of all obstacles based on the calculation results. Minimum value Ymin and maximum value
Ymax is calculated, and the robot's traveling range is defined as two straight lines parallel to the x-axis in the xy orthogonal coordinate system, x=Xmin,
x = Xmax and two straight lines parallel to the y axis y = Ymin, y
=Ymax, and the arithmetic processing unit outputs a running command to the robot's driving device in relation to the position coordinates of the obstacle detected by the ultrasonic transmitter and receiver. robot x
A self-propelled robot configured to modify the range in which it should travel by moving two straight lines x=Xmin, x=Xmax parallel to an axis and two straight lines y=Ymin, y=Ymax parallel to a y-axis.
JP60086318A 1985-04-24 1985-04-24 Self-traveling robot Granted JPS61245215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086318A JPS61245215A (en) 1985-04-24 1985-04-24 Self-traveling robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086318A JPS61245215A (en) 1985-04-24 1985-04-24 Self-traveling robot

Publications (2)

Publication Number Publication Date
JPS61245215A JPS61245215A (en) 1986-10-31
JPH0582601B2 true JPH0582601B2 (en) 1993-11-19

Family

ID=13883483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086318A Granted JPS61245215A (en) 1985-04-24 1985-04-24 Self-traveling robot

Country Status (1)

Country Link
JP (1) JPS61245215A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311512A (en) * 1987-06-15 1988-12-20 Sanyo Electric Co Ltd Mobile working vehicle
JPS63311513A (en) * 1987-06-15 1988-12-20 Sanyo Electric Co Ltd Mobile working vehicle
BE1008470A3 (en) * 1994-07-04 1996-05-07 Colens Andre Device and automatic system and equipment dedusting sol y adapted.
US6574536B1 (en) 1996-01-29 2003-06-03 Minolta Co., Ltd. Moving apparatus for efficiently moving on floor with obstacle
JP5888446B1 (en) * 2015-02-12 2016-03-22 富士電機株式会社 Floor contamination measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119900A (en) * 1973-12-21 1978-10-10 Ito Patent-Ag Method and system for the automatic orientation and control of a robot
JPS6052443A (en) * 1983-08-30 1985-03-25 Fuji Xerox Co Ltd Machine-glazed-paper sheet holding apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119900A (en) * 1973-12-21 1978-10-10 Ito Patent-Ag Method and system for the automatic orientation and control of a robot
JPS6052443A (en) * 1983-08-30 1985-03-25 Fuji Xerox Co Ltd Machine-glazed-paper sheet holding apparatus

Also Published As

Publication number Publication date
JPS61245215A (en) 1986-10-31

Similar Documents

Publication Publication Date Title
US4674048A (en) Multiple robot control system using grid coordinate system for tracking and completing travel over a mapped region containing obstructions
US5896488A (en) Methods and apparatus for enabling a self-propelled robot to create a map of a work area
JPH0582602B2 (en)
EP0346538A1 (en) Control method for an unmanned vehicle
JP2774087B2 (en) Robot position recognition apparatus and method
JPS63241610A (en) Method for controlling running of self-running robot
US20070271003A1 (en) Robot using absolute azimuth and mapping method thereof
JPH07306042A (en) Method and device for forming peripheral map in cellular structure
JP2000056006A (en) Position recognizing device for mobile
JPH05257533A (en) Method and device for sweeping floor surface by moving robot
JPH11295412A (en) Apparatus for recognizing position of mobile
JPS62154008A (en) Travel control method for self-travel robot
CN111596666A (en) Detection method for obstacle collision threat based on AGV motion prediction
JPH0582601B2 (en)
JP3076648B2 (en) Self-propelled vacuum cleaner
JP3237500B2 (en) Autonomous mobile work vehicle
JPH10105234A (en) Unmanned carriage
JP3758710B2 (en) Current position calculation system and current position calculation method
Badcock et al. An autonomous robot navigation system-integrating environmental mapping, path planning, localisation and motion controla
JP3401023B2 (en) Unmanned vehicle control method
JPH0635534A (en) Indoor radio mobile robot
JPH0437736Y2 (en)
JPS6093524A (en) Controller of moving robot
Louchene et al. Indoor mobile robot local path planner with trajectory tracking
JPH07104718B2 (en) Driving course teaching device for unmanned vehicles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees