JPH0574961A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0574961A
JPH0574961A JP23798791A JP23798791A JPH0574961A JP H0574961 A JPH0574961 A JP H0574961A JP 23798791 A JP23798791 A JP 23798791A JP 23798791 A JP23798791 A JP 23798791A JP H0574961 A JPH0574961 A JP H0574961A
Authority
JP
Japan
Prior art keywords
layer
tin
semiconductor device
annealing
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23798791A
Other languages
Japanese (ja)
Inventor
Hideo Takagi
英雄 高木
Akihiro Yoshida
明弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23798791A priority Critical patent/JPH0574961A/en
Publication of JPH0574961A publication Critical patent/JPH0574961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To suppress reaction (mutual diffusion) of a TiN layer with an upper metal layer, to improve contact reliability of an Si substrate or polysilicon or a silicide layer and to improve reliability of multilayer wirings themselves in the wiring using Ti/TiN barrier layer in a method for forming wiring of a semiconductor device. CONSTITUTION:A method for forming multilayer structure wiring of a semiconductor device having a barrier layer made of a Ti layer 5, a TiN layer 6 and a metal layer 8 formed thereon comprises the steps of oxidizing the layer 6 to form an oxide film 7 before forming the metal layer 8 in such a manner that the reflecting intensity of the film 7 is set to 0.65-0.9 to that of TiN before oxidizing (a measuring incident wavelength: 480nm).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、IC、LSIなどの半
導体装置の製造方法、より詳しくは、該半導体装置の配
線の形成方法に関する。近年の半導体装置の高集積化に
伴い、配線とSi基板のソース、ドレインなどのN+
域(或いはP+ 領域)との電気的なコンタクトの信頼
性、さらに配線自身の信頼性を維持するのが難しくな
り、信頼性を向上させる工夫が求められている。そこ
で、配線を多層化してバリアメタル層を用いることが行
われている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device such as an IC and an LSI, and more particularly to a method for forming a wiring of the semiconductor device. With the recent high integration of semiconductor devices, the reliability of electrical contact between the wiring and the N + region (or P + region) such as the source and drain of the Si substrate, and the reliability of the wiring itself are maintained. It is difficult to do so, and a device to improve reliability is required. Therefore, it has been practiced to form the wiring in multiple layers and use the barrier metal layer.

【0002】[0002]

【従来の技術】バリアメタル層としTi/TiN層が提
案されている。なお、Ti層は、TiN層よりもかなり
薄く、密着性を高めるためおよびTiNとSiとのコン
タクト抵抗を下げるためにバリアメタルのTiN層の下
に形成してある。このTi/TiNバリア層とその上の
Al合金層と多層配線においては、例えば、スパッタリ
ングでTi層を形成し、続けてスパッタリングでTiN
層を形成し、窒素(N2 )雰囲気中でアニールし(40
0〜450℃にて)、スパッタエッチングで表面クリー
ニングし、そしてAl合金層をスパッタリング(または
真空蒸着)で形成している。アニールはTiN層中の窒
化されていないTiを窒化するためである。また、スパ
ッタリングによるTiN層形成の代わりに、Ti層をN
2 雰囲気中でアニールしてTiN層を形成することもで
きる。
2. Description of the Related Art A Ti / TiN layer has been proposed as a barrier metal layer. The Ti layer is much thinner than the TiN layer, and is formed under the barrier metal TiN layer in order to improve the adhesion and to reduce the contact resistance between TiN and Si. In the Ti / TiN barrier layer, the Al alloy layer thereon, and the multilayer wiring, for example, a Ti layer is formed by sputtering, and then TiN is formed by sputtering.
A layer is formed and annealed in a nitrogen (N 2 ) atmosphere (40
The surface is cleaned by sputter etching (at 0 to 450 ° C.), and the Al alloy layer is formed by sputtering (or vacuum evaporation). The annealing is for nitriding unnitrided Ti in the TiN layer. Also, instead of forming the TiN layer by sputtering, the Ti layer is replaced by N
The TiN layer can also be formed by annealing in a 2 atmosphere.

【0003】[0003]

【発明が解決しようとする課題】このTi/TiNバリ
ア層の採用によって、配線に起因する半導体装置の信頼
性や歩留りの低下をかなり回避することができる。しか
し、上層金属(Al、Al合金、Cu、Auなど)とT
iNとの反応を十分に防ぐことができないので、バリア
層のバリア性をより高める必要がある。
By adopting this Ti / TiN barrier layer, it is possible to considerably avoid the decrease in the reliability and yield of the semiconductor device due to the wiring. However, the upper metal (Al, Al alloy, Cu, Au, etc.) and T
Since the reaction with iN cannot be sufficiently prevented, it is necessary to further enhance the barrier property of the barrier layer.

【0004】なお、TiNのアニール処理の時に、Ti
N層表面が酸化されることがあるが、通常は上述したよ
うに表面クリーニングを施しており、この酸化量および
酸化膜質を管理することは困難であり、かつ制御する方
法がない。本発明の目的は、Ti/TiNバリア層を用
いた多層配線において、TiN層と上層金属層との反応
(相互拡散)を抑制し、Si基板ないしポリシリコンま
たはシリサイドの層とのコンタクト信頼性を向上させ、
かつ該多層配線自身の信頼性を向上させることであり、
そのような多層配線を有する半導体装置の製造方法をも
提供することである。
During the annealing process of TiN, Ti
Although the surface of the N layer may be oxidized, the surface cleaning is usually performed as described above, and it is difficult to control the amount of oxidation and the quality of the oxide film, and there is no control method. An object of the present invention is to suppress the reaction (mutual diffusion) between the TiN layer and the upper metal layer in the multilayer wiring using the Ti / TiN barrier layer, and to improve the contact reliability with the Si substrate or the polysilicon or silicide layer. Improve,
And to improve the reliability of the multilayer wiring itself,
Another object of the present invention is to provide a method for manufacturing a semiconductor device having such multi-layer wiring.

【0005】[0005]

【課題を解決するための手段】上述の目的が、Ti層と
TiN層とからなるバリア層およびその上の金属層を含
んでなる多層構造配線を有する半導体装置を製造する方
法において、該金属層の形成前に、TiN層を酸化し
て、該TiN層および該金属層とが反応せずかつ電気的
な導通がとれる程度の薄い酸化膜を形成する工程を有す
ることを特徴とする半導体装置の製造方法によって達成
される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of manufacturing a semiconductor device having a multi-layered wiring including a barrier layer composed of a Ti layer and a TiN layer and a metal layer on the barrier layer. Prior to the formation of the TiN layer, there is a step of oxidizing the TiN layer to form a thin oxide film that does not react with the TiN layer and the metal layer and is electrically conductive. This is achieved by the manufacturing method.

【0006】TiNの酸化膜の反射強度を酸化前のTi
Nの反射強度に対して0.65〜0.9(測定入射波長:4
80nmにて)とすることが好ましい。金属層はAl、A
l−Cu、Al−Si、Al−Si−Cu、Al−Cu
−Ti、CuまたはAuであり、かつTi層はSi基
板、ポリシリコン層またはシリサイド層と接触している
ことが好ましい。
The reflection intensity of the oxide film of TiN is set to Ti before oxidation.
0.65-0.9 for the reflection intensity of N (measured incident wavelength: 4
(At 80 nm) is preferred. Metal layer is Al, A
l-Cu, Al-Si, Al-Si-Cu, Al-Cu
-Ti, Cu or Au, and the Ti layer is preferably in contact with the Si substrate, the polysilicon layer or the silicide layer.

【0007】また、生じさせるTiNの酸化膜の膜厚は
5nm以下であり、これよりも厚いと配線のコンタクト抵
抗が大きく増加してしまう。反射強度は、薄膜厚測定器
(例えば、キャノン製TM005)によってTiN層の
酸化前と酸化後と測定して、測定の入射光の波長に応じ
て、「TiN酸化膜/TiN」の反射強度割合を下記の
表1のようにするのが望ましい。
Further, the thickness of the TiN oxide film produced is 5 nm or less, and if it is thicker than this, the contact resistance of the wiring will be greatly increased. The reflection intensity is measured before and after the oxidation of the TiN layer by a thin film thickness measuring device (for example, TM005 manufactured by Canon), and the reflection intensity ratio of "TiN oxide film / TiN" is determined according to the wavelength of the incident light in the measurement. Is preferably as shown in Table 1 below.

【0008】[0008]

【表1】 [Table 1]

【0009】この範囲内であれば、コンタクト抵抗を大
きく増加することなく、TiN層のバリア性を向上させ
る。
Within this range, the barrier properties of the TiN layer are improved without significantly increasing the contact resistance.

【0010】[0010]

【作用】本発明では、TiN層とその上の金属層との間
に薄いTiNの酸化膜を形成しており、これがTiNと
金属層との相互拡散を抑制し、かつ上層金属のTiN粒
界拡散をも抑制する。このことによって、TiN層を含
む多層配線と半導体(Si)基板のN+ 領域(或いはP
+ 領域)とのコンタクト部分における接合の信頼性が向
上し、そして、該多層配線のエレクトロマイグレーショ
ンのMTF(平均寿命)が延びる。TiNの酸化膜の膜
厚が5nm以下に制御してあるので、TiN層とAl合金
層とのコンタクトに問題はない。さらに、たとえ上層金
属層がエレクトロマイグレーションあるいはストレスマ
イグレーションによる破断となっても、TiN層が電気
抵抗の増加を軽減して、いわゆる、積層(多層)化のメ
リットを保つことができる。
In the present invention, a thin TiN oxide film is formed between the TiN layer and the metal layer thereabove, which suppresses the mutual diffusion of TiN and the metal layer, and the TiN grain boundary of the upper metal. It also suppresses diffusion. As a result, the multilayer wiring including the TiN layer and the N + region (or P
The reliability of the junction at the contact portion with the + region) is improved, and the MTF (average life) of electromigration of the multilayer wiring is extended. Since the thickness of the TiN oxide film is controlled to 5 nm or less, there is no problem in contact between the TiN layer and the Al alloy layer. Further, even if the upper metal layer is broken due to electromigration or stress migration, the TiN layer can reduce the increase in electric resistance and maintain the merit of stacking (multilayer).

【0011】[0011]

【実施例】以下、添付図面を参照して、本発明の実施例
を含む実験によって本発明を詳細に説明する。図1に示
すような、多層配線を備えた半導体装置を作製し、その
過程でのTiN層形成後のアニール処理条件を変えるこ
とで本発明の効果を調べる。
The present invention will now be described in detail with reference to the accompanying drawings by experiments including examples of the present invention. The effect of the present invention is examined by producing a semiconductor device having a multilayer wiring as shown in FIG. 1 and changing the annealing condition after the TiN layer is formed in the process.

【0012】実験1 先ず、P- 型Si基板(ウエハー)1を用意し、選択酸
化によってSiO2 層2を形成し、そして、イオン注入
によってN+ 領域3のコンタクト領域を形成する。全面
にBPSG層(厚さ400nm)4をCVD法によって堆
積し、ホトリソグラフィ法でBPSG層4をエッチング
してコンタクト領域3を表出させる(コンタクト・ホー
ル径0.6μm)。次に、スパッタリングによってTi層
(厚さ20nm)5を全面に堆積し、その上にスパッタリ
ングによってTiN層(厚さ100nm)6を全面に堆積
する。これを加熱炉に入れて、アニール処理(30分)
を施し、その際のアニール温度および雰囲気を下記のよ
うに設定する。
Experiment 1 First, a P type Si substrate (wafer) 1 is prepared, a SiO 2 layer 2 is formed by selective oxidation, and a contact region of an N + region 3 is formed by ion implantation. A BPSG layer (thickness 400 nm) 4 is deposited on the entire surface by the CVD method, and the BPSG layer 4 is etched by the photolithography method to expose the contact region 3 (contact hole diameter 0.6 μm). Next, a Ti layer (20 nm thick) 5 is deposited on the entire surface by sputtering, and a TiN layer (100 nm thick) 6 is deposited on the entire surface by sputtering. Put this in a heating furnace and anneal (30 minutes)
And the annealing temperature and atmosphere at that time are set as follows.

【0013】(1)アニール雰囲気に酸素ガスを添加す
る。 アニール温度(℃)… 300 、350 、375 、400、425
および450 アニール雰囲気 … N2 80%±5%(24リット
ル/分)およびO2 20%±5%(6リットル/分) (2)アニール雰囲気に酸素ガスを添加しない。
(1) Oxygen gas is added to the annealing atmosphere. Annealing temperature (℃)… 300, 350, 375, 400, 425
And 450 annealing atmosphere ... N 2 80% ± 5% (24 l / min) and O 2 20% ± 5% (6 l / min) (2) Oxygen gas is not added to the annealing atmosphere.

【0014】 アニール温度(℃)… 400 および450 アニール雰囲気 … N2 100%(30リットル/
分) アニール雰囲気が酸素ガスを含んでいるので、加熱炉内
でTiN層の表面が酸化されて、TiNの酸化膜7を形
成する。アニール雰囲気の窒素ガスと酸素ガスとの比率
を大気での比率と同じにすることにより、加熱炉への出
し入れの際のTiNの酸化効果を割合を下げる。また、
アニール温度は450℃以下にして、TiNの酸化膜7
の厚さが5nmを越えないようにする。
Annealing temperature (° C.) ... 400 and 450 Annealing atmosphere ... N 2 100% (30 liters /
Min) Since the annealing atmosphere contains oxygen gas, the surface of the TiN layer is oxidized in the heating furnace to form the TiN oxide film 7. By setting the ratio of the nitrogen gas and the oxygen gas in the annealing atmosphere to be the same as the ratio in the atmosphere, the effect of oxidizing TiN when putting in and out of the heating furnace is reduced. Also,
The annealing temperature is set to 450 ° C. or lower, and the TiN oxide film 7 is formed.
The thickness should not exceed 5 nm.

【0015】アニール処理後に、スパッタリングによっ
てAl−Cu−Ti合金を厚さ300nm堆積して、上層
金属層8を形成し、ホトリソグラフィ法で積層した層4
〜7をエッチングして所定パターンの多層配線9とす
る。このようにして、多層配線付きの半導体装置が得ら
れる。一方、上述のアニール処理を施すことなく、この
上層金属層8を形成し、エッチングして多層配線9とし
て半導体装置を製造する。
After the annealing treatment, an Al-Cu-Ti alloy is deposited to a thickness of 300 nm by sputtering to form an upper metal layer 8 and a layer 4 formed by photolithography.
7 to 7 are etched to form a multilayer wiring 9 having a predetermined pattern. In this way, a semiconductor device with multilayer wiring is obtained. On the other hand, the upper metal layer 8 is formed and etched without performing the above-mentioned annealing treatment to manufacture the semiconductor device as the multilayer wiring 9.

【0016】反射強度について アニール処理の前および後で、キャノン製の薄膜厚測定
器(TM005)にてTiN層とその酸化膜に所定波長
の光を当て、その反射強度を測定して、図2に示す結果
が得られた。なお、Si基板1の反射強度も測定して示
してある。温度400℃、酸素ガス20%含有の雰囲気
でのアニール処理の場合には、得られた結果から計算に
よって、入射波長ごとの「TiN酸化膜/TiN」の反
射強度割合を求めると、表2となる。
Reflection intensity Before and after annealing, a thin film thickness measuring instrument (TM005) manufactured by Canon was used to irradiate the TiN layer and its oxide film with light of a predetermined wavelength, and the reflection intensity was measured. The results shown in are obtained. The reflection intensity of the Si substrate 1 is also measured and shown. In the case of annealing at a temperature of 400 ° C. and in an atmosphere containing 20% of oxygen gas, the reflection intensity ratio of “TiN oxide film / TiN” for each incident wavelength is calculated from the obtained results. Become.

【0017】[0017]

【表2】 [Table 2]

【0018】また、温度350℃、酸素ガス20%含有
の雰囲気でのアニール処理の場合には、入射波長ごとの
「TiN酸化膜/TiN」の反射強度割合を同様に求め
ると、表3となる。
Further, in the case of annealing treatment at a temperature of 350 ° C. in an atmosphere containing 20% of oxygen gas, the reflection intensity ratio of “TiN oxide film / TiN” for each incident wavelength is similarly obtained, as shown in Table 3. ..

【0019】[0019]

【表3】 [Table 3]

【0020】コンタクト抵抗について 所定の多層配線を形成した半導体装置におけるコンタク
ト抵抗を測定し、さらに、コンタクト抵抗のアニール温
度依存性を調べるために、該半導体装置を500℃×
30分または450℃×30分の加熱処理を施してコ
ンタクト抵抗を測定した。得られた結果を図3に示す。
Regarding contact resistance: In order to measure the contact resistance of a semiconductor device in which a predetermined multilayer wiring is formed and to examine the annealing temperature dependence of the contact resistance, the semiconductor device is tested at 500 ° C. ×
The contact resistance was measured by performing heat treatment for 30 minutes or 450 ° C. × 30 minutes. The obtained results are shown in FIG.

【0021】コンタクト抵抗はアニール時に酸素ガスを
添加すると、抵抗は高くなる(アニール温度400℃で
の比較で)。さらに、アニール温度が高くなるほど、か
つ熱処理温度が高いほど、抵抗も上昇する。この点か
ら、TiNの酸化膜の厚さには制限がある。接合リーク(Junction Leak)について 所定の多層配線を形成した半導体装置における接合リー
ク不良率のアニール温度依存性を調べるために、該半導
体装置を500℃×30分の加熱処理を2回または3
回繰り返した。得られた結果を図4に示す。
The contact resistance increases when oxygen gas is added during annealing (comparison at an annealing temperature of 400 ° C.). Furthermore, the higher the annealing temperature and the higher the heat treatment temperature, the higher the resistance. From this point, the thickness of the TiN oxide film is limited. Regarding Junction Leak In order to examine the annealing temperature dependency of the junction leak defect rate in a semiconductor device in which a predetermined multilayer wiring is formed, the semiconductor device is subjected to heat treatment at 500 ° C. for 30 minutes twice or three times.
Repeated times. The obtained results are shown in FIG.

【0022】アニール温度が高いほど、不良率は低くな
り、バリア性が高められている。配線のシート抵抗について 形成した多層配線自身のシート抵抗のアニール温度依存
性を、450℃×150分または450℃×330
分の加熱処理を施してシート抵抗の上昇率として求め
た。得られた結果を図5に示す。
The higher the annealing temperature, the lower the defect rate and the higher the barrier property. Regarding the sheet resistance of the wiring, the annealing temperature dependence of the sheet resistance of the formed multilayer wiring is 450 ° C. × 150 minutes or 450 ° C. × 330.
After heat treatment for a minute, the increase rate of the sheet resistance was obtained. The obtained results are shown in FIG.

【0023】アニール時の酸素添加でTiNの酸化膜が
あると、幾分か上昇率が抑えられ、また、アニール温度
の高いほうが上昇率が低い。実験2 Si基板を熱酸化してSiO2 層(厚さ100nm)を形
成し、その上に上述した実験1と同様にスパッタリング
でTi層およびTiN層を連続的に積層形成する。そし
て、その後のアニール処理をアニール温度を450℃一
定にして次のような条件にて行う。
If there is a TiN oxide film due to the addition of oxygen during annealing, the rate of increase is somewhat suppressed, and the higher the annealing temperature, the lower the rate of increase. Experiment 2 A Si substrate is thermally oxidized to form a SiO 2 layer (thickness: 100 nm), and a Ti layer and a TiN layer are successively laminated thereon by sputtering as in Experiment 1 described above. Then, the subsequent annealing process is performed under the following conditions with the annealing temperature kept constant at 450 ° C.

【0024】(1)アニール雰囲気を窒素のみとして、
30リットル/分のN2 を流し、30分アニールを1
回あるいは3回行う。 (2)アニール雰囲気に酸素ガスを添加し、その添加量
(N2 30リットル/分に加える量)を0.35リット
ル/分、1.0リットル/分および2.0リットル/分
として、アニール時間30分とする。
(1) The annealing atmosphere is nitrogen only,
Flow 30 liters / min N 2 and anneal for 30 minutes 1
Do one or three times. (2) Annealing is performed by adding oxygen gas to the annealing atmosphere and adjusting the addition amount (the amount added to 30 liters / minute of N 2 ) to 0.35 liters / minute, 1.0 liters / minute, and 2.0 liters / minute. Time is 30 minutes.

【0025】アニール処理の前および後で、実験1と同
じにキャノン製の薄膜厚測定器(TM005)にてTi
N層とその酸化膜に所定波長の光を当て、その反射強度
を測定して、図6に示す結果が得られた。なお、Si基
板の反射強度も測定して示してある。得られた結果から
計算によって、入射波長ごとの「TiN酸化膜/Ti
N」の反射強度割合を求めると、表4となる。
Before and after the annealing treatment, Ti was measured by a thin film thickness measuring device (TM005) manufactured by Canon as in Experiment 1.
Light of a predetermined wavelength was applied to the N layer and its oxide film, and the reflection intensity thereof was measured, and the results shown in FIG. 6 were obtained. The reflection intensity of the Si substrate is also measured and shown. By calculation from the obtained results, "TiN oxide film / Ti
Table 4 shows the reflection intensity ratio of "N".

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
Al−Cu−TiのようなSiを含有しない金属層に対
してバリア性が向上し、Al−SiのようにSiを含有
する金属層でもバリア性が改善できる。従来TiNバリ
ア層は200nm程度の厚さで形成されていたが、本発明
ではその半分の100nm程度でも同等のバリア性を有す
る。また、エレクトロマイグレーションのMTFが延び
るなどで多層配線の信頼性が向上する。さらに、本発明
の方法を用いると、安定した膜厚のTiNの酸化膜形成
が可能となる。
As described above, according to the present invention,
The barrier property is improved for a metal layer containing no Si such as Al-Cu-Ti, and the barrier property can be improved even for a metal layer containing Si such as Al-Si. Conventionally, the TiN barrier layer has been formed to have a thickness of about 200 nm, but in the present invention, even half of that, about 100 nm, has an equivalent barrier property. Further, the reliability of the multi-layer wiring is improved because the MTF of electromigration is extended. Furthermore, by using the method of the present invention, it is possible to form a TiN oxide film having a stable film thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法で製作された多層配線付き半
導体装置の部分断面図である。
FIG. 1 is a partial cross-sectional view of a semiconductor device with a multilayer wiring manufactured by a method according to the present invention.

【図2】TiN層のアニール処理前後の「TiN酸化膜
/TiN」の反射強度割合を示すグラフである。
FIG. 2 is a graph showing a reflection intensity ratio of “TiN oxide film / TiN” before and after annealing of a TiN layer.

【図3】多層配線のコンタクト抵抗とアニール条件との
関連を示すグラフである。
FIG. 3 is a graph showing the relationship between contact resistance of multilayer wiring and annealing conditions.

【図4】多層配線による接合リーク不良とアニール条件
との関連を示すグラフである。
FIG. 4 is a graph showing a relationship between a junction leak defect due to multilayer wiring and an annealing condition.

【図5】多層配線のシート抵抗とアニール条件との関連
を示すグラフである。
FIG. 5 is a graph showing the relationship between sheet resistance of multilayer wiring and annealing conditions.

【図6】TiN層のアニール処理前後の「TiN酸化膜
/TiN」の反射強度割合を示すグラフである。
FIG. 6 is a graph showing a reflection intensity ratio of “TiN oxide film / TiN” before and after annealing the TiN layer.

【符号の説明】[Explanation of symbols]

1…半導体基板 3…N+ (P+ )領域 4…BPSG 5…Ti層 6…TiN層 7…TiNの酸化膜 6…金属層 9…多層配線DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 3 ... N + (P + ) area | region 4 ... BPSG 5 ... Ti layer 6 ... TiN layer 7 ... TiN oxide film 6 ... Metal layer 9 ... Multilayer wiring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ti層とTiN層とからなるバリア層お
よびその上の金属層を含んでなる多層構造配線を有する
半導体装置を製造する方法において、前記金属層(8)
の形成前に、前記TiN層(6)を酸化して、該TiN
層および該金属層とが反応せずかつ電気的な導通がとれ
る程度の薄い酸化膜(7)を形成することを特徴とする
半導体装置の製造方法。
1. A method for manufacturing a semiconductor device having a multi-layered wiring including a barrier layer composed of a Ti layer and a TiN layer and a metal layer thereon, wherein the metal layer (8)
The TiN layer (6) is oxidized before the formation of
A method of manufacturing a semiconductor device, characterized in that a thin oxide film (7) which does not react with the layer and the metal layer and is electrically conductive is formed.
【請求項2】 前記TiNの酸化膜の反射強度を酸化前
のTiNの反射強度に対して0.65〜0.9(測定入射波
長:480nmにて)とすることを特徴とする請求項1記
載の製造方法。
2. The reflection intensity of the TiN oxide film is set to 0.65 to 0.9 (at a measurement incident wavelength: 480 nm) with respect to the reflection intensity of TiN before oxidation. The manufacturing method described.
【請求項3】 前記金属層(8)はAl、Al−Cu、
Al−Si、Al−Si−Cu、Al−Cu−Ti、C
uまたはAuであることを特徴とする請求項1記載の製
造方法。
3. The metal layer (8) comprises Al, Al--Cu,
Al-Si, Al-Si-Cu, Al-Cu-Ti, C
The manufacturing method according to claim 1, wherein the manufacturing method is u or Au.
【請求項4】 前記Ti層(5)はSi基板(1)、ポ
リシリコン層またはシリサイド層と接触していることを
特徴とする請求項1記載の製造方法。
4. The manufacturing method according to claim 1, wherein the Ti layer (5) is in contact with the Si substrate (1), a polysilicon layer or a silicide layer.
JP23798791A 1991-09-18 1991-09-18 Manufacture of semiconductor device Pending JPH0574961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23798791A JPH0574961A (en) 1991-09-18 1991-09-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23798791A JPH0574961A (en) 1991-09-18 1991-09-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0574961A true JPH0574961A (en) 1993-03-26

Family

ID=17023440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23798791A Pending JPH0574961A (en) 1991-09-18 1991-09-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0574961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066891A (en) * 1994-04-28 2000-05-23 Nippondenso Co., Ltd Electrode for semiconductor device including an alloy wiring layer for reducing defects in an aluminum layer and method for manufacturing the same
KR100267104B1 (en) * 1997-08-25 2000-11-01 윤종용 Contact Forming Method of Semiconductor Device Using Multilayer Diffusion Film
US6650017B1 (en) 1999-08-20 2003-11-18 Denso Corporation Electrical wiring of semiconductor device enabling increase in electromigration (EM) lifetime

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821339A (en) * 1981-07-29 1983-02-08 Toshiba Corp Formation of semiconductor oxide film
JPH02249273A (en) * 1989-03-23 1990-10-05 Seiko Epson Corp Semiconductor device
JPH04196122A (en) * 1990-11-26 1992-07-15 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821339A (en) * 1981-07-29 1983-02-08 Toshiba Corp Formation of semiconductor oxide film
JPH02249273A (en) * 1989-03-23 1990-10-05 Seiko Epson Corp Semiconductor device
JPH04196122A (en) * 1990-11-26 1992-07-15 Seiko Epson Corp Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066891A (en) * 1994-04-28 2000-05-23 Nippondenso Co., Ltd Electrode for semiconductor device including an alloy wiring layer for reducing defects in an aluminum layer and method for manufacturing the same
US6348735B1 (en) 1994-04-28 2002-02-19 Nippondenso Co., Lt. Electrode for semiconductor device and method for manufacturing same
KR100267104B1 (en) * 1997-08-25 2000-11-01 윤종용 Contact Forming Method of Semiconductor Device Using Multilayer Diffusion Film
US6650017B1 (en) 1999-08-20 2003-11-18 Denso Corporation Electrical wiring of semiconductor device enabling increase in electromigration (EM) lifetime
US6908857B2 (en) 1999-08-20 2005-06-21 Denso Corporation Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP4555540B2 (en) Semiconductor device
JP3128811B2 (en) Method for manufacturing semiconductor device
JP2811131B2 (en) Wiring connection structure of semiconductor device and method of manufacturing the same
US4998157A (en) Ohmic contact to silicon substrate
JP4647184B2 (en) Manufacturing method of semiconductor device
US6204167B1 (en) Method of making a multi-level interconnect having a refractory metal wire and a degassed oxidized, TiN barrier layer
JPH03119727A (en) Semiconductor device and its manufacture
KR100319588B1 (en) Method for forming interconnection structure
JPH04259242A (en) Manufacture of semiconductor device
US20030020165A1 (en) Semiconductor device, and method for manufacturing the same
JPH0629468A (en) Manufacture of thin-film resistance
JPH0574961A (en) Manufacture of semiconductor device
JP3158598B2 (en) Semiconductor device and method of manufacturing the same
JPH07201859A (en) Wiring formation method and semiconductor device
JPH06314690A (en) Semiconductor device and its manufacture
JP3283965B2 (en) Semiconductor device and manufacturing method thereof
JPH02260535A (en) Manufacture of semiconductor device
JPH09298238A (en) Wiring forming method
JP3045850B2 (en) Manufacturing method of Al-Si based alloy wiring
JPH02186634A (en) Manufacture of integrated circuit device
JP3510943B2 (en) Method for manufacturing semiconductor device
JP3896492B2 (en) Titanium oxynitride film evaluation method and wiring formation method
JPH01124238A (en) Wiring for semiconductor integrated circuit and its formation
JPH06326105A (en) Laminated interconnection structure of semiconductor device
JPH05226479A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980120