JPH0574960A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0574960A
JPH0574960A JP2800092A JP2800092A JPH0574960A JP H0574960 A JPH0574960 A JP H0574960A JP 2800092 A JP2800092 A JP 2800092A JP 2800092 A JP2800092 A JP 2800092A JP H0574960 A JPH0574960 A JP H0574960A
Authority
JP
Japan
Prior art keywords
insulating film
wiring
integer
semiconductor device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2800092A
Other languages
Japanese (ja)
Inventor
Naomichi Abe
直道 阿部
Hiroshi Kudo
寛 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2800092A priority Critical patent/JPH0574960A/en
Publication of JPH0574960A publication Critical patent/JPH0574960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form an insulating interlayer film having low dielectric constant, excellent close contact and no problem of heat flow. CONSTITUTION:First interconnection is formed on a substrate, and an insulating interlayer film is formed on the substrate including the first interconnection by a plasma polymerizing method by using compound gas or the compound gas and hydrogen as reaction gases, the compound gas represented by a general formula (1): CXFYHY (1) (where X is integer of 1-5, Y is integer of 1-10 and Z is integer of 0-5.).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、更に詳しくは改良された層間絶縁膜の製造方法
に関する。この本発明でいう半導体装置とは、多層配線
構造を有するICチップのみならず、このようなICチ
ップを多数基板上に組込んだ構造の装置、例えばマルチ
チップモジュールをも言うものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing an improved interlayer insulating film. The semiconductor device in the present invention means not only an IC chip having a multilayer wiring structure but also a device having a structure in which a large number of such IC chips are incorporated on a substrate, for example, a multi-chip module.

【0002】半導体装置は、近年その小型化・高速化に
伴い集積度の向上が非常に重要となってきている。この
ために、多層配線が必要である。多層配線をなすために
は層間絶縁膜が必要である。ところで、多層配線の間に
は層間絶縁膜を介した配線容量が避け難く、この配線容
量が大きいと信号伝播速度がそれだけ遅くなる。これ
は、マルチチップモジュールについても同様である。す
なわち、マルチチップモジュールの実装密度を上げよう
とした場合、チップ間の配線は下層の基板内において多
層配線となり、また配線間隔もせばまってきてしまう。
そうすると、配線間の容量による、信号伝送の遅延が問
題となってくる。従来の絶縁層の材料ではいずれも誘電
率が3以上と大きく、高速ICのマルチチップモジュー
ルでは、この配線容量による遅延が深刻な問題となって
いる。
2. Description of the Related Art In recent years, it has become very important to improve the degree of integration of semiconductor devices as they become smaller and faster. For this reason, multilayer wiring is necessary. An interlayer insulating film is required to form a multilayer wiring. By the way, it is difficult to avoid wiring capacitance between the multi-layered wiring via the interlayer insulating film, and if the wiring capacitance is large, the signal propagation speed becomes slower. The same applies to the multichip module. That is, when trying to increase the packaging density of the multi-chip module, the wiring between the chips becomes a multilayer wiring in the lower layer substrate, and the wiring interval becomes narrow.
Then, the delay of signal transmission due to the capacitance between wirings becomes a problem. All of the conventional insulating layer materials have a large dielectric constant of 3 or more, and the delay due to the wiring capacitance has become a serious problem in multichip modules of high-speed ICs.

【0003】[0003]

【発明が解決しようとする課題】従来、半導体装置にお
ける層間絶縁膜として、SiO2 膜、PSG膜又はポリ
イミド膜等を使用していた。しかるに、従来技術に係る
前記の層間絶縁膜は、いずれも比誘電率が大きいもので
あった。ちなみに、SiO2 の比誘電率は4.0、PS
Gの比誘電率も4.0であり、またポリイミドの比誘電
率は3.2である。
Conventionally, a SiO 2 film, a PSG film, a polyimide film or the like has been used as an interlayer insulating film in a semiconductor device. However, each of the above-mentioned interlayer insulating films according to the prior art has a large relative dielectric constant. By the way, the relative permittivity of SiO 2 is 4.0, PS
The relative permittivity of G is 4.0, and the relative permittivity of polyimide is 3.2.

【0004】従って、従来の製造方法による場合層間絶
縁膜の配線容量が大きくなるという欠点があった。この
ように配線容量が大きくなると前記のように半導体装置
の動作スピードが遅くなる。このような問題を解決する
手段として、フッ素樹脂膜を層間絶縁膜の一部に用いる
方法が公知となっている(特開平3−34558)。す
なわち、この方法は比誘電率が小さい材料、すなわちフ
ッ素樹脂を用い、この樹脂の溶液をスピンコート法等に
より塗布・熱処理して層間絶縁膜を形成せんとするもの
である。
Therefore, the conventional manufacturing method has a drawback that the wiring capacitance of the interlayer insulating film becomes large. When the wiring capacitance increases in this way, the operation speed of the semiconductor device slows down as described above. As a means for solving such a problem, a method of using a fluororesin film as a part of the interlayer insulating film has been known (Japanese Patent Laid-Open No. 34558/1993). That is, in this method, a material having a small relative dielectric constant, that is, a fluororesin is used, and a solution of this resin is applied and heat-treated by a spin coating method or the like to form an interlayer insulating film.

【0005】しかし、この方法による場合次の2つの問
題点がある。密着性の問題と熱フローの問題である。す
なわち、第1の密着性に関しては、スピンコート法等で
塗布・熱処理して得られたフッ素樹脂膜とその下層との
密着性が良くないと言う点である。このような密着性不
良のため、次の加熱工程で形成されたフッ素樹脂膜が剥
離してしまうという事態が生じる。第2の熱フローの問
題とは、フッ素樹脂のガラス転移温度(Tg)は100
℃前後であり、この100℃を越えて熱処理(例えば2
00℃以上、例えば、素子ダメージを除くためのアニー
ル工程、又はアッセンブリー工程においてチップをパッ
ケージに組込む工程)すると樹脂が軟化し、流動性を持
つに至るということである。このように樹脂が流動して
しまうと、形成されたフッ素樹脂のパターン(例えばス
ルーホール等)の形状がくずれてしまう等という問題を
生じる。
However, this method has the following two problems. There are problems of adhesion and heat flow. That is, regarding the first adhesiveness, the adhesiveness between the fluororesin film obtained by coating and heat treatment by the spin coating method or the like and the underlying layer is not good. Due to such poor adhesion, the fluororesin film formed in the next heating step may peel off. The second problem of heat flow is that the glass transition temperature (Tg) of the fluororesin is 100.
The temperature is around ℃, and heat treatment (eg 2
When the temperature is higher than or equal to 00 ° C., for example, an annealing process for removing element damage or a process of incorporating a chip into a package in an assembly process), the resin softens and becomes fluid. If the resin flows in this way, there arises a problem that the shape of the formed fluororesin pattern (for example, a through hole) is broken.

【0006】本発明は、前記問題点を解決するためにな
されたものであり、絶縁膜の比誘電率を小さく保持しつ
ゝ密着性に秀れかつ熱フローの問題が生じない層間絶縁
膜を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and provides an interlayer insulating film which keeps the relative permittivity of the insulating film small and has excellent adhesion and no heat flow problem. The purpose is to get.

【0007】[0007]

【課題を解決するための手段】本発明はかかる目的を達
成するためになされたものであり、本発明の半導体装置
の製造方法は基板上に第一の配線を形成し、次いで一般
式1: CX Y Z (1) (式中、Xは1〜5の整数であり、Yは1〜10の整数
であり、更にZは0〜5の整数である)で表わされる化
合物ガス又は該化合物ガスおよび水素を反応ガスとして
用いてプラズマ重合法により該第一の配線上を含む基板
上に層間絶縁膜を形成し、次いで該層間絶縁膜上に第二
の配線を形成することを含んでなる。
The present invention has been made to achieve the above object, and a method of manufacturing a semiconductor device according to the present invention comprises forming a first wiring on a substrate, and then forming the general formula 1: C X F Y H Z (1) (wherein, X is an integer of 1 to 5, Y is an integer of 1 to 10, and Z is an integer of 0 to 5) or Forming an interlayer insulating film on a substrate including the first wiring by a plasma polymerization method using the compound gas and hydrogen as a reaction gas, and then forming a second wiring on the interlayer insulating film. It consists of

【0008】本発明は、更に前記の工程に加え、絶縁膜
を形成し、該絶縁膜を介して複数のチップを搭載し次い
で該チップを前記第一又は第二の配線と選択的に接続す
ることを特徴とする。この後者の発明は、マルチチップ
モジュールの多層配線部分の絶縁膜の形成に適用される
ものである。なお、前記絶縁膜の形成は前記式1で表わ
される化合物又は該化合物および水素を用いてプラズマ
重合法により好ましく行うことができる。
In addition to the above steps, the present invention further comprises forming an insulating film, mounting a plurality of chips through the insulating film, and then selectively connecting the chips to the first or second wiring. It is characterized by The latter invention is applied to the formation of the insulating film in the multi-layer wiring portion of the multichip module. The insulating film can be preferably formed by a plasma polymerization method using the compound represented by the formula 1 or the compound and hydrogen.

【0009】本発明方法においてプラズマ重合は、プラ
ズマ発生機構を有する反応容器(プラズマ重合装置)内
で、通常のプラズマCVD法を用いて好ましく行うこと
ができる。本発明方法で用いられる好ましい反応ガス
は、式1の化合物中、X,YおよびZが小さい整数の化
合物であり、例えばCHF3 ,CH2 2 ,C2 4
2 6 ,C3 8 、又はC4 8 である。
In the method of the present invention, the plasma polymerization can be preferably carried out in a reaction vessel (plasma polymerization apparatus) having a plasma generating mechanism by using a usual plasma CVD method. A preferred reaction gas used in the method of the present invention is a compound of formula 1 in which X, Y and Z are small integers, such as CHF 3 , CH 2 F 2 , C 2 F 4 ,
C 2 F 6, C 3 F 8, or C 4 F 8.

【0010】また、これらのガスとH2 との混合ガスも
好ましくは用いられ、例えばCF4 およびH2 との混合
ガスも好ましく用いられる。
A mixed gas of these gases and H 2 is also preferably used, for example, a mixed gas of CF 4 and H 2 is also preferably used.

【0011】[0011]

【作用】上記本発明方法によって得られる重合膜は、炭
素とフッ素と(またはこれに少量の水素と)からなるポ
リマーからなり、比誘電率は2.0〜2.5と低比誘電
率である。また、この方法では、基板表面はプラズマの
荷電粒子の衝撃を受けるので、表面にダングリングボン
ドが生じる。このため、通常、この種のポリマーで問題
となる、密着性も充分良好なものが得られる。
The polymer film obtained by the method of the present invention comprises a polymer composed of carbon, fluorine and (or a small amount of hydrogen) and has a relative dielectric constant of 2.0 to 2.5 and a low relative dielectric constant. is there. Further, in this method, the surface of the substrate is bombarded with charged particles of plasma, so that dangling bonds are generated on the surface. Therefore, it is possible to obtain a polymer having sufficiently good adhesion, which is usually a problem with this type of polymer.

【0012】さらに、本発明方法で得られるポリマーは
高い架橋密度を持つ。このため従来例のフッ素樹脂にお
いてみられるような熱フローが起きない。また、絶縁耐
圧、耐熱性、耐薬品性の点でも充分半導体装置の製造工
程に耐えるものを得ることができる。以下、図面を参照
しつつ本発明を実施例により更に説明するが、本発明が
これらの実施例に限定されないことはもとよりである。
Furthermore, the polymers obtained by the process according to the invention have a high crosslink density. For this reason, the heat flow as seen in the conventional fluororesin does not occur. In addition, it is possible to obtain a product that can sufficiently withstand the manufacturing process of a semiconductor device in terms of withstand voltage, heat resistance, and chemical resistance. Hereinafter, the present invention will be further described by way of examples with reference to the drawings, but it goes without saying that the present invention is not limited to these examples.

【0013】[0013]

【実施例】例1 図1は本発明の一実施例に係る半導体装置の製造方法の
説明図である。図1において、1は0.5Torrに減圧さ
れた反応容器Pである。この反応容器1内には平行平板
電極2が設けられている。この平行平板電極2の一方に
基板3を載置し、反応容器1内に反応ガス、例えばCH
3 を流入する。上記の平行平板電極2に高周波(R
F)電源4をもって高周波電圧を印加すると、電極間に
おいて放電が発生し、CHF3 が電離されてプラズマが
発生し、反応ガス分子が活性状態に励起されて基板3上
に堆積し薄膜を形成する。
EXAMPLE 1 FIG. 1 is an explanatory view of a method for manufacturing a semiconductor device according to an example of the present invention. In FIG. 1, 1 is a reaction vessel P whose pressure is reduced to 0.5 Torr. A parallel plate electrode 2 is provided in the reaction container 1. A substrate 3 is placed on one of the parallel plate electrodes 2 and a reaction gas such as CH 2 is placed in the reaction vessel 1.
Inflow F 3 . A high frequency (R
F) When a high frequency voltage is applied by the power source 4, a discharge is generated between the electrodes, CHF 3 is ionized and plasma is generated, and reactive gas molecules are excited to an active state and deposited on the substrate 3 to form a thin film. ..

【0014】以下、更に図2に基づき説明する。シリコ
ン基板11上にホトリソグラフィー技術を用い、材質と
してアルミニウムを用い第一の配線層12(厚み;1μ
m)をパターン形成する(図2(A))。次いで図1で
示した反応容器1内に基板11を載置し下記の条件でプ
ラズマ重合を行った: 使用反応ガス;C2 4 流量;250SCCM 圧力;0.1torr 電力;300W 以上の条件のもとでプラズマ重合を10分間行い、約1
μmの絶縁膜13を堆積した(図2(B))。
Further description will be given below with reference to FIG. A first wiring layer 12 (thickness: 1 μm is formed on the silicon substrate 11 by using a photolithography technique and aluminum as a material.
m) is patterned (FIG. 2A). Then, the substrate 11 was placed in the reaction vessel 1 shown in FIG. 1 and plasma polymerization was performed under the following conditions: Reaction gas used; C 2 F 4 flow rate; 250 SCCM pressure; 0.1 torr power; Plasma polymerization is carried out for 10 minutes under the condition of about 1
A μm insulating film 13 was deposited (FIG. 2B).

【0015】次いで、公知のホトリソグラフィー法によ
り前記絶縁膜13にスルーホール14を形成する(図2
(C))。次いでアルミニウムを用い第二の配線層15
(厚み;約1μm)を形成し(図2(D))、最後に第
二の配線層をパターニングした(図2(E))。上記の
プロセスで得られた絶縁膜をXPS(Xray Pho
toelectron Spectroscopy)法
を用いて次の絶縁膜の組成構造を得た: C−C 構造;5% C−CFX 〃 ;25% CF 〃 ;37% CF2 〃 ;21% CF3 〃 ;12% この分析結果から得られた絶縁膜は高度に架橋した構造
を採っていることが判明する。
Then, a through hole 14 is formed in the insulating film 13 by a known photolithography method (FIG. 2).
(C)). Then, using aluminum, the second wiring layer 15
(Thickness: about 1 μm) was formed (FIG. 2D), and finally the second wiring layer was patterned (FIG. 2E). The insulating film obtained by the above process is applied to XPS (Xray Pho
The following compositional structure of the insulating film was obtained by using a toelectron spectroscopy method: C—C structure; 5% C—CF X 〃; 25% CF 〃; 37% CF 2 〃; 21% CF 3 〃; 12% From this analysis result, it is found that the insulating film has a highly crosslinked structure.

【0016】次に得られた絶縁膜の耐熱性をTG−DT
A(Thermogravimetry−Differ
ential Thermol Analysis)法
を用いて測定した。この結果、膜の耐熱性は、空気中で
370℃であった。また、絶縁膜の誘電率(εr )は
2.4であった。 例2 例1と同様の手順をくり返した。但し、プラズマ重合の
条件は次の如くであった。
Next, the heat resistance of the obtained insulating film was measured by TG-DT.
A (Thermogrammetry-Differ
The measurement was carried out by the method of "Thermal Thermol Analysis". As a result, the heat resistance of the film was 370 ° C. in air. The dielectric constant (ε r ) of the insulating film was 2.4. Example 2 The same procedure as in Example 1 was repeated. However, the conditions for plasma polymerization were as follows.

【0017】 使用反応ガス;C4 8 ガス流量;250SCCM 圧力;0.5torr 電力;300W 以上の条件のもとで得られた絶縁膜について例1と同様
に耐熱性を測定した。その結果、空気中で350℃であ
った。また、比誘電率(εr )は2.4であった。 例3 例1と同様の手順をくり返した。但し、プラズマ重合の
条件は次の如くであった。
Heat resistance was measured in the same manner as in Example 1 for the insulating film obtained under the conditions of the reaction gas used, C 4 F 8 gas flow rate, 250 SCCM pressure, 0.5 torr power, and 300 W or more. As a result, it was 350 ° C. in air. The relative dielectric constant (ε r ) was 2.4. Example 3 The same procedure as in Example 1 was repeated. However, the conditions for plasma polymerization were as follows.

【0018】 使用反応ガス;CHF3 ガス流量;250SCCM 圧力;0.5torr 電力;300W 3分間で1μm薄膜を堆積した。A reaction gas used: CHF 3 gas flow rate; 250 SCCM pressure; 0.5 torr electric power; 300 W, a 1 μm thin film was deposited for 3 minutes.

【0019】得られた絶縁膜の耐熱性は350℃であ
り、比誘電率は2.5であった。 例4 例1と同様の手順をくり返した。但し、プラズマ重合条
件は次の如くであった。 使用反応ガス;CF4 とH2 の混合ガス(2対1の割
合) ガス流量;300SCCM 圧力;0.1torr 電力;300W 得られた絶縁膜の耐熱性は(350℃)、比誘電率は
(2.5)であった。 例5 この例はプラズマ重合を用いて層間絶縁膜を形成するマ
ルチチップモジュールの製造方法の一実施例である。
The heat resistance of the obtained insulating film was 350 ° C. and the relative dielectric constant was 2.5. Example 4 The same procedure as in Example 1 was repeated. However, the plasma polymerization conditions were as follows. Reaction gas used; mixed gas of CF 4 and H 2 (ratio of 2 to 1) Gas flow rate; 300 SCCM pressure; 0.1 torr power; 300 W Heat resistance of the obtained insulating film (350 ° C.), relative permittivity ( 2.5). Example 5 This example is an example of a method for manufacturing a multichip module in which an interlayer insulating film is formed by using plasma polymerization.

【0020】アルミナ基板21上にスクリーン印刷を用
い、材質としてタングステンを用い第一の配線層22
(厚み;10μm)をパターン形成する(図3
(A))。次いで図1で示した反応容器(カソードカッ
プルのプラズマチャンバー)1内に基板11を載置し下
記の条件でプラズマ重合を行った: 使用反応ガス;C2 4 流量;300SCCM 圧力;0.1torr 電力;300W 以上の条件のもとでプラズマ重合を2分間行い、約10
μmの第一の絶縁膜23を堆積した(図3(B))。
The first wiring layer 22 is formed by using screen printing on the alumina substrate 21 and using tungsten as a material.
(Thickness: 10 μm) is patterned (FIG. 3
(A)). Next, the substrate 11 was placed in the reaction vessel (cathode-coupled plasma chamber) 1 shown in FIG. 1 and plasma polymerization was carried out under the following conditions: Reaction gas used; C 2 F 4 flow rate; 300 SCCM pressure; 0.1 torr Electric power: Plasma polymerization is performed for 2 minutes under the condition of 300 W or more, and about 10
A first insulating film 23 having a thickness of μm was deposited (FIG. 3 (B)).

【0021】次いで、公知のホトリソグラフィー法によ
り前記絶縁膜23にスルホール24を形成する(図3
(C))。次いでアルミニウムを用い前記と同じ条件で
第二の配線層25(厚み;約3μm)を形成し(図3
(D))、最後に第二の配線層をパターニングした(図
3(E))。
Next, through holes 24 are formed in the insulating film 23 by a known photolithography method (FIG. 3).
(C)). Then, using aluminum, the second wiring layer 25 (thickness: about 3 μm) is formed under the same conditions as described above (see FIG. 3).
(D)), and finally the second wiring layer was patterned (FIG. 3 (E)).

【0022】次いで第一の絶縁膜形成と同一の条件下で
プラズマ重合を行い第二の絶縁膜16(厚さ;約2μ
m)を堆積した(図4(F))。上記のプロセスで得ら
れた絶縁膜の比誘電率を測定したところ、ε=2.4で
あった。次いで、公知のホトリソグラフィー法により前
記第二の絶縁膜16にスルホール27を形成した(図4
(G))。
Next, plasma polymerization is performed under the same conditions as the formation of the first insulating film, and the second insulating film 16 (thickness: about 2 μm) is formed.
m) was deposited (FIG. 4 (F)). When the relative dielectric constant of the insulating film obtained by the above process was measured, it was ε = 2.4. Then, a through hole 27 is formed in the second insulating film 16 by a known photolithography method (FIG. 4).
(G)).

【0023】最後にこのようにして作成したプリント基
板に、通常のポンディング法を用い半導体チップAを組
込み半導体装置を完成した(図4(H))。 例6 C4 8 の反応ガスを用い例5と同様の条件下で手順を
くりかえし、それぞれ約2.0μmの絶縁膜23,26
を得た。絶縁膜の誘電率はεr =2.4であった。 例7 CHF3 の反応ガスを用い、例5と同様の条件下で手順
をくりかえし、それぞれ約0.8μmの絶縁膜13,1
6を得た。絶縁膜の誘電率はεr=2.5であった。 例8 CF4 とH2 の混合ガスを用い、次のプラズマ重合条件
下で例5と同様のプロセスを行った。
Finally, a semiconductor device was completed by incorporating the semiconductor chip A into the printed circuit board produced in this way by using a normal bonding method (FIG. 4 (H)). Example 6 The procedure was repeated using the reaction gas of C 4 F 8 under the same conditions as in Example 5, and the insulating films 23 and 26 each having a thickness of about 2.0 μm were formed.
Got The dielectric constant of the insulating film was ε r = 2.4. Example 7 The reaction gas of CHF 3 was used and the procedure was repeated under the same conditions as in Example 5 to obtain insulating films 13 and 1 each having a thickness of about 0.8 μm.
Got 6. The dielectric constant of the insulating film was ε r = 2.5. Example 8 The same process as in Example 5 was performed under the following plasma polymerization conditions using a mixed gas of CF 4 and H 2 .

【0024】 CF4 :300SCCM H2 :200SCCM 圧力:0.4torr r.f.パワー:300W 2分間の処理で、それぞれ約1.8μmの絶縁膜23,
26を得た。絶縁膜の誘電率は、εr =2.5であっ
た。例5〜8はカソードカップルの例であるが、アノー
ドカップルあるいは誘導結合のプラズマ装置でも同様の
成膜を行うことができる。
CF 4 : 300SCCM H 2 : 200SCCM Pressure: 0.4 torr rf Power: 300 W 2 minutes of processing, the insulating film 23 of about 1.8 μm,
26 was obtained. The dielectric constant of the insulating film was ε r = 2.5. Although Examples 5 to 8 are examples of the cathode couple, similar film formation can be performed with an anode couple or an inductively coupled plasma device.

【0025】以上説明したように本発明は構成されるも
のであるから、得られる層間絶縁膜の比誘電率が低く、
かつち密な薄膜を得る効果を奏する。従って、配線遅延
を大幅に改善することが可能となる。また公知の方法の
如くフッ素樹脂をスピンコートして得られた膜のよう
に、熱フロー、密着性の問題がない。
Since the present invention is configured as described above, the relative dielectric constant of the obtained interlayer insulating film is low,
The effect of obtaining a dense and thin film is obtained. Therefore, it is possible to significantly reduce the wiring delay. Further, unlike a film obtained by spin coating a fluororesin as in a known method, there is no problem of heat flow and adhesion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体装置の製造方法
の主要工程の説明図である。
FIG. 1 is an explanatory diagram of main steps of a method for manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】本発明の一実施例の工程図である。FIG. 2 is a process drawing of an example of the present invention.

【図3】本発明の他の実施例の工程図(一部)である。FIG. 3 is a process diagram (partial view) of another embodiment of the present invention.

【図4】本発明の他の実施例の残りの工程図である。FIG. 4 is a remaining process diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11,21…基板 12,22…第一の配線層 13,23…絶縁膜 15,25…第二の配線層 11, 21 ... Substrate 12, 22 ... First wiring layer 13, 23 ... Insulating film 15, 25 ... Second wiring layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に第一の配線を形成し、次いで一
般式1: CX Y Z (1) (式中、Xは1〜5の整数であり、Yは1〜10の整数
であり、更にZは0〜5の整数である)で表わされる化
合物ガス又は該化合物ガスおよび水素を反応ガスとして
用いてプラズマ重合法により該第一の配線上を含む基板
上に層間絶縁膜を形成し、次いで該層間絶縁膜上に第二
の配線を形成することを含んでなる、半導体装置の製造
方法。
1. A first wiring is formed on a substrate, and then a general formula 1: C X F Y H Z (1) (wherein, X is an integer of 1 to 5 and Y is 1 to 10). An integer, and Z is an integer of 0 to 5) or an interlayer insulating film on the substrate including on the first wiring by plasma polymerization using a compound gas or the compound gas and hydrogen as a reaction gas. And then forming a second wiring on the interlayer insulating film.
【請求項2】 前記第二の配線上を含む基板上に絶縁膜
を形成し、該絶縁膜上に複数のチップを搭載し次いで該
チップを前記第一又は第二の配線と選択的に接続するこ
とを特徴とする請求項1の半導体装置の製造方法。
2. An insulating film is formed on a substrate including on the second wiring, a plurality of chips are mounted on the insulating film, and then the chips are selectively connected to the first or second wiring. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項3】 一般式1で表わされる化合物が、CHF
3 ,CH2 2 ,C 2 4 ,C2 6 ,C3 8 、又は
4 8 の一種である請求項1の半導体装置の製造方
法。
3. A compound represented by the general formula 1 is CHF
3, CH2F2, C 2FFour, C2F6, C3F8, Or
CFourF8A method of manufacturing a semiconductor device according to claim 1, which is a kind of
Law.
【請求項4】 CF4 およびH2 の混合ガスを用いてプ
ラズマ重合を行う請求項1の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein plasma polymerization is performed using a mixed gas of CF 4 and H 2 .
【請求項5】 一般式1: CX Y Z (1) (式中、Xは1〜5の整数であり、Yは1〜10の整数
であり、更にZは0〜5の整数である)で表わされる化
合物ガス又は該化合物ガスおよび水素を反応ガスとして
用いてプラズマ重合法により前記絶縁膜を形成する、請
求項2の半導体装置の製造方法。
5. General formula 1: C X F Y H Z (1) (wherein, X is an integer of 1-5, Y is an integer of 1-10, and Z is an integer of 0-5. The method for manufacturing a semiconductor device according to claim 2, wherein the insulating film is formed by a plasma polymerization method using a compound gas represented by the formula (3) or the compound gas and hydrogen as a reaction gas.
JP2800092A 1991-03-25 1992-02-14 Manufacture of semiconductor device Pending JPH0574960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2800092A JPH0574960A (en) 1991-03-25 1992-02-14 Manufacture of semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-60068 1991-03-25
JP6006891 1991-03-25
JP2800092A JPH0574960A (en) 1991-03-25 1992-02-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0574960A true JPH0574960A (en) 1993-03-26

Family

ID=26366014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2800092A Pending JPH0574960A (en) 1991-03-25 1992-02-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0574960A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701283A2 (en) * 1994-09-12 1996-03-13 Nec Corporation Semiconductor device with amorphous carbon layer and method of fabricating the same
JPH0883842A (en) * 1994-09-12 1996-03-26 Nec Corp Semiconductor device
JPH08222557A (en) * 1995-02-09 1996-08-30 Nec Corp Manufacture of fluorinated amorphous carbon film
JPH08264648A (en) * 1995-03-23 1996-10-11 Nec Corp Semiconductor device
WO1997042356A1 (en) * 1996-05-06 1997-11-13 Massachusetts Institute Of Technology Chemical vapor deposition of fluorocarbon polymer thin films
WO1999057760A1 (en) * 1998-05-07 1999-11-11 Tokyo Electron Limited Semiconductor device
US5985750A (en) * 1997-05-23 1999-11-16 Nec Corporation Manufacturing method of semiconductor device
DE102015017359B3 (en) 2015-07-20 2023-06-22 Taiwan Semiconductor Manufacturing Company, Ltd. WAFER LEVEL PACKAGE (WLP) AND PROCEDURE FOR FORMING ITS

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701283A2 (en) * 1994-09-12 1996-03-13 Nec Corporation Semiconductor device with amorphous carbon layer and method of fabricating the same
JPH0883842A (en) * 1994-09-12 1996-03-26 Nec Corp Semiconductor device
EP0701283A3 (en) * 1994-09-12 1996-11-13 Nec Corp Semiconductor device with amorphous carbon layer and method of fabricating the same
US6033979A (en) * 1994-09-12 2000-03-07 Nec Corporation Method of fabricating a semiconductor device with amorphous carbon layer
JPH08222557A (en) * 1995-02-09 1996-08-30 Nec Corp Manufacture of fluorinated amorphous carbon film
JPH08264648A (en) * 1995-03-23 1996-10-11 Nec Corp Semiconductor device
WO1997042356A1 (en) * 1996-05-06 1997-11-13 Massachusetts Institute Of Technology Chemical vapor deposition of fluorocarbon polymer thin films
EP1795626A1 (en) * 1996-05-06 2007-06-13 Massachusetts Institute Of Technology Chemical vapor deposition of fluorocarbon polymer thin films
US5985750A (en) * 1997-05-23 1999-11-16 Nec Corporation Manufacturing method of semiconductor device
WO1999057760A1 (en) * 1998-05-07 1999-11-11 Tokyo Electron Limited Semiconductor device
US6720659B1 (en) 1998-05-07 2004-04-13 Tokyo Electron Limited Semiconductor device having an adhesion layer
DE102015017359B3 (en) 2015-07-20 2023-06-22 Taiwan Semiconductor Manufacturing Company, Ltd. WAFER LEVEL PACKAGE (WLP) AND PROCEDURE FOR FORMING ITS

Similar Documents

Publication Publication Date Title
KR960013632B1 (en) Multichip integrated circuit package configuration and method
US4918811A (en) Multichip integrated circuit packaging method
Jensen et al. Copper/polyimide materials system for high performance packaging
Burdeaux et al. Benzocyclobutene (BCB) dielectrics for the fabrication of high density, thin film multichip modules
US6780517B2 (en) Polycarbosilane adhesion promoters for low dielectric constant polymeric materials
JP4338495B2 (en) Silicon oxycarbide, semiconductor device, and method of manufacturing semiconductor device
Majid et al. The parylene-aluminum multilayer interconnection system for wafer scale integration and wafer scale hybrid packaging
US5536584A (en) Polyimide precursor, polyimide and metalization structure using said polyimide
CN101459055B (en) Method of manufacturing semiconductor device
Garrou Polymer dielectrics for multichip module packaging
JPH11297686A (en) Manufacturing semiconductor device
US5374332A (en) Method for etching silicon compound film and process for forming article by utilizing the method
JPH0574960A (en) Manufacture of semiconductor device
JPH077104A (en) Method for hardening thin film of organic dielectric material
Chao et al. Multi-layer thin-film substrates for multi-chip packaging
JP7433318B2 (en) Packaging substrates and semiconductor devices including the same
JP2000268632A (en) Insulating film and manufacture thereof and electronic device and manufacture thereof
McDonald et al. Techniques for fabrication of wafer scale interconnections in multichip packages
US5024969A (en) Hybrid circuit structure fabrication methods using high energy electron beam curing
Kikuchi et al. Fabrication of high-density wiring interposer for 10 GHz 3D packaging using a photosensitive multiblock copolymerized polyimide
JP2871222B2 (en) Manufacturing method of wiring board
JP2003252982A (en) Organic insulating film material, manufacturing method thereof, method for forming organic insulating film, and semiconductor device equipped with organic insulating film
JPH0832244A (en) Multilayer wiring board
JP4882893B2 (en) Manufacturing method of semiconductor device
JPH07193167A (en) Method for forming via-hole having high aspect ratio

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010515