JPH0581253B2 - - Google Patents

Info

Publication number
JPH0581253B2
JPH0581253B2 JP28694190A JP28694190A JPH0581253B2 JP H0581253 B2 JPH0581253 B2 JP H0581253B2 JP 28694190 A JP28694190 A JP 28694190A JP 28694190 A JP28694190 A JP 28694190A JP H0581253 B2 JPH0581253 B2 JP H0581253B2
Authority
JP
Japan
Prior art keywords
light
blood
glucose concentration
blood glucose
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28694190A
Other languages
Japanese (ja)
Other versions
JPH03146032A (en
Inventor
Gencho Yana
Ingyoku Kin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26628109&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0581253(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from KR1019890015584A external-priority patent/KR930011586B1/en
Priority claimed from KR1019900011241A external-priority patent/KR920002091A/en
Application filed by Individual filed Critical Individual
Publication of JPH03146032A publication Critical patent/JPH03146032A/en
Publication of JPH0581253B2 publication Critical patent/JPH0581253B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A method and apparatus for measuring blood glucose concentration by irraditing blood vessels with electromagnetic radiation using near-infrared radiation diffuse-reflection laser spectroscopy. This invention uses electromagnetic radiation of a wavelength that is transmitted through the skin to the measurement part, for example, a blood vessel. Since skin is mostly composed of water (H2O), which absorbs IR radiation in nearly the entire IR spectral range, only radiation of a certain, narrow protion of the IR spectral range called the "water transmission window" is transmitted through the skin. The present invention uses electromagnetic radiation with a wavelength of 1.3 mu m SIMILAR 1.9 mu m radiation from a semiconductor diode laser (5). When electromagnetic radiation of these wavelengths irradiates the skin, light is transmitted through the skin to the blood vessel where the light interacts with the heterogeneous components of the blood. The light which reaches the blood is then diffusely reflected by the blood. The reflected light will have been modulated by the characteristic vibrations of the molecules which are major components of blood. The reflected light is detected and provided as a digital signal to a one-chip microcomputer (2). The one-chip microcomputer (2) calculates a blood glucose concentration from the digital signal by reference to a calibration curve stored in the memory of the one-chip microcomputer (2). The one-chip microcomputer (2) causes the calculated blood glucose concentration to be displayed on a digital display (3).

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は血糖濃度測定装置に係り、特に従来
の測定装置のように注射器やメス等の器具を用い
て採血してから血糖濃度を測定するのではなく、
ノン・インベイシブ方法(Non−Invasive
Technique)を用いて採血等による生体の損傷を
伴わずに、単に本装置の測定部分(Port)を血
管の見える人体の適当な部分、例えば手首の内側
に当てることにより、血糖濃度の測定を可能にし
た生体を損なわない血糖濃度測定装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a blood glucose concentration measuring device, and in particular, the present invention relates to a blood glucose concentration measuring device, and in particular, the blood glucose concentration is measured after blood is collected using an instrument such as a syringe or a scalpel, as in conventional measuring devices. rather than
Non-Invasive method
Blood sugar concentration can be measured by simply applying the measuring part (Port) of this device to an appropriate part of the human body where blood vessels are visible, such as the inside of the wrist, without causing damage to the living body due to blood collection etc. The present invention relates to a blood glucose concentration measuring device that does not harm living organisms.

〔発明の概要〕[Summary of the invention]

通常、糖尿病等の患者は一日に2回ないし8回
程度、平均すると4回程度は注射器等により血液
を採取し、その後、例えば酵素法(Enzymatic
Method)を利用した携帯用血糖濃度測定機器に
より血液中の糖濃度を測定している。
Normally, patients with diabetes etc. collect blood with a syringe, etc., about 2 to 8 times a day, on average about 4 times.
The sugar concentration in the blood is measured using a portable blood glucose concentration measuring device using the method (Method).

現在、前記測定機器を用いて行なう検査及び測
定においては、1回の検査及び測定毎に使い捨て
の注射器や検査紙等が必らず1セツトは使用され
ている。従来の測定機器を用いる検査及び測定
は、機器の本体だけでも高価であるばかりでな
く、注射器や検査紙等の測定補助器具の購入費用
だけでも年間を通して計算すると多大な経費を要
している。
Currently, in tests and measurements performed using the above-mentioned measuring instruments, one set of disposable syringes, test strips, etc. are always used for each test or measurement. Inspection and measurement using conventional measuring equipment not only requires expensive equipment itself, but also the purchase cost of measurement aids such as syringes and test strips, which costs a large amount of money throughout the year.

このような問題を解消するため多くの研究が進
められてきた。
Many studies have been carried out to solve these problems.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、血糖を測定する時に注射器・
試験紙等の器具を用いることなく血糖濃度測定用
の装置の測定部を単に皮膚に当てることにより、
手軽でかつ人体に悪影響を与えることなく血糖濃
度を測定することのできる、生体を損なわない血
糖濃度測定装置を提供することにある。
The purpose of the present invention is to use a syringe and a
By simply applying the measuring part of the device for measuring blood sugar concentration to the skin without using any instruments such as test strips,
It is an object of the present invention to provide a blood glucose concentration measuring device that is easy to use, can measure blood glucose concentration without adversely affecting the human body, and does not harm living organisms.

〔発明の構成〕[Structure of the invention]

上記目的を達成するため、この発明による生体
を損なわない血糖濃度測定装置は、電源スイツチ
を介して所定電圧を供給する電源と、この電源に
より所定波長の光を発生させる光源と、この光源
からの光線を所定の平行光線に制御する光学系
と、光学系を介して供給された光線を被測定部位
に照射し反射されてきた光を集束させる集束部
と、集束部が集束した光を検出する検出部と、検
出部からの出力をアナログ信号からデイジタル信
号に変換した測定値を基準値と比較して演算処理
して血糖値を算出する演算処理部と、を備えた生
体を損なわない血糖濃度測定装置を、以下のよう
に構成したものである。
In order to achieve the above object, the blood glucose concentration measuring device according to the present invention that does not harm the living body includes a power source that supplies a predetermined voltage via a power switch, a light source that uses this power source to generate light of a predetermined wavelength, and a An optical system that controls the light beam into a predetermined parallel light beam, a focusing section that irradiates the measured part with the light beam supplied through the optical system and focuses the reflected light, and the focusing section detects the focused light. Blood sugar concentration that does not harm living organisms, comprising a detection unit and a calculation processing unit that calculates a blood sugar level by comparing the measured value obtained by converting the output from the detection unit from an analog signal to a digital signal with a reference value and calculating the blood sugar level. The measuring device was configured as follows.

少なくとも1つの発光素子よりなり接合部を備
えると共に前記電源から電流により異なる出力波
長の光を発生させる前記光源としてのレーザダイ
オードと;前記電源からの出力に基づいて電圧の
安定した出力を前記光源としてのレーザダイオー
ドに供給するダイオード用の電源調節器と;温度
変化の影響を受け易い前記レーザダイオードの接
合部に対して所定の割合で電流値を変化させるよ
うに制御する温度調節器と;前記電源調節器を制
御するために前記演算処理部より出力されるデイ
ジタル制御信号をアナログ制御信号に変換させる
D/A変換器と;前記レーザダイオードから放出
された光を測定目的に応じて分離・結合させて平
行光線となるように光学的に調節する光学系と;
前記光学系により調節された光を被測定部位であ
る被測定者の皮膚に照射すると共に、血管内の血
液中の血糖分子の倍振動及び組み合わせ振動によ
り散乱されて反射した光を集束する集光部と;前
記集光部により集束された光子を電気的なアナロ
グ測定値信号に変換した後、この信号を増幅して
出力する検出器と;前記電気的なアナログ測定値
をデイジタル測定値に変換するA/D変換器と;
前記基準値としての検定曲線を記憶するメモリ
と;変換された前記デイジタル測定値と前記メモ
リに記憶された検定曲線とを比較して血液中の血
糖濃度を算出すると共に、前記D/A変換器を介
して前記電源調節器及び温度調節器に制御信号を
出力してレーザダイオードの発光光線を制御する
前記演算処理部としてのマイクロコンピユータ
と;そして、前記マイクロコンピユータにより演
算・算出された血糖濃度を表示するデイジタルデ
イスプレイと;を具備すると共に、装置全体を携
帯可能な寸法及び形状に小型化して形成したもの
である。
a laser diode as the light source that is made up of at least one light emitting element and includes a junction and that generates light of different output wavelengths depending on the current from the power source; as the light source that outputs a stable voltage based on the output from the power source; a power supply regulator for a diode that supplies the laser diode; a temperature regulator that controls a junction part of the laser diode that is susceptible to temperature changes to change a current value at a predetermined rate; a D/A converter that converts a digital control signal output from the arithmetic processing unit into an analog control signal in order to control the regulator; and a D/A converter that separates and combines the light emitted from the laser diode according to the purpose of measurement. an optical system that optically adjusts the rays so that they become parallel rays;
The light adjusted by the optical system is irradiated onto the skin of the person being measured, which is the part to be measured, and the light that is scattered and reflected by the double vibration and combination vibration of blood sugar molecules in the blood within the blood vessel is focused. a detector that converts the photons focused by the light condensing section into an electrical analog measurement value signal, and then amplifies and outputs this signal; converts the electrical analog measurement value into a digital measurement value; an A/D converter;
a memory for storing a test curve as the reference value; a blood glucose concentration in the blood is calculated by comparing the converted digital measurement value with the test curve stored in the memory, and the D/A converter a microcomputer as the arithmetic processing unit that outputs a control signal to the power supply regulator and temperature regulator to control the light emitted by the laser diode; The device is equipped with a digital display for displaying images, and the entire device is miniaturized to a size and shape that is portable.

(作用) この発明は、近赤外線拡散反射レーザー分光法
(Near−Infrared Radiation Diffuse−
Reflection Laser Spectroscopy)に基づいて、
人体に悪影響を与えない周波数を有する電子輻射
線を血管に照射し、血糖濃度を測定するようにし
たものであり、皮膚の表面から測定部位の血管ま
でを通過し得る波長を有する電子輻射線を用いて
いる。この皮膚から血管までは、“ウオーターウ
インドウ(Water Window)”と呼ばれている
が、これは人体の結合組織の大部分が水分
(H2O)より構成されているため名付けられたも
のである。この“ウオーターウインドウ”を通過
できる電子輻射線の波長は3μm〜5μmの範囲内
に部分的に散在していることが知られている。と
ころで、最近本願発明者らが調査・研究した結果
によれば、人体に有害でない適切なエネルギーを
持つ電子輻射線を皮膚に照射したときに“ウオー
ターウインドウ”を通過して血管まで到達できる
波長は1.3μm〜1.9μmの範囲にあるということが
判明した。
(Function) This invention provides near-infrared diffuse reflection laser spectroscopy.
Reflection Laser Spectroscopy)
Blood glucose concentration is measured by irradiating blood vessels with electronic radiation that has a frequency that does not have a negative effect on the human body, and uses electronic radiation that has a wavelength that can pass from the surface of the skin to the blood vessels at the measurement site. I am using it. This area from the skin to the blood vessels is called the "Water Window", so named because most of the connective tissue in the human body is composed of water (H 2 O). . It is known that the wavelengths of electron radiation that can pass through this "water window" are partially scattered within the range of 3 .mu.m to 5 .mu.m. By the way, according to the results of recent investigations and research by the inventors of the present application, when the skin is irradiated with electronic radiation having appropriate energy that is not harmful to the human body, the wavelength that can pass through the "water window" and reach the blood vessels is It was found that it was in the range of 1.3 μm to 1.9 μm.

従つて、本発明では半導体(ダイオード)レー
ザを使用して1.3μm〜1.9μmの範囲、とりわけ
1.4μm〜1.8μmの範囲の波長を有する電子輻射線
を利用している。この電子輻射線を照射したとき
に皮膚を通過して血管に到達する電子輻射線は、
血液の成分と相互作用し、血液の成分を成す分子
の固有の特性等により吸収されて散乱・反射され
る。従つて、本発明においては複雑な分子等に基
づく血液の不均一性(heterogeneity)により吸
収されて散乱・反射される光を本発明の目的に合
致するように設計された集光部(integrating
sphere−積分球)により集束し、この集束された
光子(hν)を検出部により電気的なアナログ測
定値に変換させた後、ワンチツプのマイクロコン
ピユータに供給し、このマイクロコンピユータに
供給し、このマイクロコンピユーターにより適切
な検定方法を用いて血糖値を計算・算出して血糖
濃度を測定できるようにしている。
Therefore, in the present invention, a semiconductor (diode) laser is used to obtain a laser beam in the range of 1.3 μm to 1.9 μm, especially
Electron radiation having a wavelength in the range of 1.4 μm to 1.8 μm is utilized. When this electron radiation is irradiated, the electron radiation that passes through the skin and reaches the blood vessels is
It interacts with blood components and is absorbed, scattered, and reflected due to the unique characteristics of the molecules that make up the blood components. Therefore, in the present invention, light that is absorbed, scattered, and reflected due to the heterogeneity of blood due to complex molecules, etc. is collected using an integrating section designed to meet the purpose of the present invention.
sphere (integrating sphere), the focused photons (hν) are converted into electrical analog measured values by the detector, and then supplied to a one-chip microcomputer; The computer calculates and calculates the blood sugar level using an appropriate testing method, making it possible to measure the blood sugar concentration.

尚、本発明において、近赤外線(Near
Infrared Radiation)の一般な特性は国際純粋化
学・応用化学連合会(IUPAC;International
Union of Pure and Applied Chemistry)によ
り定義された内容に準じている。即ち、その周波
数(sec-1)は1013〜3.75×1014Hzであり、そのエ
ネルギーは0.951〜35.8(Kcal/mol)、0.412〜
1.55eVであり、波長は0.8〜30μmである。さらに
本発明は分子の振動、回転、並進運動による近赤
外線分光法において、血糖分子の振動運動に対す
る物理化学的な原理に基づいて、倍振動
(Overtonevibration)と組合わせ振動
(Combination vibration)を用いており、特に
倍振動が主に利用されている。
In addition, in the present invention, near infrared rays (Near
The general characteristics of Infrared Radiation are the International Union of Pure and Applied Chemistry (IUPAC).
According to the content defined by the Union of Pure and Applied Chemistry). That is, its frequency (sec -1 ) is 10 13 to 3.75×10 14 Hz, and its energy is 0.951 to 35.8 (Kcal/mol), 0.412 to
It is 1.55 eV and the wavelength is 0.8 to 30 μm. Furthermore, the present invention uses overtone vibration and combination vibration in near-infrared spectroscopy based on vibrational, rotational, and translational motion of molecules, based on the physicochemical principle of vibrational motion of blood sugar molecules. In particular, double vibration is mainly used.

一方、本発明による他の分析方法においては、
分光法における重要な測定値の処理と測定しよう
とする寸法(血糖濃度)等の計算処理のため、多
重線形回帰分析(multiple linear regression
analysis)と多変量分布分析(multivariate
analysis)等のような数学的な方法に基づいて本
発明の目的に合致するように本発明者らにより改
良された方法を用いてデータ処理・算出してい
る。
On the other hand, in other analysis methods according to the present invention,
Multiple linear regression analysis is used to process important measured values in spectroscopy and calculate the dimensions to be measured (blood sugar concentration), etc.
analysis) and multivariate distribution analysis
The data is processed and calculated using a method improved by the inventors to meet the purpose of the present invention based on mathematical methods such as

本発明によれば、検査方法が簡便であり誰でも
手軽に使用することができ、経費が少なくて済む
等の長所を持つ血糖濃度測定装置を提供できるこ
とになる。例えば、患者が外出や旅行をする時、
常時携帯することを必要としていた使い捨ての注
射器や試験紙等を携帯しなくて済むことになる。
さらに、上述したような採血等の検査を行なう為
の場所を捜さなくても済むようになる。さらにま
た、長期間にわたり検査及び測定を継続して行な
う場合には注射により人体の特定部分、例えば下
摶部等に変形が生じてしまい人体を害するという
問題点があつたが、これも克服することができ
る。
According to the present invention, it is possible to provide a blood glucose concentration measuring device that has advantages such as a simple testing method, anyone who can use it easily, and low cost. For example, when a patient goes out or travels,
This eliminates the need to carry disposable syringes, test strips, etc., which were required to be carried at all times.
Furthermore, there is no need to search for a place to conduct tests such as blood sampling as described above. Furthermore, when testing and measurement are carried out continuously over a long period of time, injections can cause deformation of certain parts of the human body, such as the lower part of the body, causing harm to the human body, but this problem can also be overcome. be able to.

本発明による生体を損なわない(ノン・インベ
イシブ)血糖濃度測定装置は直径が例えば0.5〜
5mmの範囲内、望ましくは2mm以下の測定部を、
例えば手首の内側等の皮膚上の血管が見える所定
部位に当接することにより、短時間内(例えば60
秒以内、望ましくは40秒以内)に血糖濃度を測定
できるので、従来のように不便で、なおかつ多大
の費用を必要とする使い捨ての注射器・試験紙等
の消耗器具を不要にすることができる。
The non-invasive blood glucose concentration measuring device according to the present invention has a diameter of, for example, 0.5~
The measuring part within the range of 5 mm, preferably 2 mm or less,
For example, by contacting a predetermined area on the skin where blood vessels are visible, such as the inside of the wrist, it can be applied within a short period of time (for example, 60
Blood glucose concentration can be measured within seconds (preferably within 40 seconds), eliminating the need for conventional consumable instruments such as disposable syringes and test strips that are inconvenient and costly.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例を詳細
に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明による血糖濃度の測定装置のブ
ロツク構成図を示し、第2図は第1図に示された
血糖濃度の測定装置を詳細に示した回路図であ
る。図において、電源スイツチ1がオンされる
と、電源としての図示されないバツテリからワン
チツプで構成されたマイクロコンピユータ(以
下、マイコンという。)2に電圧が供給される。
これと同時に、前記電源はデイジタルデイスプレ
イ3、レーザダイオード用の電源調節器4、及び
検出部7にも供給され、必要に応じて光学系6等
にも供給される。この電源としてのバツテリは一
般には4.5V〜9Vのものが使用され、最も好まし
いのは充電用の6Vのものである。
FIG. 1 shows a block diagram of a blood glucose concentration measuring device according to the present invention, and FIG. 2 is a circuit diagram showing the blood glucose concentration measuring device shown in FIG. 1 in detail. In the figure, when a power switch 1 is turned on, voltage is supplied from a battery (not shown) as a power source to a microcomputer (hereinafter referred to as microcomputer) 2, which is constructed of a single chip.
At the same time, the power is supplied to the digital display 3, the power supply regulator 4 for the laser diode, and the detection unit 7, and also to the optical system 6 and the like as required. Generally, a battery of 4.5V to 9V is used as a power source, and a 6V battery for charging is most preferable.

この状態でスタート/リセツトスイツチ8がオ
ンされると、前記マイコン2は前記電源調節器4
に制御信号を供給し、これにより電源調節器4は
レーザダイオード5に電源を供給し始める。この
電源の供給開始により次第に増加した電流が臨界
電流(threshold current;約20mA)を越える
とレーザダイオード5が発光する。このときの電
流値は、現在の技術水準においてはレーザダイオ
ードの特性により安定した電圧と所定の温度のも
とで約20〜200mAが適当な値であり、この電流
範囲の間で徐々に電流を上げて、予め定められた
電流値に達したときに測定に必要な波長を有する
光が放出されることになる。例えば、1.3μm〜
1.9μmの範囲内の波長を有する光が用いられる
が、この中でも特に、1.4μm〜1.8μmの波長を有
する光が主として有用である。光源として用いら
れる前記レーザーダイオード5は1個でも良い
が、通常複数個例えば30個程度で構成され、その
全てが同一波長の光を放出するようにしても良い
し、また、夫々が異なる波長の光を放出するよう
にしても良い。
When the start/reset switch 8 is turned on in this state, the microcomputer 2
The power regulator 4 starts supplying power to the laser diode 5 by supplying a control signal to the laser diode 5 . When the current that gradually increases with the start of the power supply exceeds a threshold current (approximately 20 mA), the laser diode 5 emits light. The appropriate current value at this time is approximately 20 to 200 mA at a stable voltage and given temperature due to the characteristics of the laser diode at the current level of technology, and the current is gradually increased within this current range. When the current value reaches a predetermined value, light having a wavelength necessary for measurement is emitted. For example, 1.3 μm ~
Light having a wavelength within the range of 1.9 .mu.m is used, of which light having a wavelength of 1.4 .mu.m to 1.8 .mu.m is primarily useful. The number of laser diodes 5 used as a light source may be one, but it is usually composed of a plurality of laser diodes, for example, about 30, all of which may emit light of the same wavelength, or each of which may emit light of a different wavelength. It may also be configured to emit light.

前記レーザダイオード5はいわゆる半導体レー
ザを生成するものであり、この半導体レーザの発
振波長域は、およそ0.33μm〜32μmにわたつてい
る。ダイイオードレーザの場合、0.57μmより短
波長側では実用性に適するものが開発されていな
い。半導体レーザにおいて発振波長の同調を行な
うには一般に、(a)材料の禁制帯幅の変化と、(b)材
料の屈折率の変化を利用する2つの方法があり、
前者は帯域同調に、後者は微細同調に主として用
いられている。後者の微細同調を行なう方法は屈
折率が圧力・磁界・温度等に依存しているため、
これらを制御することにより共振器の長さを等価
的に変化させて共振モードの周波数を変移させ
る。ダイオードレーザの場合、励起電流により
pn接合部に温度変化が生じ電流増加に伴い所定
の割合で発振周波数が低い方にシフトすることが
ある。温度調節器13は、レーザダイオード5の
接合部分の温度変化に起因する上述のような影響
を除去するために、接合部の温度の調節を行なう
ものである。この温度調節は、レーザダイオード
5のチツプの外部から電流変化に伴う温度変化を
検出し、所望のチツプ温度になるように熱源を作
用させることにより行なわれる。
The laser diode 5 generates a so-called semiconductor laser, and the oscillation wavelength range of this semiconductor laser extends from approximately 0.33 μm to 32 μm. In the case of diode lasers, no one suitable for practical use has been developed at wavelengths shorter than 0.57 μm. There are generally two methods for tuning the oscillation wavelength in a semiconductor laser: (a) changes in the forbidden band width of the material, and (b) changes in the refractive index of the material.
The former is mainly used for band tuning, and the latter for fine tuning. The latter method of fine tuning is based on the fact that the refractive index depends on pressure, magnetic field, temperature, etc.
By controlling these, the length of the resonator is equivalently changed and the frequency of the resonance mode is shifted. For diode lasers, the excitation current
As a temperature change occurs in the pn junction and the current increases, the oscillation frequency may shift to a lower level at a predetermined rate. The temperature regulator 13 adjusts the temperature of the junction of the laser diode 5 in order to eliminate the above-mentioned effects caused by temperature changes at the junction. This temperature adjustment is performed by detecting a temperature change accompanying a current change from outside the chip of the laser diode 5, and activating a heat source to bring the chip temperature to a desired temperature.

複数個の前記レーザダイオード5から放出され
た光は同時または順次に発光するが、同時発光の
場合、例えばフーリエ変換を用いて必要な波長を
分離する。
The light emitted from the plurality of laser diodes 5 is emitted simultaneously or sequentially, but in the case of simultaneous emission, necessary wavelengths are separated using, for example, Fourier transformation.

前記レーザダイオード5よりなる光源から放出
された光は光学系6に達し、測定目的に合致する
平行光となるように分離・結合等の光学的調整が
行われる。この光学的な調整により一つ又は複数
の方向に光軸に調整された光線は、例えば積分球
より成る集光部9に供給され、これを通過して被
測定者の皮膚に順次に照射される。集光部9は積
分球とも呼ばれるようにほぼ球形の形状を有して
いる。
The light emitted from the light source consisting of the laser diode 5 reaches an optical system 6, where optical adjustments such as separation and combination are performed so that it becomes parallel light that meets the purpose of measurement. The light rays whose optical axis has been adjusted in one or more directions by this optical adjustment are supplied to a condensing unit 9 made of, for example, an integrating sphere, pass through this, and are sequentially irradiated onto the skin of the person to be measured. Ru. The light condensing section 9 has a substantially spherical shape, also called an integrating sphere.

ここで、光線の照射箇所を明確にするために被
測定者の皮膚上に照射範囲を示す基準ポートを予
め準備しておいても良いが、照射箇所がはつきり
している場合には基準ポートを設けることなく直
接皮膚に照射しても良い。この光線は被測定者の
皮膚を透過して血管内の血液にまで至り、血液に
吸収されずに散乱・反射された光は再び集光部9
により集束されから、検出部7により検出され
る。なお、散乱・反射された光を集束する集光部
9の大きさは直径が2.56cm以下に形成されてお
り、望ましくは1.28cm以下、更に最も望ましいの
は0.64cm以下となるように形成されたものであ
る。前記したように検出された測定値はアナログ
値を有する電気的な計数値であり、これは検出部
7に接続された一般的な前段増幅器により増幅さ
れた後、A/D変換器11に転送され、デイジタ
ル測定値に変換される。
Here, in order to clarify the irradiation area of the light beam, a reference port indicating the irradiation range may be prepared on the subject's skin in advance, but if the irradiation area is clearly visible, the reference port may be prepared in advance. The skin may be irradiated directly without providing a port. This light beam passes through the subject's skin and reaches the blood in the blood vessels, and the light that is not absorbed by the blood and is scattered and reflected is returned to the condensing section 9.
The light is focused by the detector 7 and then detected by the detector 7. The size of the condensing part 9 that converges the scattered and reflected light is formed to have a diameter of 2.56 cm or less, preferably 1.28 cm or less, and most preferably 0.64 cm or less. It is something that The measured value detected as described above is an electrical count value having an analog value, which is amplified by a general pre-amplifier connected to the detection unit 7 and then transferred to the A/D converter 11. and converted to digital measurements.

前記A/D変換器11によりデイジタル値に変
換された測定信号は、前記マイコン2に供給さ
れ、このマイコン2により内蔵メモリに予め記憶
されている基準(検定曲線)値と比較されて血糖
濃度が計算・算出され、この結果がデイジタルデ
イスプレイ3に表示される。
The measurement signal converted into a digital value by the A/D converter 11 is supplied to the microcomputer 2, and the microcomputer 2 compares it with a reference (verification curve) value stored in advance in the built-in memory to determine the blood glucose concentration. The calculation is performed and the result is displayed on the digital display 3.

上記血糖濃度測定機器は、全体の大きさ(横・
縦・高さ)が170×80×25mm以下となるように形
成されており、さらに150×75×22mm以下が適当
であり、また130×70×20mm以下に形成されるの
が最も好ましい。
The above blood sugar concentration measuring device has a large size (horizontal and
The length/height) is formed to be 170 x 80 x 25 mm or less, more preferably 150 x 75 x 22 mm or less, and most preferably 130 x 70 x 20 mm or less.

一方、前記検出部7としてはポートダイオード
により構成することが望ましいが、現在の技術水
準では特に前段増幅器が接続されたゲルマニウム
検出器(Ce detector)により実施するのが最も
望ましい。
On the other hand, the detection section 7 is preferably configured with a port diode, but according to the current state of the art, it is most desirable to implement it with a germanium detector (Ce detector) to which a pre-stage amplifier is connected.

また前記光学系6は、例えば直径0.5〜5mm以
下(最も好ましいのは直径2mm以下)の構成部品
により形成され、光を集光・拡散させて平行光線
を形成する。平行光線の形成は、周知のコリメー
タレンズ等を用いて行なつてもよい。
The optical system 6 is formed of components having a diameter of, for example, 0.5 to 5 mm or less (most preferably a diameter of 2 mm or less), and condenses and diffuses light to form parallel rays. The parallel light beams may be formed using a well-known collimator lens or the like.

なお、本実施例では集光部9が球形に形成され
て場合についてのみ説明したが、本発明はこれに
限定されず、例えば断面が楕円形、半楕円形また
は他の図形となる三次元の立体形状に集光部9を
形成することもできる。
In this embodiment, only the case where the light condensing part 9 is formed in a spherical shape has been described, but the present invention is not limited to this. The condensing section 9 can also be formed in a three-dimensional shape.

さらに、本発明の血糖濃度測定装置は小型・軽
量のものであるためマイコン2及びレーザダイオ
ード5等の本体と集光部9及び検出部7等の測定
部分(port)とを一体的に形成しておいても十分
にその操作性を発揮できるが、本体と測定部分と
を2つの部分に分離して形成しても良い。分離さ
れている場合には、レーザダイオード5からの光
を被測定者の前記測定部分まで伝達するために、
光フアイバ等の光伝送手段を用いている。この光
伝送手段の繊維の距離は、100〜1000mmであり、
この中間の500mm程度が一般には適当であるが、
最も適当な距離は300mmである。
Furthermore, since the blood glucose concentration measuring device of the present invention is small and lightweight, the main body such as the microcomputer 2 and the laser diode 5, and the measurement portions (ports) such as the light condensing section 9 and the detecting section 7 are integrally formed. Although the main body and the measurement part can be separated into two parts, the main body and the measurement part can be formed separately. If separated, in order to transmit the light from the laser diode 5 to the measurement part of the subject,
Optical transmission means such as optical fibers are used. The fiber distance of this optical transmission means is 100 to 1000 mm,
A value in the middle of this range, about 500 mm, is generally appropriate, but
The most suitable distance is 300mm.

なお、本実施例においてはD/A変換器10及
びA/D変換器11がワンチツプマイコン2と分
離された場合についてのみ説明したが、本発明は
これに限定されず、D/A変換器10及びA/D
変換器11がマイコン2に含まれた専用チツプを
用いても良い。
In this embodiment, only the case where the D/A converter 10 and the A/D converter 11 are separated from the one-chip microcomputer 2 has been described, but the present invention is not limited to this, and the D/A converter 10 and the A/D converter 11 are 10 and A/D
The converter 11 may be a dedicated chip included in the microcomputer 2.

なお、上述部分では測定値を比較する基準値と
しての検定曲線を内蔵メモリに格納しておくもの
として説明したが、本実施例はマイコン2の動作
を補助するためRAM121とEPROM122から
なる補助回路12を用いて必要な情報の記憶・読
出しを行なうようにしても良い。
In addition, in the above part, it was explained that the verification curve as a reference value with which measured values are compared is stored in the built-in memory, but in this embodiment, in order to assist the operation of the microcomputer 2, an auxiliary system consisting of RAM 12 1 and EPROM 12 2 is used. The circuit 12 may be used to store and read out necessary information.

また、本実施例では血糖濃度の測定についての
み説明したが、本発明はこれに限らず、例えばコ
レステロール濃度あるいはアルコール濃度の測定
にも適用することができる。
Further, although this embodiment has described only the measurement of blood sugar concentration, the present invention is not limited to this, and can also be applied to, for example, measurement of cholesterol concentration or alcohol concentration.

上記構成に係るこの発明の一実施例による動作
は以下の各段階を経て行われる、電源スイツチ1
を利用してバツテリから電源を要するマイクロコ
ン2とデジタルデイスプレイ3、レーザダイオー
ド用電源調節器4、検出部7及び必要によつて光
学系6等にそれぞれ電源を供給する段階。
The operation of the embodiment of the present invention having the above configuration is performed through the following steps.
The step of supplying power to the microcomputer 2, digital display 3, laser diode power regulator 4, detection unit 7, optical system 6, etc. as necessary, using the power supply from the battery.

スタート/リセツトスイツチ8を用いてマイコ
ン2によりレーザダイオード用電源調節器4及び
温度調節器13がレーザダイオード5に安定した
電圧と温度で電流を漸増的に印加して測定に必要
な波長を放出するように制御する段階。
Using the start/reset switch 8, the microcomputer 2 causes the laser diode power regulator 4 and temperature regulator 13 to gradually apply current to the laser diode 5 at a stable voltage and temperature to emit the wavelength necessary for measurement. The stage to control.

これと関連してマイクロコンピユータ2とレー
ザダイオード用電源調節器4との間に設けられた
D/A変換器10によりデイジタル制御信号を電
気的な制御信号に変換させる段階。
In connection with this, the digital control signal is converted into an electrical control signal by the D/A converter 10 provided between the microcomputer 2 and the laser diode power supply regulator 4.

レーザダイオード5がレーザダイオード用電源
調節器4の制御により測定に必要な波長の光を放
射する段階。
A stage in which the laser diode 5 emits light of a wavelength necessary for measurement under the control of the laser diode power supply regulator 4.

前記レーザダイオード5から放射された光を光
学系6により目的に合うように平行にするかある
いは光学的に調節及び分離または結合させる段
階。
collimating or optically adjusting and separating or combining the light emitted from the laser diode 5 by means of an optical system 6;

この光学的に調節された光を集光部9を通じて
血糖濃度を測定しようとする被測定者の血管が見
える皮膚に照射する段階。
The step of irradiating this optically adjusted light through the condensing section 9 onto the skin of the person whose blood sugar concentration is to be measured, where blood vessels are visible.

皮膚を通過して血管まで到達され血液により吸
収、散乱、反射された光を集光部9を通じて集束
する段階。
A step in which the light that has passed through the skin, reached the blood vessels, and been absorbed, scattered, and reflected by the blood is focused through the condenser 9.

前記集光部9により集束された光子を検出部7
により検出して電気的なアナログ測定値に変換
し、検出部7に設けられた前段増幅部で増幅した
後、A/D変換器11に転送する段階。
The photons focused by the light condensing unit 9 are sent to the detection unit 7.
A step of detecting the measured value and converting it into an electrical analog measurement value, amplifying it in a pre-amplification section provided in the detection section 7, and then transmitting it to the A/D converter 11.

前記A/D変換器11を用いて前記電気的なア
ナログ測定値をデイジタル測定値に変換した後、
このデイジタル測定値をマイコン2に転送する段
階。
After converting the electrical analog measurement value into a digital measurement value using the A/D converter 11,
The stage of transmitting this digital measurement value to the microcomputer 2.

前記マイコン2内のメモリ領域に記憶されてい
る検定曲線と前記A/D変換器11により変換さ
れたデイジタル測定値を比較して血液中の血糖濃
度を計算、算出する段階。
A step of comparing the calibration curve stored in the memory area of the microcomputer 2 with the digital measurement value converted by the A/D converter 11 to calculate the blood glucose concentration in the blood.

この様に算出された血糖濃度をデイジタルデイ
スプレー3に表示する段階。
A step of displaying the blood sugar concentration calculated in this way on the digital display 3.

また、血糖濃度の測定方法は、近赤外線拡散反
射レーザー分光法に基づき、分子の振動、回転、
並進運動による近赤外線分光法で血糖分子の振動
運動に対する物理化学的原理に基づき、その中で
も倍振動と組合振動を利用し、特に倍振動を利用
するようになつたことをも特徴としている。
In addition, the method for measuring blood sugar concentration is based on near-infrared diffuse reflection laser spectroscopy.
Near-infrared spectroscopy using translational motion is based on the physicochemical principle of the vibrational motion of blood sugar molecules, and is characterized by the use of double vibrations and combined vibrations, especially double vibrations.

さらに、血糖濃度の測定方法は、前記マイコン
2内のメモリ領域に記憶されている検定曲線と前
記A/D変換器11により変換されたデジタル測
定値を比較して血糖濃度を計算、算出する段階で
多重線形回帰分析と多変量分布分析などの数学的
な方法を使用するようになつたことも特徴として
いる。
Furthermore, the method for measuring blood sugar concentration includes the step of calculating the blood sugar concentration by comparing the calibration curve stored in the memory area of the microcomputer 2 with the digital measurement value converted by the A/D converter 11. It is also characterized by the use of mathematical methods such as multiple linear regression analysis and multivariate distribution analysis.

前述したように、血糖濃度測定装置の本体と前
記測定部との間を光繊維を用いて分離する場合に
は、その分離される距離は100〜1000mmであり、
適当には500mm、最も適当には300mmである。
As mentioned above, when the main body of the blood sugar concentration measuring device and the measuring section are separated using an optical fiber, the separation distance is 100 to 1000 mm,
A suitable length is 500 mm, most suitably 300 mm.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によるノ
ン・インベイシブ血糖濃度の測定方法およびその
装置によれば、注射針のような器具を使用して血
液を採る必要もなく単に本装置の測定部分
(port)を血管の見える人体の適当な部分、例え
ば手首の内側に当てることにより血糖濃度を測定
できるようになつているため、簡便なおかつ身体
部位の変異などのような人体への有害さが無く、
従来の1回用注射器が要らなくなり、下級装備に
よる費用が殆どかからなくなる等の長所を有して
いる。
As explained in detail above, according to the method and device for measuring non-invasive blood glucose concentration according to the present invention, there is no need to collect blood using an instrument such as a syringe needle, and the measurement portion (port) of the device is simply used. ) can be applied to an appropriate part of the human body where blood vessels are visible, such as the inside of the wrist, to measure blood sugar concentration, which is simple and does not cause harm to the human body such as changes in body parts.
It has advantages such as eliminating the need for conventional single-use syringes and almost eliminating the cost of lower-grade equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による血糖濃度の測定装置のブ
ロツク構成図、第2図は第1図に示された血糖濃
度の測定装置を詳細に示した回路ブロツク図であ
る。 1……電源スイツチ、2……ワンチツプマイク
ロコンピユータ、3……デジタルデイスプレイ、
4……レーザダイオード用電源調節器、5……レ
ーザダイオード、6……光学系、7……検出部、
8……スタート/リセツトスイツチ、9……集光
部、10……D/A変換器、11……A/D変換
器、12……補助回路、121……RAM、122
……EPROM、13……温度調節器。
FIG. 1 is a block diagram of a blood glucose concentration measuring device according to the present invention, and FIG. 2 is a circuit block diagram showing the blood glucose concentration measuring device shown in FIG. 1 in detail. 1...Power switch, 2...One-chip microcomputer, 3...Digital display,
4... Laser diode power regulator, 5... Laser diode, 6... Optical system, 7... Detection unit,
8...Start/reset switch, 9...Light collector, 10...D/A converter, 11...A/D converter, 12...Auxiliary circuit, 12 1 ...RAM, 12 2
...EPROM, 13...Temperature controller.

Claims (1)

【特許請求の範囲】 1 電源スイツチを介して所定電圧を供給する電
源と、この電源により所定波長の光を発生させる
光源と、この光源からの光線を所定の平行光線に
制御する光学系と、光学系を介して供給された光
線を被測定部位に照射し反射されてきた光を集束
させる集光部と、集光部が集束した光を検出する
検出部と、検出部からの出力をアナログ信号から
デイジタル信号に変換した測定値を基準値と比較
して演算処理して血糖値を算出する演算処理部
と、を備えた生体を損なわない血糖濃度測定装置
において、 少なくとも1つの発光素子より成り、かつ接合
部を備えると共に前記電源からの電流により異な
る出力波長の光を発生させる前記光源としてのレ
ーザダイオードと; 前記電源からの出力に基づいて電圧の安定した
出力を前記光源としてのレーザダイオードに供給
するダイオード用の電源調節器と; 温度変化の影響を受易い前記レーザダイオード
の接合部に対して所定の割合で電流値を変化させ
るようにこのダイオードが封止されたチツプの温
度を制御する温度調節器と; 前記電源調節器を制御するために前記演算処理
部より出力されるデイジタル制御信号をアナログ
制御信号に変換させるD/A変換器と; 前記レーザーダイオードから放出された光を測
定目的に応じて分離・結合させて平行光線となる
ように光学的に調節する光学系と; 前記光学系により調節された光を被測定部位で
ある被測定者の皮膚に照射すると共に、血管内の
血液中の血糖分子の倍振動及び組み合わせ振動に
より散乱されて反射した光を集束する集光部と; 前記集光部により集束された光子を電気的なア
ナログ測定値信号に変換した後、この信号を増幅
して出力する検出器と; 前記電気的なアナログ測定値をデイジタル測定
値に変換するA/D変換器と; 前記基準値としての検定曲線を記憶するメモリ
と; 変換された前記デイジタル測定値と前記メモリ
に記憶された検定曲線とを比較して血液中の血糖
濃度を算出すると共に、前記D/A変換器を介し
て前記電源調節器及び温度調節器に制御信号を出
力してレーザダイオードの発光光線を制御する前
記演算処理部としてのマイクロコンピユータと;
そして、 前記マイクロコンピユータにより演算・算出さ
れた血糖濃度を表示するデイジタルデイスプレイ
と; を具備すると共に、 装置全体を携帯可能な寸法及び形状に小型化し
て形成したことを特徴とする生体を損なわない血
糖濃度の測定装置。 2 前記レーザーダイオードから放射される電子
輻射線の波長が、1.4μm〜1.8μmであり、この波
長の光が被測定者の皮膚を介して順次に血液に照
射されることを特徴とする特許請求の範囲第1項
に記載の生体を損なわない血糖濃度測定装置。 3 前記集光部は、直径が2.56mm以下のほぼ球形
に形成された積分球より成り、かつ、全体の寸法
が横150mm、縦75mm、及び高さ22mm以下に形成さ
れたことを特徴とする特許請求の範囲第1項項記
載の生体を損なわない血糖濃度測定装置。 4 この血糖濃度測定装置の本体と、前記光学
系、集光部及び検出部より成る測定部とを分離し
て構成すると共に、前記本体及び前記測定部殿間
を光フアイバにより接続したことを特徴とする特
許請求の範囲第1項記載の生体を損なわない血糖
濃度測定装置。 5 前記集光部により集束された前記光子を検出
する検出部は、ポートダイオードを用いると共に
前段増幅器を備えたたゲルマニウム検出器より構
成され、前記D/A変換器及びA/D変換器は、
前記マイクコンピユータから分離されて同一基板
上に実装され、かつ、前記電源としては4.5V〜
9Vの充電用バツテリより構成されていること特
徴とする特許請求の範囲第1項に記載の生体を損
なわない血糖濃度の測定装置。
[Scope of Claims] 1. A power source that supplies a predetermined voltage via a power switch, a light source that uses this power source to generate light of a predetermined wavelength, and an optical system that controls the light beam from this light source into a predetermined parallel light beam. A condensing section that irradiates the light beam supplied through the optical system onto the measurement site and focuses the reflected light, a detection section that detects the light focused by the condensation section, and an analog output from the detection section. A blood sugar concentration measuring device that does not harm living organisms and is equipped with a calculation processing unit that calculates a blood sugar level by comparing a measured value converted from a signal to a digital signal with a reference value and calculating the blood sugar level, comprising at least one light emitting element. and a laser diode as the light source which includes a junction and generates light of different output wavelengths depending on the current from the power source; and a laser diode as the light source which outputs a stable voltage based on the output from the power source. a power supply regulator for the diode to be supplied; controlling the temperature of the chip in which the diode is sealed so as to change the current value at a predetermined rate for the junction of the laser diode that is susceptible to temperature changes; a temperature controller; a D/A converter that converts a digital control signal output from the arithmetic processing unit into an analog control signal in order to control the power supply controller; and a D/A converter that converts the light emitted from the laser diode into an analog control signal. an optical system that optically adjusts the light rays by separating and combining them to form parallel light beams according to the conditions; a light concentrator that focuses light scattered and reflected by double and combined vibrations of blood sugar molecules in the blood; and after converting the photons focused by the light concentrator into an electrical analog measured value signal, this signal is an A/D converter that converts the electrical analog measurement value into a digital measurement value; a memory that stores the calibration curve as the reference value; and the converted digital measurement value. The blood sugar concentration in the blood is calculated by comparing the value with the test curve stored in the memory, and a control signal is output to the power supply regulator and temperature regulator via the D/A converter to generate a laser beam. a microcomputer as the arithmetic processing unit that controls the light emitted from the diode;
and a digital display that displays the blood glucose concentration calculated and computed by the microcomputer; and a blood glucose device that does not damage living organisms, characterized in that the entire device is miniaturized to a portable size and shape. Concentration measuring device. 2. A patent claim characterized in that the wavelength of the electron radiation emitted from the laser diode is 1.4 μm to 1.8 μm, and the light of this wavelength is sequentially irradiated onto the blood of the subject through the skin. The blood glucose concentration measuring device that does not harm living organisms according to item 1. 3. The light condensing section is made of an integrating sphere formed into a substantially spherical shape with a diameter of 2.56 mm or less, and the overall dimensions are 150 mm in width, 75 mm in length, and 22 mm in height. A blood glucose concentration measuring device that does not harm living organisms as set forth in claim 1. 4. A main body of this blood glucose concentration measuring device and a measuring section consisting of the optical system, a condensing section, and a detecting section are constructed separately, and the main body and the measuring section are connected by an optical fiber. A blood glucose concentration measuring device that does not harm living organisms as claimed in claim 1. 5. The detection section that detects the photons focused by the light focusing section is composed of a germanium detector using a port diode and equipped with a front-stage amplifier, and the D/A converter and A/D converter include:
It is separated from the microphone computer and mounted on the same board, and the power supply is 4.5V~
2. The blood glucose concentration measuring device that does not harm living organisms as claimed in claim 1, characterized in that it is comprised of a 9V charging battery.
JP2286941A 1989-10-28 1990-10-24 Method and device for measuring noninvasive blood sugar concentration Granted JPH03146032A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1989-15584 1989-10-28
KR1019890015584A KR930011586B1 (en) 1989-10-28 1989-10-28 Non-invasive method and apparatus for measuring blood glucose concentration
KR1990-11241 1990-07-24
KR1019900011241A KR920002091A (en) 1990-07-24 1990-07-24 Egg-Invasive Blood Glucose Measurement Method and Apparatus

Publications (2)

Publication Number Publication Date
JPH03146032A JPH03146032A (en) 1991-06-21
JPH0581253B2 true JPH0581253B2 (en) 1993-11-12

Family

ID=26628109

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2286941A Granted JPH03146032A (en) 1989-10-28 1990-10-24 Method and device for measuring noninvasive blood sugar concentration
JP1997007317U Expired - Lifetime JP2588468Y2 (en) 1989-10-28 1997-08-18 Blood glucose concentration measurement device that does not damage the living body

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP1997007317U Expired - Lifetime JP2588468Y2 (en) 1989-10-28 1997-08-18 Blood glucose concentration measurement device that does not damage the living body

Country Status (9)

Country Link
US (1) US5267152A (en)
EP (1) EP0426358B1 (en)
JP (2) JPH03146032A (en)
CN (1) CN1025410C (en)
AT (1) ATE179874T1 (en)
CA (1) CA2028261C (en)
DE (1) DE69033104T2 (en)
HU (1) HU213438B (en)
RU (1) RU2122208C1 (en)

Families Citing this family (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204532A (en) * 1989-01-19 1993-04-20 Futrex, Inc. Method for providing general calibration for near infrared instruments for measurement of blood glucose
US6066847A (en) * 1989-01-19 2000-05-23 Futrex Inc. Procedure for verifying the accuracy of non-invasive blood glucose measurement instruments
US5237178A (en) * 1990-06-27 1993-08-17 Rosenthal Robert D Non-invasive near-infrared quantitative measurement instrument
US5574283A (en) * 1990-06-27 1996-11-12 Futrex, Inc. Non-invasive near-infrared quantitative measurement instrument
US5362966A (en) * 1990-06-27 1994-11-08 Rosenthal Robert D Measurement of finger temperature in near-infrared quantitative measurement instrument
US5324979A (en) * 1990-09-26 1994-06-28 Futrex, Inc. Method and means for generating synthetic spectra allowing quantitative measurement in near infrared measuring instruments
US5379774A (en) * 1990-10-23 1995-01-10 Sankyo Company Limited Measurement of arterial elasticity and the frequency characteristic of the compliance of an artery
FR2679337B1 (en) * 1991-07-17 1994-08-12 Effets Biologiques Exercice NON - INVASIVE PROCESS FOR IN VIVO DETERMINATION OF THE ARTERIAL BLOOD OXYGEN SATURATION RATE, AND DEVICE IMPLEMENTING THE METHOD.
JPH07508426A (en) * 1991-10-17 1995-09-21 サイエンティフィック ジェネリクス リミテッド Blood sample measuring device and method
IL107396A (en) * 1992-11-09 1997-02-18 Boehringer Mannheim Gmbh Method and apparatus for analytical determination of glucose in a biological matrix
US5447159A (en) * 1993-02-03 1995-09-05 Massachusetts Institute Of Technology Optical imaging for specimens having dispersive properties
DE4337570A1 (en) * 1993-11-04 1995-05-11 Boehringer Mannheim Gmbh Method for the analysis of glucose in a biological matrix
US5492118A (en) * 1993-12-16 1996-02-20 Board Of Trustees Of The University Of Illinois Determining material concentrations in tissues
US5497769A (en) * 1993-12-16 1996-03-12 I.S.S. (Usa) Inc. Photosensor with multiple light sources
US5529755A (en) * 1994-02-22 1996-06-25 Minolta Co., Ltd. Apparatus for measuring a glucose concentration
TW275570B (en) * 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
DE9417612U1 (en) * 1994-11-03 1995-01-05 Kloth Bernd Sampling device
DE9418099U1 (en) * 1994-11-15 1995-01-05 Kloth Bernd Analyzer
US5752512A (en) * 1995-05-10 1998-05-19 Massachusetts Institute Of Technology Apparatus and method for non-invasive blood analyte measurement
SG38866A1 (en) * 1995-07-31 1997-04-17 Instrumentation Metrics Inc Liquid correlation spectrometry
US6240306B1 (en) 1995-08-09 2001-05-29 Rio Grande Medical Technologies, Inc. Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
US6025597A (en) * 1995-10-17 2000-02-15 Optiscan Biomedical Corporation Non-invasive infrared absorption spectrometer for measuring glucose or other constituents in a human or other body
US5747806A (en) * 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US6040578A (en) * 1996-02-02 2000-03-21 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
US5666956A (en) * 1996-05-20 1997-09-16 Buchert; Janusz Michal Instrument and method for non-invasive monitoring of human tissue analyte by measuring the body's infrared radiation
KR0165522B1 (en) * 1996-05-23 1999-03-20 김광호 Optimal point detector for non-invasive diagnosis of blood constituents and non-invasive diagnostic device using the same
US5903006A (en) * 1996-05-31 1999-05-11 Norihiro Kiuchi Liquid concentration detecting apparatus
US5871442A (en) * 1996-09-10 1999-02-16 International Diagnostics Technologies, Inc. Photonic molecular probe
US6594510B2 (en) 1996-09-10 2003-07-15 Xoetronics Llc Photonic molecular probe
US5910109A (en) 1997-02-20 1999-06-08 Emerging Technology Systems, Llc Non-invasive glucose measuring device and method for measuring blood glucose
US5961451A (en) * 1997-04-07 1999-10-05 Motorola, Inc. Noninvasive apparatus having a retaining member to retain a removable biosensor
US6628809B1 (en) 1999-10-08 2003-09-30 Lumidigm, Inc. Apparatus and method for identification of individuals by near-infrared spectrum
US7890158B2 (en) 2001-06-05 2011-02-15 Lumidigm, Inc. Apparatus and method of biometric determination using specialized optical spectroscopy systems
WO1998058250A2 (en) * 1997-06-16 1998-12-23 Elan Corporation, Plc Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods
US6043492A (en) * 1997-10-27 2000-03-28 Industrial Technology Research Institute Non-invasive blood glucose meter
US6587705B1 (en) 1998-03-13 2003-07-01 Lynn Kim Biosensor, iontophoretic sampling system, and methods of use thereof
US6780591B2 (en) 1998-05-01 2004-08-24 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
US7875440B2 (en) 1998-05-01 2011-01-25 Arizona Board Of Regents Method of determining the nucleotide sequence of oligonucleotides and DNA molecules
CA2332112C (en) 1998-05-13 2004-02-10 Cygnus, Inc. Monitoring of physiological analytes
JP3507437B2 (en) 1998-05-13 2004-03-15 シグナス, インコーポレイテッド Collection assembly for transdermal sampling systems
ATE246356T1 (en) 1998-05-13 2003-08-15 Cygnus Therapeutic Systems DEVICE FOR PREDICTING PHYSIOLOGICAL MEASUREMENTS
US6097975A (en) * 1998-05-13 2000-08-01 Biosensor, Inc. Apparatus and method for noninvasive glucose measurement
US6233471B1 (en) 1998-05-13 2001-05-15 Cygnus, Inc. Signal processing for measurement of physiological analysis
US6424851B1 (en) 1998-10-13 2002-07-23 Medoptix, Inc. Infrared ATR glucose measurement system (II)
DE19923658A1 (en) * 1999-05-22 2000-11-23 Infralytic Gmbh Device for measuring organization grade of water in mammals for diagnosis of disease conditions
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6816605B2 (en) 1999-10-08 2004-11-09 Lumidigm, Inc. Methods and systems for biometric identification of individuals using linear optical spectroscopy
US6361960B1 (en) 1999-11-09 2002-03-26 Environmentally Sensitive Solutions, Inc. Method and test kit for measuring concentration of a cleaning agent in a wash liquor
AU3086600A (en) * 1999-12-21 2001-07-03 Valery Gennadievich Muzhikov Method for determining blood indexes and a device for embodying thereof
WO2001072208A2 (en) * 2000-03-29 2001-10-04 University Of Virginia Patent Foundation Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data
US6549861B1 (en) 2000-08-10 2003-04-15 Euro-Celtique, S.A. Automated system and method for spectroscopic analysis
WO2002016905A2 (en) 2000-08-21 2002-02-28 Euro-Celtique, S.A. Near infrared blood glucose monitoring system
US6522903B1 (en) 2000-10-19 2003-02-18 Medoptix, Inc. Glucose measurement utilizing non-invasive assessment methods
EP1368497A4 (en) 2001-03-12 2007-08-15 California Inst Of Techn Methods and apparatus for analyzing polynucleotide sequences by asynchronous base extension
US7126682B2 (en) 2001-04-11 2006-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
US6983176B2 (en) 2001-04-11 2006-01-03 Rio Grande Medical Technologies, Inc. Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
US6865408B1 (en) 2001-04-11 2005-03-08 Inlight Solutions, Inc. System for non-invasive measurement of glucose in humans
US6862091B2 (en) 2001-04-11 2005-03-01 Inlight Solutions, Inc. Illumination device and method for spectroscopic analysis
US7043288B2 (en) 2002-04-04 2006-05-09 Inlight Solutions, Inc. Apparatus and method for spectroscopic analysis of tissue to detect diabetes in an individual
US6574490B2 (en) 2001-04-11 2003-06-03 Rio Grande Medical Technologies, Inc. System for non-invasive measurement of glucose in humans
EP1271096A1 (en) * 2001-06-18 2003-01-02 Electronic Systems S.P.A. Process and device for contactless measurement of the thickness of non-metallic films by using an infrared semiconductor emitter
US6989891B2 (en) 2001-11-08 2006-01-24 Optiscan Biomedical Corporation Device and method for in vitro determination of analyte concentrations within body fluids
EP1489961B1 (en) 2002-03-22 2010-09-29 Animas Technologies LLC Improving performance of an analyte monitoring device
US6654125B2 (en) 2002-04-04 2003-11-25 Inlight Solutions, Inc Method and apparatus for optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) as an interferometer reference
US7027848B2 (en) 2002-04-04 2006-04-11 Inlight Solutions, Inc. Apparatus and method for non-invasive spectroscopic measurement of analytes in tissue using a matched reference analyte
US8175666B2 (en) * 2002-04-26 2012-05-08 Grove Instruments, Inc. Three diode optical bridge system
EP1534121B1 (en) 2002-08-13 2014-01-22 University Of Virginia Patent Foundation Method, system, and computer program product for the processing of self-monitoring blood glucose(smbg)data to enhance diabetic self-management
US7620212B1 (en) 2002-08-13 2009-11-17 Lumidigm, Inc. Electro-optical sensor
US7233817B2 (en) * 2002-11-01 2007-06-19 Brian Yen Apparatus and method for pattern delivery of radiation and biological characteristic analysis
CN100406872C (en) * 2002-11-04 2008-07-30 天津市先石光学技术有限公司 Composite spectral measurement method and its spectral detection instrument
CN1308740C (en) * 2002-11-22 2007-04-04 天津市先石光学技术有限公司 Method and apparatus for improving signal-to-noise ratio of acousto-optic tunable filter light splitting system
US7174198B2 (en) * 2002-12-27 2007-02-06 Igor Trofimov Non-invasive detection of analytes in a complex matrix
WO2004060154A1 (en) * 2003-01-07 2004-07-22 Intelligent Photonics Control Corp. Non-invasive blood monitor
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US7394919B2 (en) 2004-06-01 2008-07-01 Lumidigm, Inc. Multispectral biometric imaging
US7668350B2 (en) 2003-04-04 2010-02-23 Lumidigm, Inc. Comparative texture analysis of tissue for biometric spoof detection
US7539330B2 (en) 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
JP2007524441A (en) 2003-04-04 2007-08-30 ルミディム インコーポレイテッド Multispectral biometric sensor
US7545963B2 (en) 2003-04-04 2009-06-09 Lumidigm, Inc. Texture-biometrics sensor
US7751594B2 (en) 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US7627151B2 (en) 2003-04-04 2009-12-01 Lumidigm, Inc. Systems and methods for improved biometric feature definition
US7347365B2 (en) 2003-04-04 2008-03-25 Lumidigm, Inc. Combined total-internal-reflectance and tissue imaging systems and methods
CN101368922B (en) * 2003-04-10 2010-12-15 宇系科技有限公司 Method for judging blood sugar concentration
US7283242B2 (en) * 2003-04-11 2007-10-16 Thornton Robert L Optical spectroscopy apparatus and method for measurement of analyte concentrations or other such species in a specimen employing a semiconductor laser-pumped, small-cavity fiber laser
US7633621B2 (en) * 2003-04-11 2009-12-15 Thornton Robert L Method for measurement of analyte concentrations and semiconductor laser-pumped, small-cavity fiber lasers for such measurements and other applications
US6975892B2 (en) * 2003-10-21 2005-12-13 Oculir, Inc. Methods for non-invasive analyte measurement from the conjunctiva
US6958039B2 (en) 2003-05-02 2005-10-25 Oculir, Inc. Method and instruments for non-invasive analyte measurement
US6968222B2 (en) 2003-05-02 2005-11-22 Oculir, Inc. Methods and device for non-invasive analyte measurement
US20040225206A1 (en) * 2003-05-09 2004-11-11 Kouchnir Mikhail A. Non-invasive analyte measurement device having increased signal to noise ratios
WO2005007215A2 (en) * 2003-07-09 2005-01-27 Glucolight Corporation Method and apparatus for tissue oximetry
EP1653848A1 (en) 2003-08-15 2006-05-10 Animas Technologies LLC Microprocessors, devices, and methods for use in monitoring of physiological analytes
US7169560B2 (en) 2003-11-12 2007-01-30 Helicos Biosciences Corporation Short cycle methods for sequencing polynucleotides
US7263213B2 (en) 2003-12-11 2007-08-28 Lumidigm, Inc. Methods and systems for estimation of personal characteristics from biometric measurements
US20050137469A1 (en) * 2003-12-17 2005-06-23 Berman Herbert L. Single detector infrared ATR glucose measurement system
US7510849B2 (en) * 2004-01-29 2009-03-31 Glucolight Corporation OCT based method for diagnosis and therapy
JP3557424B1 (en) * 2004-02-17 2004-08-25 株式会社日立製作所 Blood glucose meter
JP3557425B1 (en) * 2004-02-17 2004-08-25 株式会社日立製作所 Blood glucose meter
CA2557177A1 (en) 2004-02-19 2005-09-01 Stephen Quake Methods and kits for analyzing polynucleotide sequences
JP3590053B1 (en) * 2004-02-24 2004-11-17 株式会社日立製作所 Blood glucose measurement device
JP3590054B1 (en) * 2004-02-26 2004-11-17 株式会社日立製作所 Blood glucose measurement device
EP1568311A1 (en) * 2004-02-27 2005-08-31 Hitachi, Ltd. Blood sugar level measuring apparatus
JP2007527750A (en) * 2004-03-06 2007-10-04 カリスト メディカル,インク. Method and device for non-invasive measurement of quantitative information of in-vivo substances
US7476734B2 (en) 2005-12-06 2009-01-13 Helicos Biosciences Corporation Nucleotide analogs
CA2566806A1 (en) 2004-05-25 2006-01-19 Helicos Biosciences Corporation Methods and devices for nucleic acid sequence determination
US20110163163A1 (en) * 2004-06-01 2011-07-07 Lumidigm, Inc. Multispectral barcode imaging
US7508965B2 (en) 2004-06-01 2009-03-24 Lumidigm, Inc. System and method for robust fingerprint acquisition
US8229185B2 (en) 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
CN1297229C (en) * 2004-07-27 2007-01-31 天津大学 Non-invasive detection device of pulse impedance spectrum blood sugar or other biood component and its detection method
US7254429B2 (en) * 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US8787630B2 (en) 2004-08-11 2014-07-22 Lumidigm, Inc. Multispectral barcode imaging
WO2006086019A2 (en) * 2004-10-21 2006-08-17 Optiscan Biomedical Corporation Methods of treating diabetes
US7220549B2 (en) 2004-12-30 2007-05-22 Helicos Biosciences Corporation Stabilizing a nucleic acid for nucleic acid sequencing
US7482120B2 (en) 2005-01-28 2009-01-27 Helicos Biosciences Corporation Methods and compositions for improving fidelity in a nucleic acid synthesis reaction
US7801338B2 (en) 2005-04-27 2010-09-21 Lumidigm, Inc. Multispectral biometric sensors
US7409239B2 (en) * 2005-05-05 2008-08-05 The Hong Kong Polytechnic University Method for predicting the blood glucose level of a person
US9238150B2 (en) 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
US20090093403A1 (en) 2007-03-01 2009-04-09 Feng Zhang Systems, methods and compositions for optical stimulation of target cells
US8906360B2 (en) * 2005-07-22 2014-12-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10052497B2 (en) * 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US7666593B2 (en) 2005-08-26 2010-02-23 Helicos Biosciences Corporation Single molecule sequencing of captured nucleic acids
CN100342825C (en) * 2005-11-28 2007-10-17 何宗彦 Non-wound rapid blood sugar detecting method and its detecting instrument
US20090305248A1 (en) * 2005-12-15 2009-12-10 Lander Eric G Methods for increasing accuracy of nucleic acid sequencing
RU2477078C2 (en) 2006-01-05 2013-03-10 Юниверсити Оф Вирджиния Пэйтент Фаундейшн Method, system and software product for estimating changeability of glucose content in blood in case of diabetes by self-control data
US7397546B2 (en) 2006-03-08 2008-07-08 Helicos Biosciences Corporation Systems and methods for reducing detected intensity non-uniformity in a laser beam
US7995808B2 (en) 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
US8175346B2 (en) 2006-07-19 2012-05-08 Lumidigm, Inc. Whole-hand multispectral biometric imaging
EP2041696B1 (en) 2006-07-19 2020-11-18 HID Global Corporation Multibiometric multispectral imager
US8355545B2 (en) 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
US7801339B2 (en) 2006-07-31 2010-09-21 Lumidigm, Inc. Biometrics with spatiospectral spoof detection
US7804984B2 (en) 2006-07-31 2010-09-28 Lumidigm, Inc. Spatial-spectral fingerprint spoof detection
WO2008029403A1 (en) * 2006-09-06 2008-03-13 Medingo Ltd. Fluid delivery system with optical sensing of analyte concentration levels
DE202006021245U1 (en) 2006-10-31 2014-03-28 Valery Gennadievich Muzhikov Device for the reflex correction of physical dysfunctions
DE112006003871T5 (en) 2006-10-31 2009-03-19 Valery Gennadievich Muzhiko Method for the correction of the physical dysfunctions and device for carrying out the method
US20080154513A1 (en) 2006-12-21 2008-06-26 University Of Virginia Patent Foundation Systems, Methods and Computer Program Codes for Recognition of Patterns of Hyperglycemia and Hypoglycemia, Increased Glucose Variability, and Ineffective Self-Monitoring in Diabetes
WO2008086470A1 (en) 2007-01-10 2008-07-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8401609B2 (en) 2007-02-14 2013-03-19 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US8285010B2 (en) 2007-03-21 2012-10-09 Lumidigm, Inc. Biometrics based on locally consistent features
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10035027B2 (en) 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
DE102008006245A1 (en) * 2008-01-25 2009-07-30 Nirlus Engineering Ag Method for the noninvasive, optical determination of the temperature of a medium
WO2009111542A2 (en) 2008-03-04 2009-09-11 Glucolight Corporation Methods and systems for analyte level estimation in optical coherence tomography
US20110004080A1 (en) 2008-04-11 2011-01-06 Glucovista, Llc Method for non-invasive analysis of a substance concentration within a body
ES2608498T3 (en) 2008-04-23 2017-04-11 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
WO2009141758A1 (en) * 2008-05-19 2009-11-26 Koninklijke Philips Electronics N.V. Perfusion regulation device
EP2294208B1 (en) 2008-05-29 2013-05-08 The Board of Trustees of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
ES2612052T3 (en) 2008-06-17 2017-05-11 The Board Of Trustees Of The Leland Stanford Junior University Devices for optical stimulation of target cells, using an optical transmission element
SG191604A1 (en) 2008-06-17 2013-07-31 Univ Leland Stanford Junior Apparatus and methods for controlling cellular development
WO2010006049A1 (en) 2008-07-08 2010-01-14 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
NZ602416A (en) 2008-11-14 2014-08-29 Univ Leland Stanford Junior Optically-based stimulation of target cells and modifications thereto
US8562587B2 (en) 2009-02-25 2013-10-22 University Of Virginia Patent Foundation CGM-based prevention of hypoglycemia via hypoglycemia risk assessment and smooth reduction of insulin delivery
US7896498B2 (en) * 2009-03-30 2011-03-01 Ottawa Hospital Research Institute Apparatus and method for optical measurements
US20120143236A1 (en) 2009-05-28 2012-06-07 Valrey Gennadievich Muzhikov Device for reflex correction of functional disorders of the organism
DE112010003414T5 (en) 2009-08-26 2012-12-06 Lumidigm, Inc. Biometric multiplex imaging and biometric dual imager sensor
CN102018517A (en) * 2009-09-17 2011-04-20 林紫谊 Non-invasive glucometer
US8570149B2 (en) 2010-03-16 2013-10-29 Lumidigm, Inc. Biometric imaging using an optical adaptive interface
EP2547762B1 (en) 2010-03-17 2018-04-25 The Board of Trustees of the Leland Stanford Junior University Light-sensitive ion-passing molecules
JP6328424B6 (en) 2010-11-05 2018-07-11 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Control and characterization of memory functions
AU2011323235B2 (en) 2010-11-05 2015-10-29 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
EP2635108B1 (en) 2010-11-05 2019-01-23 The Board of Trustees of the Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
CN103313752B (en) 2010-11-05 2016-10-19 斯坦福大学托管董事会 Upper conversion for the light of light genetic method
EP2635111B1 (en) 2010-11-05 2018-05-23 The Board of Trustees of the Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
CN104093833B (en) 2011-12-16 2017-11-07 斯坦福大学托管董事会 Opsin polypeptide and its application method
EP2817068B1 (en) 2012-02-21 2017-04-12 The Board of Trustees of the Leland Stanford Junior University Compositions for treating neurogenic disorders of the pelvic floor
KR101487737B1 (en) * 2012-03-21 2015-01-29 연세대학교 원주산학협력단 Laser needle system for internal immaediate irradiating
EP3184038B1 (en) 2012-12-31 2019-02-20 Omni MedSci, Inc. Mouth guard with short-wave infrared super-continuum lasers for early detection of dental caries
WO2014105520A1 (en) * 2012-12-31 2014-07-03 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
US9494567B2 (en) 2012-12-31 2016-11-15 Omni Medsci, Inc. Near-infrared lasers for non-invasive monitoring of glucose, ketones, HBA1C, and other blood constituents
WO2014143276A2 (en) 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
ES2742492T3 (en) 2013-03-15 2020-02-14 Univ Leland Stanford Junior Optogenetic control of behavioral status
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
AU2014260023B2 (en) * 2013-04-30 2018-12-06 Abbott Diabetes Care Inc. Systems, devices, and methods for energy efficient electrical device activation
WO2015023782A1 (en) 2013-08-14 2015-02-19 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10441201B2 (en) * 2013-08-27 2019-10-15 The Trustees Of Princeton Univerisity Noninvasive mid-infrared in vivo glucose sensor
US10416079B2 (en) * 2014-01-07 2019-09-17 Opsolution Gmbh Device and method for determining a concentration in a sample
WO2015130333A1 (en) * 2014-02-28 2015-09-03 Tech4Life Enterprises Canada, Inc. Device and mechanism for facilitating non-invasive, non-piercing monitoring of blood hemoglobin
CN104188664B (en) * 2014-09-01 2016-03-30 苏州光环科技有限公司 Blood sugar test scaling method and system
WO2016049080A1 (en) * 2014-09-22 2016-03-31 Dexcom, Inc. System and method for mode switching
KR102390874B1 (en) 2014-10-29 2022-04-26 삼성전자주식회사 Glucose measure apparatus and method of measuring glucose thereof
CN104382605A (en) * 2014-12-19 2015-03-04 新乡医学院 Method for noninvasive and quick determination of blood glucose of rat
EP3238622A4 (en) * 2014-12-22 2018-08-29 Brain Beat Ltd. Method for noninvasively determining blood glucose concentration
CN104950104B (en) * 2015-06-12 2017-03-01 广州睿博医疗科技有限公司 Four-in-one physiological parameter measuring device
WO2016209654A1 (en) 2015-06-22 2016-12-29 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
CN105342574A (en) * 2015-12-11 2016-02-24 无限极(中国)有限公司 Optical instrument for automatically searching myofascitis trigger point
CN106859666B (en) * 2017-02-15 2018-12-04 舒糖讯息科技(深圳)有限公司 A kind of blood sugar detection apparatus and its detection method
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture
CN107174258A (en) * 2017-06-02 2017-09-19 北京信息科技大学 Blood sugar concentration Forecasting Methodology
CN107505268A (en) * 2017-08-04 2017-12-22 中国科学院半导体研究所 Blood sugar detecting method and system
US11850440B2 (en) 2019-08-22 2023-12-26 University Of Iowa Research Foundation Therapeutic systems using magnetic fields
EP3755416A1 (en) 2018-02-20 2020-12-30 University Of Iowa Research Foundation Therapeutic systems using magnetic and electric fields
US11089981B2 (en) 2018-07-23 2021-08-17 Samsung Electronics Co., Ltd. Methods and systems for performing universal calibration to non-invasively determine blood glucose concentration
CN109846462B (en) * 2019-04-03 2021-07-16 小甑科技(深圳)有限公司 Method and system for measuring blood sugar
RU2718258C1 (en) * 2019-07-02 2020-03-31 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Method of non-invasive determination of blood glucose concentration
RU2746036C1 (en) 2020-08-11 2021-04-06 Валерий Геннадьевич Мужиков Method for quantitative assessment of acupuncture channel activity, system and module for its implementation
CN112370607B (en) * 2020-12-13 2022-08-05 李兴阳 Insulin pump therapeutic instrument
DE102021004609A1 (en) 2021-09-11 2023-03-16 Eques Consulting GmbH Device and method that can be carried out with it for the non-invasive determination of the concentration of components in the human bloodstream and use of the method.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124239A (en) * 1981-01-26 1982-08-03 Aloka Co Ltd Biochemical component analysis apparatus by laser beam
JPS6035245A (en) * 1983-08-05 1985-02-23 Kyoto Daiichi Kagaku:Kk Method and apparatus for measuring component of body fluid and for storing and controlling inspection data, and inspection-data controllling and processing method
JPS6075032A (en) * 1983-09-30 1985-04-27 アロカ株式会社 Biochemical component analyser due to laser beam
JPS60236631A (en) * 1984-05-04 1985-11-25 倉敷紡績株式会社 Method and apparatus for light measuring detection of glucose
US4570638A (en) * 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
EP0074428B1 (en) * 1981-09-15 1987-04-08 Arno Dr. Dipl.-Phys. Müller Method and device for the quantitative determination of dissolved substances in single- or multicomponent systems of laser light scattering
JPH01131436A (en) * 1987-11-17 1989-05-24 Kurabo Ind Ltd Spectroscopic measuring method for saccharide concentration

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU146906A1 (en) * 1961-07-14 1961-11-30 В.А. Люхин Photoplethysmography device
DE2606991A1 (en) * 1976-02-20 1977-08-25 Nils Dr Med Kaiser DEVICE FOR DETERMINING THE CONTENT OF METABOLIC PRODUCTS IN THE BLOOD
DE3328862A1 (en) * 1982-09-16 1985-02-28 Siemens AG, 1000 Berlin und 8000 München Tissue photometry method and device, in particular for quantatively determining the blood oxygen saturation from photometric measurements
US4679562A (en) * 1983-02-16 1987-07-14 Cardiac Pacemakers, Inc. Glucose sensor
US4655225A (en) * 1985-04-18 1987-04-07 Kurabo Industries Ltd. Spectrophotometric method and apparatus for the non-invasive
US4685463A (en) * 1986-04-03 1987-08-11 Williams R Bruce Device for continuous in vivo measurement of blood glucose concentrations
US4759369A (en) * 1986-07-07 1988-07-26 Novametrix Medical Systems, Inc. Pulse oximeter
US4913150A (en) * 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
US4714080A (en) * 1986-10-06 1987-12-22 Nippon Colin Co., Ltd. Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation
GB8700061D0 (en) * 1987-01-05 1987-02-11 Whatman Reeve Angel Plc Light absorption analyser
US4800885A (en) * 1987-12-02 1989-01-31 The Boc Group, Inc. Blood constituent monitoring apparatus and methods with frequency division multiplexing
US4882492A (en) * 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US5028787A (en) * 1989-01-19 1991-07-02 Futrex, Inc. Non-invasive measurement of blood glucose
US5077476A (en) * 1990-06-27 1991-12-31 Futrex, Inc. Instrument for non-invasive measurement of blood glucose
US5187368A (en) * 1989-09-29 1993-02-16 Glaxo Inc. Detection method for liquids using near infrared spectra
US4977591A (en) * 1989-11-17 1990-12-11 Nynex Corporation Dual mode LMS nonlinear data echo canceller
US5070874A (en) * 1990-01-30 1991-12-10 Biocontrol Technology, Inc. Non-invasive determination of glucose concentration in body of patients
US5054487A (en) * 1990-02-02 1991-10-08 Boston Advanced Technologies, Inc. Laser systems for material analysis based on reflectance ratio detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124239A (en) * 1981-01-26 1982-08-03 Aloka Co Ltd Biochemical component analysis apparatus by laser beam
EP0074428B1 (en) * 1981-09-15 1987-04-08 Arno Dr. Dipl.-Phys. Müller Method and device for the quantitative determination of dissolved substances in single- or multicomponent systems of laser light scattering
JPS6035245A (en) * 1983-08-05 1985-02-23 Kyoto Daiichi Kagaku:Kk Method and apparatus for measuring component of body fluid and for storing and controlling inspection data, and inspection-data controllling and processing method
JPS6075032A (en) * 1983-09-30 1985-04-27 アロカ株式会社 Biochemical component analyser due to laser beam
US4570638A (en) * 1983-10-14 1986-02-18 Somanetics Corporation Method and apparatus for spectral transmissibility examination and analysis
JPS60236631A (en) * 1984-05-04 1985-11-25 倉敷紡績株式会社 Method and apparatus for light measuring detection of glucose
JPH01131436A (en) * 1987-11-17 1989-05-24 Kurabo Ind Ltd Spectroscopic measuring method for saccharide concentration

Also Published As

Publication number Publication date
JP2588468Y2 (en) 1999-01-13
DE69033104T2 (en) 1999-10-28
EP0426358A1 (en) 1991-05-08
HUT58145A (en) 1992-01-28
CA2028261A1 (en) 1991-04-29
US5267152A (en) 1993-11-30
DE69033104D1 (en) 1999-06-17
HU906914D0 (en) 1991-05-28
ATE179874T1 (en) 1999-05-15
RU2122208C1 (en) 1998-11-20
CA2028261C (en) 1995-01-17
JPH10181U (en) 1998-08-25
JPH03146032A (en) 1991-06-21
CN1051297A (en) 1991-05-15
HU213438B (en) 1997-06-30
CN1025410C (en) 1994-07-13
EP0426358B1 (en) 1999-05-12

Similar Documents

Publication Publication Date Title
JP2588468Y2 (en) Blood glucose concentration measurement device that does not damage the living body
JP3875798B2 (en) Method of operating a bloodless measuring device for blood component concentration and bloodless measuring device
US8886268B2 (en) Living body information measuring apparatus
US6304767B1 (en) Non-invasive optical measurement of blood hematocrit
US9915608B2 (en) Optical sensor for determining the concentration of an analyte
CN101467884B (en) Non-invasive method and device for rapidly detecting blood sugar
US9173603B2 (en) Non-invasive device and method for measuring bilirubin levels
JP6549315B2 (en) Device for non-invasive measurement of blood glucose levels
JPH07505215A (en) Method and device for measuring glucose concentration
JP2007083028A (en) Noninvasive inspecting apparatus
US20130267799A1 (en) Noninvasive measurement of analyte concentration using a fiberless transflectance probe
KR100300960B1 (en) Method and device for noninvasive determination of the concentrations of blood components
JPS6157774B2 (en)
JP4834350B2 (en) Biological information measuring apparatus and calibration method thereof
KR930011586B1 (en) Non-invasive method and apparatus for measuring blood glucose concentration
US20130267798A1 (en) Noninvasive measurement of analyte concentration using a fiberless transflectance probe