JPH057052B2 - - Google Patents

Info

Publication number
JPH057052B2
JPH057052B2 JP58190363A JP19036383A JPH057052B2 JP H057052 B2 JPH057052 B2 JP H057052B2 JP 58190363 A JP58190363 A JP 58190363A JP 19036383 A JP19036383 A JP 19036383A JP H057052 B2 JPH057052 B2 JP H057052B2
Authority
JP
Japan
Prior art keywords
membrane
gas
copolyimide
present
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58190363A
Other languages
Japanese (ja)
Other versions
JPS6082103A (en
Inventor
Takayuki Oota
Munehisa Okada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP58190363A priority Critical patent/JPS6082103A/en
Publication of JPS6082103A publication Critical patent/JPS6082103A/en
Publication of JPH057052B2 publication Critical patent/JPH057052B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 本発明は良好な気体透過性を持つ選択的分離膜
に関する。更に詳しくは、気体混合物の分離に適
した気体分離膜に関する。 近時、膜による分離技術の進歩発展には著しい
ものがあり、そのうちのいくつかは工業的規模で
実用化されている。しかし実用化されているのは
海水の淡水化、工場廃液の処理、食品の濃縮等の
如く液−液分離もしくは液−固分離であり、気−
気分離即ち2種以上の混合ガスの分離については
殆んどない。 なぜならば従来の膜は、気体の透過速度が小さ
いために、多くの膜面積を必要とし、分離の為の
コストが高くなつたり、実用化が難しいという欠
点があつた。 従つてすぐれた選択性を保ちながら、透過速度
のきわめて大きい膜が望まれている。気体の透過
速度は与えられた膜面積を、与えられた時間内に
透過する気体の量によつて示される。従つて膜を
はさんでの圧力差を一定とすれば、その膜に対す
る気体の透過速度はその膜材料自体の気体の通し
易さ(透過係数で示される)、及び膜の厚みに依
存する。それ故最良の結果はある気体について透
過係数の大きい膜材料を使用し、膜をはさんでの
圧力差に耐え得る限り最も薄い膜を使用した時に
得られる。 本発明の分離膜はガス分離性能が特にすぐれて
いる特定の芳香族ポリイミドからなる分離膜材料
である。 芳香族ポリイミドは、非常にすぐれた耐熱性を
もち、さらに機械的性質および耐薬品性もすぐれ
ているので、高温での耐久性が優れたものであ
る。 ところが公知の芳香族ポリイミドとしては、ピ
ロメリツト酸と芳香族ジアミンやビフエニルテト
ラカルボン酸と芳香族ジアミンとから得られるが
水素と窒素の透過速度の比が約330以下であり酸
素と窒素の透過速度の比が約16以下であり分離性
能が必ずしも充分ではなかつた。 本発明者等は鋭意検討した結果、コポリイミド
を主体とする膜材料を用いた場合に、気体混合物
の分離において、すぐれた選択性を保持しなが
ら、気体の透過速度が従来の同系統の膜より大き
い膜が得られることを見出し本発明に到達した。 すなわち、本発明の要旨は、 一般式 で表わされる反復単位からなり、 反復単位(A):反復単位(B)が20:80ないし80:20
のモル比で存在するコポリイミドを膜材料の主体
とする均質膜からなる分離膜、とくに気体用分離
膜に存する。 しかして本発明の分離膜は、上述したコポリイ
ミドを膜材料とするが、該混合物の膜としての特
性を大巾に失わない限りにおいて、有機物、無機
物などの第二成分を含んでいてもよい。また、ポ
リアミド、ポリエステル等の合成繊維又は天然繊
維の不織布を強化材として含んでいてもよい。製
膜方法は特に制限はなく、公知の方法により平
膜、管状膜、あるいは中空糸状の膜に製膜され
る。例えばポリマーを適当な溶剤に溶解した高分
子溶液あるいは重合溶液をそのままガラス板上あ
るいは多孔質材料上に流延あるいは塗布し、一定
時間溶媒の一部を徐々に蒸発させた後、充分に乾
燥して製造することができる。 本発明において使用されるコポリイミドは一般
式 (A)および(B)で表わされる反復単位からなり、反
復単位(A):反復単位(B)が20:80ないし80:20のモ
ル比で存在する。 このコポリイミドは、適当な無水物および適当
なポリイソシアネートあるいは相当するポリアミ
ンからポリイミドの製造技術において周知の方法
のいずれによつても製造することができる。 詳しくは説明すると、この発明で使用されるコ
ポリイミドを製造するには、まず、以下の一般式
(C)および(D)で表わされる反復単位を有するコポリ
アミド酸を得る。 反復単位(C):反復単位(D)は20:80ないし80:20
のモル比で存在している。 該コポリアミド酸は、ピロメリツト酸無水物
(以下(a)成分という)に対し、3,3′−ジメチル
ベンチジン(以下(b)成分という)と4,4′−ジア
ミノジフエニルエーテル(以下、(c)成分という)
とを、(b)成分と(c)成分の合計量が(a)成分量と実質
的に等モルであつてかつ、(b)成分:(c)成分が20:
80ないし80:20のモル比になるように仕込み、有
機溶媒中で低温で反応させることにより製造さ
れ、本発明のコポリイミドは、上述のようにして
製造されたコポリアミド酸を常法によりイミド化
することにより製造される。 (a)成分と(b)および(c)成分との反応は有機溶媒、
例えばN,N−ジメチルホルムアミド、N,N−
ジメチルアセトアミド、N,N−ジメチルプロピ
オンアミド等のアミド類、N−メチル−2−ピロ
リドン、1,5−ジメチル−2−ピロリドン等の
ピロリドン類、フエノール、p−クロロフエノー
ル、o−クロロフエノール等のフエノール類の一
種以上を単独若しくは混合溶媒中ジメチルスルホ
キサイド、トリクロロエタン等との混合溶媒中で
好適に実施される。 ポリアミド酸を製造する一段目の反応は比較的
低温例えば50℃以下の温度で行うのがよく、また
一般的には(b)および(c)成分を適当な有機溶媒に溶
解させた溶液を冷却下に保ち、この溶液に(a)成分
を添加して反応を行うことができる。 かくして得られたポリアミド酸溶液は種々の方
法でイミド化することが出来る。例えば (イ) そのまま加熱脱水してイミド化する方法 (ロ) ポリアミド酸溶液をガラス板等の上に流延し
た後加熱脱水してイミド化する方法 (ハ) ポリアミド酸溶液に第3級アミン及び酸無水
物等のイミド化触媒を添加混合した後ガラス板
等の上に流延し、室温又は加熱脱水してイミド
化する方法 (ニ) 大量のアセトン等の貧溶媒に投入して、析
出、別した粉末を加熱乾燥させてイミド化す
る方法 (ホ) 第3級アミン及び酸無水物等のイミド化触媒
中又はそれらを含む有機溶媒中で室温又は加熱
脱水してイミド化する方法 等がある。 該コポリイミドはフイルムを形成させるのに必
要な高分子量すなわち97%の濃硫酸中、0.5g/
dlの濃度且つ30℃の温度で測定した対数粘度ηinh
が少なくとも0.5dl/g好適には1dl/g以上5
dl/g以下の範囲にあることが望ましい。ここで
対数粘度ηinhとは下記式 ηinh=ln(ηrel)/C 式中Cは重合体溶液の濃度(重合体g/溶媒
100ml)であり且つηrelは相対粘度すなわち毛細
管粘度計で測定した重合体溶液及び溶媒の流動時
間の比で定義される測定値である。コポリアミド
酸は、N,N−ジメチルホルムアミド中0.5g/
dlの濃度かつ30℃の温度で測定した対数粘度
(ηinh)が0.5dl/g〜10dl/gの範囲にあること
が望ましい。対数粘度ηinhの定義は上記に同じで
ある。 本発明で用いられるコポリイミドは、前示(A)お
よび(B)の反復単位が20:80ないし80:20好ましく
は30:70ないし70:30(モル比)である。後述の
実施例及び参考例で明らかなように、それぞれの
単独系では勿論のこと(A)と(B)の割合が上記範囲外
では本発明の目的の高弾性、高強度のポリイミド
が得られないからである。すなわち(A)の割合が上
記範囲以下であると弾性率及び強度等が十分改良
されず、また(A)の割合が上記範囲以上であると、
弾性率は高いが強度の極めて低いものしか得られ
なくなる。同様にコポリアミド酸は、前示(A)およ
び(B)の反復単位が20:80ないし80:20好ましくは
30:70ないし70:30(モル比)である。 本発明においてはコポリイミドを前述のイミド
化法でフイルム状とし、これを分離膜とする。 コポリイミドからなる分離膜特にηinhが1.0
dl/g以上の均質膜は25Kg/mm2以上の引張強度と
400Kg/mm2以上の初期弾性率を有する。 本発明においてコポリイミドにはそれ自体公知
の処方に従い周知の配合剤、例えば酸化防止剤、
熱安定剤、紫外線吸収剤、着色剤、充填剤等を配
合してもよい。 本発明の膜は気体の選択的透過にすぐれた膜で
あり、又実用的に使用しうるすぐれた機械的強度
と取扱い易さを有しており、混合気体からある気
体をより多くの割合で得る目的で多くの分野に使
用できる。本発明の膜を利用するのに役立つ分野
は、例えば、天然ガスからのヘリウムの回収、水
添反応のガス流からの水素の濃縮、汚水処理のた
めの曝気、醗酵工業、高い燃焼温度を必要とする
ボイラー、焼却炉、医療用酸素吸入装置、魚養殖
池用曝気等のための酸素濃縮等があり、酸素、窒
素、水素、二酸化炭素、一酸化炭素、ヘリウム、
アルゴン、アンモニア、アルカン(例えばメタ
ン、エタンその他)、アルケン(例えばエチレン、
プロピレンその他)、水蒸気、硫化水素、アルカ
ノール(例えばメタノールまたはエタノール)お
よび膜透過により分離可能な任意のその他の気体
または蒸気例えば揮発性金属同位元素またはその
塩、例えばウラニウムまたはヘキサフルオロウラ
ニウムなどをあげることができ、本膜は、これら
の気体混合物から、相互に分離するのに適してい
る。 以下、本発明の内容を実施例にて具体的に説明
する。なお、本発明の趣旨に関するものは、実施
例にのみ限定されるものではない。 参考例 1 温度計、攪拌装置を備えた500ml4つ口フラス
コに4,4′−ジアミノジフエニルエーテル(以下
ODAと略す)6.6g、3,3′−ジメチルベンチジ
ン(以下OTDと略す)3.0gを精秤し、N,N−
ジメチルホルムアミド(以下DMFと略す)80ml
を加えて溶解した。次いで無水ピロメリツト酸
(以下PMDAと略す)10.3gを加え、室温にて5
時間反応を行つた。反応の進行と共に溶液の粘度
が上昇する為、DMFにて稀釈を行い、最終的に
12重量%のOTD/ODA=30/70(モル比)のア
ミド酸の共重合体溶液を得た。この溶液の一部を
DMFにて稀釈して0.5g/dl溶液を調製して対数
粘度を測定したところ2.5dl/gであつた。赤外
吸収スペクトルから3280cm-1にアミド酸の吸収
(NH)が認められた。 実施例 1 参考例1に従つて得たコポリアミド酸のDMF
溶液をガードナー社製ドクターナイフにてガラス
板上に薄膜を形成し、120℃、10分間熱風乾燥炉
中にて乾燥した。次いでこの半乾燥フイルムを金
属枠に固定し、更に、120℃より250℃まで15分間
で加熱昇温し、最後に350℃4分間熱処理を行い、
25μmのコポリイミド均質膜を得た。 この均質膜の赤外吸収スペクトルをとると1780
cm-1及び730cm-1に強いイミドの吸収が新たにみ
られ、一方3280cm-1のN−Hの吸収が完全になく
なつていた。 尚、均質膜物性は下記によつて評価を行つた。 引張試験:ASTM D638の試験方法に準拠し
た方法で20℃で測定した。 ガラス転移点(以下Tgと略す):島津製作所(株)
製、熱的機械分析計を用いて10℃/分の昇温速度
で測定した。 この均質膜の引張物性は弾性率410Kg/mm2、強
度20Kg/mm2、破断伸度50%であつた。又このコポ
リイミド均質膜を97%硫酸に溶解して0.5g/dl
溶液を調整して対数粘度を測定したところ1.5
dl/gであつた。 尚コポリイミドのTgは約350℃であつた。得ら
れた均質膜を分離膜としての性能試験即ち気体透
過率測定をおこなつた。 水蒸気を除く、気体の透過速度の測定法は気体
透過率測定装置を使用した。同装置は膜の一方の
面に所定のガスを定圧供給し、一定時間に膜の他
の面から透過流出するガス量を、ガスクロマトグ
ラフにより測定する装置である。測定温度28℃。 水蒸気透過速度は、ASTM E96−66に準じ38
℃−92% RHにて測定した。 結果を表1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a selective separation membrane with good gas permeability. More specifically, the present invention relates to a gas separation membrane suitable for separating gas mixtures. In recent years, there has been remarkable progress in separation technology using membranes, and some of them have been put into practical use on an industrial scale. However, what has been put into practical use is liquid-liquid separation or liquid-solid separation, such as seawater desalination, factory waste treatment, food concentration, etc.
There is almost no gas separation, that is, separation of two or more types of mixed gases. This is because conventional membranes have the drawbacks of requiring a large membrane area due to their low gas permeation rate, increasing the cost for separation, and making it difficult to put them into practical use. Therefore, a membrane is desired that has an extremely high permeation rate while maintaining excellent selectivity. Gas permeation rate is indicated by the amount of gas that permeates a given membrane area in a given time. Therefore, assuming that the pressure difference across the membrane is constant, the rate of gas permeation through the membrane depends on the gas permeability of the membrane material itself (indicated by the permeability coefficient) and the thickness of the membrane. The best results are therefore obtained when using a membrane material with a high permeability coefficient for a given gas, and using the thinnest membrane possible to withstand the pressure differential across the membrane. The separation membrane of the present invention is a separation membrane material made of a specific aromatic polyimide that has particularly excellent gas separation performance. Aromatic polyimide has excellent heat resistance, and also has excellent mechanical properties and chemical resistance, so it has excellent durability at high temperatures. However, known aromatic polyimides are obtained from pyromellitic acid and aromatic diamines, or from biphenyltetracarboxylic acid and aromatic diamines, but the ratio of hydrogen to nitrogen permeation rates is approximately 330 or less, and the oxygen and nitrogen permeation rates are low. The ratio was less than about 16, and the separation performance was not necessarily sufficient. As a result of extensive studies, the present inventors have found that when using a membrane material mainly composed of copolyimide, while maintaining excellent selectivity in separating gas mixtures, the gas permeation rate is lower than that of conventional membranes of the same type. The inventors have discovered that a larger membrane can be obtained and have arrived at the present invention. That is, the gist of the present invention is the general formula It consists of a repeating unit expressed as: repeating unit (A): repeating unit (B) in a ratio of 20:80 to 80:20
It exists in separation membranes, especially gas separation membranes, which are homogeneous membranes whose main membrane material is copolyimide present in a molar ratio of . The separation membrane of the present invention uses the above-mentioned copolyimide as a membrane material, but may contain a second component such as an organic substance or an inorganic substance as long as the properties of the mixture as a membrane are not significantly lost. . Furthermore, a nonwoven fabric made of synthetic fibers such as polyamide or polyester or natural fibers may be included as a reinforcing material. The membrane forming method is not particularly limited, and a flat membrane, a tubular membrane, or a hollow fiber membrane can be formed by a known method. For example, a polymer solution or a polymerization solution in which a polymer is dissolved in an appropriate solvent is cast or coated as it is on a glass plate or porous material, a portion of the solvent is gradually evaporated for a certain period of time, and then thoroughly dried. It can be manufactured using The copolyimide used in the present invention consists of repeating units represented by general formulas (A) and (B), and the repeating unit (A): repeating unit (B) is present in a molar ratio of 20:80 to 80:20. do. The copolyimide can be prepared from a suitable anhydride and a suitable polyisocyanate or corresponding polyamine by any of the methods well known in the polyimide manufacturing art. To explain in detail, in order to produce the copolyimide used in this invention, first, the following general formula is prepared.
A copolyamic acid having repeating units represented by (C) and (D) is obtained. Repeating unit (C): Repeating unit (D) is 20:80 or 80:20
are present in a molar ratio of The copolyamic acid contains pyromellitic anhydride (hereinafter referred to as component (a)), 3,3'-dimethylbenzidine (hereinafter referred to as component (b)) and 4,4'-diaminodiphenyl ether (hereinafter referred to as component (b)). (referred to as (c) component)
and the total amount of components (b) and (c) is substantially equimolar to the amount of component (a), and the amount of component (b):component (c) is 20:
The copolyimide of the present invention is produced by reacting the copolyamic acid in an organic solvent at a low temperature in a molar ratio of 80 to 80:20. Manufactured by The reaction between component (a) and components (b) and (c) is carried out using an organic solvent,
For example, N,N-dimethylformamide, N,N-
Amides such as dimethylacetamide and N,N-dimethylpropionamide, pyrrolidones such as N-methyl-2-pyrrolidone and 1,5-dimethyl-2-pyrrolidone, phenol, p-chlorophenol, o-chlorophenol, etc. It is suitably carried out using one or more phenols alone or in a mixed solvent with dimethyl sulfoxide, trichloroethane, etc. The first stage reaction for producing polyamic acid is preferably carried out at a relatively low temperature, e.g. 50°C or lower, and generally a solution of components (b) and (c) dissolved in an appropriate organic solvent is cooled. Component (a) can be added to this solution to carry out the reaction. The polyamic acid solution thus obtained can be imidized by various methods. For example, (a) a method in which a polyamic acid solution is directly heated and dehydrated to imidize it (b) a method in which a polyamic acid solution is cast onto a glass plate, etc. and then heated and dehydrated to imidize it (c) a method in which a tertiary amine and a polyamic acid solution are added to the polyamic acid solution. A method in which an imidization catalyst such as an acid anhydride is added and mixed, then cast onto a glass plate, etc., and imidized by dehydration at room temperature or by heating. A method of heating and drying the separated powder to imidize it (e) A method of imidizing it by heating and dehydrating it at room temperature or in an imidization catalyst such as a tertiary amine and an acid anhydride or an organic solvent containing them. . The copolyimide has a high molecular weight necessary to form a film, i.e., 0.5 g/in concentrated sulfuric acid of 97%.
Logarithmic viscosity ηinh measured at a concentration of dl and a temperature of 30℃
is at least 0.5 dl/g, preferably 1 dl/g or more5
It is desirable that it be within the range of dl/g or less. Here, the logarithmic viscosity ηinh is expressed by the following formula: ηinh=ln(ηrel)/C In the formula, C is the concentration of the polymer solution (g polymer/solvent
100 ml) and ηrel is the relative viscosity, a measurement defined as the ratio of the flow times of the polymer solution and solvent as measured with a capillary viscometer. Copolyamic acid 0.5g/in N,N-dimethylformamide
The logarithmic viscosity (ηinh) measured at a concentration of dl and a temperature of 30°C is preferably in the range of 0.5 dl/g to 10 dl/g. The definition of logarithmic viscosity ηinh is the same as above. The copolyimide used in the present invention has repeating units of (A) and (B) in a molar ratio of 20:80 to 80:20, preferably 30:70 to 70:30. As is clear from the Examples and Reference Examples described below, polyimides with high elasticity and high strength, which are the objects of the present invention, cannot be obtained when the ratio of (A) and (B) is outside the above range, as well as when each is used alone. That's because there isn't. In other words, if the proportion of (A) is below the above range, the elastic modulus and strength etc. will not be sufficiently improved, and if the proportion of (A) is above the above range,
Although the modulus of elasticity is high, only extremely low strength can be obtained. Similarly, the copolyamic acid preferably contains 20:80 to 80:20 repeating units of (A) and (B).
The molar ratio is 30:70 to 70:30. In the present invention, copolyimide is formed into a film by the above-mentioned imidization method, and this is used as a separation membrane. Separation membrane made of copolyimide, especially with ηinh of 1.0
A homogeneous membrane of dl/g or more has a tensile strength of 25Kg/mm2 or more.
It has an initial elastic modulus of 400Kg/mm2 or more . In the present invention, the copolyimide is treated with known compounding agents, such as antioxidants, according to formulations known per se.
Heat stabilizers, ultraviolet absorbers, colorants, fillers, etc. may be added. The membrane of the present invention is a membrane with excellent selective gas permeation, and has excellent mechanical strength and ease of handling for practical use. It can be used in many fields for obtaining purposes. Areas where the membranes of the invention can be useful include, for example, recovery of helium from natural gas, concentration of hydrogen from gas streams of hydrogenation reactions, aeration for wastewater treatment, fermentation industries, where high combustion temperatures are required. There are boilers, incinerators, medical oxygen inhalation equipment, oxygen concentrators for aeration for fish culture ponds, etc., and oxygen, nitrogen, hydrogen, carbon dioxide, carbon monoxide, helium,
Argon, ammonia, alkanes (e.g. methane, ethane, etc.), alkenes (e.g. ethylene,
propylene, etc.), water vapor, hydrogen sulfide, alkanols (e.g. methanol or ethanol) and any other gas or vapor that can be separated by membrane permeation, such as volatile metal isotopes or their salts, such as uranium or hexafluorouranium. The membrane is suitable for separating these gas mixtures from each other. Hereinafter, the content of the present invention will be specifically explained with reference to Examples. Note that the gist of the present invention is not limited only to the examples. Reference example 1 Add 4,4'-diaminodiphenyl ether (hereinafter referred to as
Accurately weigh 6.6 g of ODA) and 3.0 g of 3,3'-dimethylbenzidine (OTD), and
Dimethylformamide (hereinafter abbreviated as DMF) 80ml
was added and dissolved. Next, 10.3 g of pyromellitic anhydride (hereinafter abbreviated as PMDA) was added, and the
A time reaction was performed. As the viscosity of the solution increases as the reaction progresses, dilute it with DMF and finally
An amic acid copolymer solution of 12% by weight OTD/ODA=30/70 (molar ratio) was obtained. Some of this solution
A 0.5 g/dl solution was prepared by diluting with DMF, and the logarithmic viscosity was measured and found to be 2.5 dl/g. Amic acid absorption (NH) was observed at 3280 cm -1 from the infrared absorption spectrum. Example 1 DMF of copolyamic acid obtained according to Reference Example 1
A thin film of the solution was formed on a glass plate using a doctor knife manufactured by Gardner, and dried in a hot air drying oven at 120°C for 10 minutes. Next, this semi-dry film was fixed on a metal frame, heated from 120℃ to 250℃ for 15 minutes, and finally heat treated at 350℃ for 4 minutes.
A 25 μm copolyimide homogeneous membrane was obtained. The infrared absorption spectrum of this homogeneous film is 1780
Strong imide absorption was newly observed at cm -1 and 730 cm -1 , while N--H absorption at 3280 cm -1 had completely disappeared. The physical properties of the homogeneous film were evaluated as follows. Tensile test: Measured at 20°C in accordance with ASTM D638 test method. Glass transition point (hereinafter abbreviated as Tg): Shimadzu Corporation
The temperature was measured using a thermomechanical analyzer manufactured by Komatsu Co., Ltd. at a heating rate of 10°C/min. The tensile properties of this homogeneous film were an elastic modulus of 410 Kg/mm 2 , a strength of 20 Kg/mm 2 and a breaking elongation of 50%. In addition, this copolyimide homogeneous membrane was dissolved in 97% sulfuric acid to give a concentration of 0.5 g/dl.
When I adjusted the solution and measured the logarithmic viscosity, it was 1.5.
It was dl/g. The Tg of the copolyimide was approximately 350°C. The obtained homogeneous membrane was subjected to a performance test as a separation membrane, that is, gas permeability measurement. A gas permeability measuring device was used to measure the permeation rate of gases, excluding water vapor. This device supplies a predetermined gas at a constant pressure to one side of the membrane, and measures the amount of gas that permeates and flows out from the other side of the membrane over a certain period of time using a gas chromatograph. Measurement temperature 28℃. Water vapor transmission rate is 38 according to ASTM E96-66.
Measured at ℃-92% RH. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 一般式 で表わされる反復単位からなり、 反復単位(A):反復単位(B)が20:80ないし80:20
のモル比で存在するコポリイミドを膜材料の主体
とする均質膜からなる分離膜。
[Claims] 1. General formula It consists of a repeating unit expressed as: repeating unit (A): repeating unit (B) in a ratio of 20:80 to 80:20
A separation membrane consisting of a homogeneous membrane whose main membrane material is copolyimide present in a molar ratio of .
JP58190363A 1983-10-12 1983-10-12 Separation membrane Granted JPS6082103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190363A JPS6082103A (en) 1983-10-12 1983-10-12 Separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190363A JPS6082103A (en) 1983-10-12 1983-10-12 Separation membrane

Publications (2)

Publication Number Publication Date
JPS6082103A JPS6082103A (en) 1985-05-10
JPH057052B2 true JPH057052B2 (en) 1993-01-28

Family

ID=16256935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190363A Granted JPS6082103A (en) 1983-10-12 1983-10-12 Separation membrane

Country Status (1)

Country Link
JP (1) JPS6082103A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119813A (en) * 1984-06-20 1986-01-28 Agency Of Ind Science & Technol Production of polyimide hollow fiber
US4705540A (en) * 1986-04-17 1987-11-10 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4717394A (en) * 1986-10-27 1988-01-05 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4717393A (en) * 1986-10-27 1988-01-05 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4880442A (en) * 1987-12-22 1989-11-14 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes
US4948400A (en) * 1988-06-30 1990-08-14 Nippon Steel Chemical Co., Ltd. Separation membranes and process for preparing the same
US4932983A (en) * 1989-06-01 1990-06-12 E. I. Du Pont De Nemours And Company Copolyimide gas separation membranes derived from substituted methylene dianilines and unsubstituted diamines
US4932982A (en) * 1989-06-01 1990-06-12 E. I. Du Pont De Nemours And Company Copolyimide gas separation membranes derived from substituted phenylene diamines and substituted methylene dianilines
FR2650756B1 (en) * 1989-08-11 1991-10-31 Inst Francais Du Petrole GAS SEPARATION MEMBRANE
FR2650755B1 (en) * 1989-08-14 1991-10-31 Inst Francais Du Petrole GAS SEPARATION MEMBRANE
US4988371A (en) * 1989-09-12 1991-01-29 The Dow Chemical Company Novel alicyclic polyimide gas separation membranes
US5178650A (en) * 1990-11-30 1993-01-12 E. I. Du Pont De Nemours And Company Polyimide gas separation membranes and process of using same
US5248319A (en) * 1992-09-02 1993-09-28 E. I. Du Pont De Nemours And Company Gas separation membranes made from blends of aromatic polyamide, polymide or polyamide-imide polymers
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
WO2006025327A1 (en) 2004-08-30 2006-03-09 National University Corporation Nagoya Institute Of Technology Multibranched polyimide hybrid material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170936A (en) * 1981-04-14 1982-10-21 Ube Ind Ltd Preparation of porous polyimide film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170936A (en) * 1981-04-14 1982-10-21 Ube Ind Ltd Preparation of porous polyimide film

Also Published As

Publication number Publication date
JPS6082103A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
JP2855668B2 (en) Polyimide separation membrane
US5248319A (en) Gas separation membranes made from blends of aromatic polyamide, polymide or polyamide-imide polymers
US4948400A (en) Separation membranes and process for preparing the same
US4838900A (en) Polyimide gas separation membranes
US4378324A (en) Process for preparing aromatic polyimide semipermeable membranes
US4690873A (en) Gas separating material
US5071997A (en) Polyimides comprising substituted benzidines
US4954144A (en) Polyimide membranes and their use for gas separation
JPH057052B2 (en)
JPS6153103B2 (en)
EP0648812B1 (en) Blends of polyethersulfones with aromatic polyimides, polyamides or polyamide-imides and gas separation membranes made therefrom
US5917137A (en) Gas separation membranes of blends of polyethersulfones with aromatic polyimides
US4959151A (en) Pervaporation method of separating liquid organic compound mixture through aromatic imide polymer asymmetric membrane
JPS6022902A (en) Separation membrane
JP3471918B2 (en) New polyimide gas separation membrane
Huang et al. Water vapor permeation properties of aromatic polyimides
US5032279A (en) Separation of fluids using polyimidesiloxane membrane
JP3473300B2 (en) Aromatic polyimide gas separation membrane
Li et al. Relationship between structure and gas permeation properties of polyimides prepared from oxydiphthalic dianhydride
Buys et al. Aromatic copolyimide membranes for high temperature gas separations: H2/CH4, H2/N2, and O2/N2
EP0437611A1 (en) Separative membrane made of aromatic polyimide
JPH0286820A (en) Separating membrane and production thereof
JPH038818B2 (en)
JPH0693984B2 (en) Polyimide gas separation membrane
JP2001040089A (en) Polyimide resin, its production and gas separation membrane composed thereof