JPH0570338B2 - - Google Patents

Info

Publication number
JPH0570338B2
JPH0570338B2 JP63222838A JP22283888A JPH0570338B2 JP H0570338 B2 JPH0570338 B2 JP H0570338B2 JP 63222838 A JP63222838 A JP 63222838A JP 22283888 A JP22283888 A JP 22283888A JP H0570338 B2 JPH0570338 B2 JP H0570338B2
Authority
JP
Japan
Prior art keywords
voltage
output
synchronization
frequency
logarithmic detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63222838A
Other languages
Japanese (ja)
Other versions
JPH0270138A (en
Inventor
Tatsuo Ishizu
Teruji Ide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP63222838A priority Critical patent/JPH0270138A/en
Publication of JPH0270138A publication Critical patent/JPH0270138A/en
Publication of JPH0570338B2 publication Critical patent/JPH0570338B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (技術分野) 本発明は、スペクトラム拡散通信方式の変調方
式の一つである周波数ホツピング変調方式の電波
を受信する受信装置における同期回路に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a synchronization circuit in a receiving device that receives radio waves using a frequency hopping modulation method, which is one of the modulation methods of a spread spectrum communication method.

(従来技術とその問題点) 周波数ホツピング方式は、FSKを変形したデ
イジタル変調方式であり、キヤリア周波数を適当
な周波数帯域内で高速度で切り替えて送信し、受
信側では送信側と同じ周波数変化をする局部発振
器(ホツピング発振器)を用いて受信信号の復調
を行う方式である。送信側と受信側で周波数変化
が異なつていると受信信号は全く復調されない。
通常キヤリア周波数は、送信側,受信側の両方で
予め取り決めてある同じ擬似ランダムパターンの
相互同期をとることにより、受信信号の周波数変
化のパターンに、受信側のホツピング発振器の周
波数変化を一致させる同期回路が必要となる。
(Prior art and its problems) The frequency hopping method is a digital modulation method that is a modification of FSK, in which the carrier frequency is switched at high speed within an appropriate frequency band for transmission, and the receiving side receives the same frequency change as the transmitting side. This method uses a local oscillator (hopping oscillator) to demodulate the received signal. If the frequency changes on the transmitting and receiving sides are different, the received signal will not be demodulated at all.
Usually, the carrier frequency is synchronized so that the frequency change of the hopping oscillator on the receiving side matches the frequency change pattern of the received signal by mutually synchronizing the same pseudo-random pattern determined in advance on both the transmitting side and the receiving side. A circuit is required.

同期方式には種々の方式があるが、ここではス
ライデイング相関と呼ばれる方式について述べ
る。第1図は従来の周波数ホツピング方式の同期
回路の例である。
Although there are various synchronization methods, a method called sliding correlation will be described here. FIG. 1 is an example of a conventional frequency hopping type synchronous circuit.

第1図において、1はミキサ(MIX)、2はバ
ンドパスフイルタ(BPF)、3は復調回路
(DEM)、4は包絡線検波器(DET)、5は減算
器(SUB)、6は同期判定のためのスレツシヨル
ド電圧入力、7はタイミング制御回路
(CONT)、8は擬似ランダムパターン発生器
(PN GE)、9はホツピング発振器(HOP LO)
である。
In Figure 1, 1 is a mixer (MIX), 2 is a bandpass filter (BPF), 3 is a demodulation circuit (DEM), 4 is an envelope detector (DET), 5 is a subtracter (SUB), and 6 is synchronization Threshold voltage input for judgment, 7 is timing control circuit (CONT), 8 is pseudo random pattern generator (PN GE), 9 is hopping oscillator (HOP LO)
It is.

ここで、BPF2は、ミキサ1で乗算された信
号中のキヤリア成分及び和成分を除去すると同時
に帯域外の雑音を除去するためのものである。受
信開始時は、受信入力とホツピング発振器9は同
じ符号列の擬似ランダムパターンに従い周波数が
切り替わつているが、タイミングが一致してな
く、そのタイミング差は擬似ランダムパターンの
1周期のどこにあるか不確実である。このタイミ
ング差を無くす制御は、通常、次に示す2段階の
制御によつて行われる。
Here, the BPF 2 is for removing the carrier component and the sum component in the signal multiplied by the mixer 1, and at the same time removing noise outside the band. At the start of reception, the frequencies of the reception input and the hopping oscillator 9 are switched according to a pseudo-random pattern of the same code string, but the timings do not match, and the timing difference is unknown at which point in one period of the pseudo-random pattern. It is certain. Control to eliminate this timing difference is normally performed by the following two-stage control.

まず、タイミング制御回路7から擬似ランダム
パターン発生器8に与えられる信号によりホツピ
ング発振器9への周波数切替のタイミングを擬似
ランダムパターンの1ビツト長又は1/2ビツト長
だけずらし、受信入力をホツピング発振器9のタ
イミング差をほぼなくす制御(スライデイング相
関)を行う。
First, the timing of frequency switching to the hopping oscillator 9 is shifted by 1 bit length or 1/2 bit length of the pseudorandom pattern by a signal given from the timing control circuit 7 to the pseudorandom pattern generator 8, and the receiving input is changed to the hopping oscillator 9. Control (sliding correlation) is performed to almost eliminate the timing difference between

次に、スライデイング相関で残つてタイミング
差をアーリーレート(early−late)ゲート等で
知られる位相同期ループにより常にゼロにする制
御である。
Next, the remaining timing difference due to sliding correlation is controlled to be always zeroed by a phase locked loop known as an early-late gate.

ここでは前者の制御について考える。 Here, we will consider the former type of control.

スライデイング相関によりタイミング差をほぼ
なくす制御は、タイミング差が擬似ランダムパタ
ーン1ビツト長より大きい時は、ミキサ1からの
差周波数成分のレベルつまり包絡線検波器4の出
力電圧がほとんどゼロとなり、タイミング差が1
ビツト以内になつた時だけ大きな相関電圧が包絡
線検波器4から出力されることを利用するもので
あり、この包絡線検波器4から電圧が、ある適当
なスレツシヨルド電圧6を超えて減算器5の出力
電圧が正となるまで周波数切替のタイミングをず
らす制御を行うものである。
Control that almost eliminates the timing difference by sliding correlation is such that when the timing difference is larger than the 1-bit length of the pseudorandom pattern, the level of the difference frequency component from mixer 1, that is, the output voltage of envelope detector 4, becomes almost zero, and the timing The difference is 1
This method utilizes the fact that a large correlation voltage is output from the envelope detector 4 only when the voltage falls within a certain bit, and when the voltage from the envelope detector 4 exceeds a certain appropriate threshold voltage 6, it is output to the subtractor 5. Control is performed to shift the frequency switching timing until the output voltage becomes positive.

つまり、受信信号とホツピング発振器9の周波
数変化のタイミングが合致したかどうかの判定
(同期判定)は、減算器5の出力電圧の正負によ
り行うわけである。ここで判定の規準となるスレ
ツシヨルド電圧6は、従来、雑音時のレベル検出
器の平均電圧かまたは受信信号の信号レベルに応
じて変化する電圧に設定している。
In other words, whether or not the received signal and the frequency change timing of the hopping oscillator 9 coincide with each other is determined (synchronization determination) based on whether the output voltage of the subtracter 5 is positive or negative. The threshold voltage 6, which serves as a criterion for determination, has conventionally been set to the average voltage of a level detector during noise or a voltage that changes depending on the signal level of the received signal.

このような同期回路では、混信の波形,スペク
トラム,信号レベルによつては同期判定の誤りが
起き易い欠点がある。例えば、希望信号のレベル
に比べて混信の信号レベルが非常に高い場合、受
信信号の信号レベルに応じてスレツシヨルド電圧
を決める従来の方式の場合、混信の信号レベルに
よりスレツシヨルド電圧が相関電圧より高くなつ
てしまい、正しい同期位置が検出できなくなつて
しまうことがある。
Such a synchronization circuit has the disadvantage that errors in synchronization determination may easily occur depending on the waveform, spectrum, and signal level of the interference. For example, when the signal level of the interference signal is very high compared to the level of the desired signal, in the conventional method that determines the threshold voltage according to the signal level of the received signal, the threshold voltage becomes higher than the correlation voltage due to the signal level of the interference signal. This may make it impossible to detect the correct synchronization position.

また、相関電圧は信号レベルに応じて変化する
が、包絡線検波器では広いダイナミツクレンジに
亘つて、正しく相関電圧を検波することが困難で
あり、同期判定誤りの原因となり易い。
Further, although the correlated voltage changes depending on the signal level, it is difficult for an envelope detector to correctly detect the correlated voltage over a wide dynamic range, which is likely to cause a synchronization judgment error.

(発明の目的) 本発明の目的は、このような欠点を解決したス
ペクトラム拡散方式における周波数ホツピング変
調方式の電波を受信する際の同期回路を提供する
ことにある。
(Object of the Invention) An object of the present invention is to provide a synchronization circuit for receiving frequency hopping modulation radio waves in a spread spectrum method, which solves the above-mentioned drawbacks.

(発明の構成と動作) 本発明による同期回路は、スレツシヨルド電圧
を受信信号から常に適当な周波数だけ離調した周
波数の信号レベルを基に決定し、包絡線検波器の
代わりに対数検波器を用いることを特徴とするも
のである。
(Structure and operation of the invention) The synchronous circuit according to the present invention determines the threshold voltage based on the signal level of a frequency that is always detuned by an appropriate frequency from the received signal, and uses a logarithmic detector instead of an envelope detector. It is characterized by this.

以下図面により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第2図は本発明の同期回路の実施例を示すブロ
ツク図である。図において、10はミキサ
(MIX)、11,12はバンドパスフイルタ
(BPF)、13,14は対数検波器(LOG)、15
は復調回路(DEM)、16は減算器(SUB)、1
7はタイミング制御回路(CONT)、18は擬似
ランダムパターン発生器(PN GE)、19はホツ
ピング発振器(HOP LO)、20はオフセツト電
圧入力、21は加算器(ADD)である。
FIG. 2 is a block diagram showing an embodiment of the synchronous circuit of the present invention. In the figure, 10 is a mixer (MIX), 11 and 12 are bandpass filters (BPF), 13 and 14 are logarithmic detectors (LOG), and 15
is a demodulation circuit (DEM), 16 is a subtracter (SUB), 1
7 is a timing control circuit (CONT), 18 is a pseudo random pattern generator (PN GE), 19 is a hopping oscillator (HOP LO), 20 is an offset voltage input, and 21 is an adder (ADD).

ここで、BPF1,11の中心周波数は受信信
号に同期がとれた時の受信信号とホツピング発振
器19との周波数差であり、BPF2,12の中
心周波数はホツピング周波数帯域内でBPF1,
11の中心周波数から適当な周波数だけ離れた減
衰域の周波数である。又対勢検波器13,14
は、入力をacosωtとすると検波出力として
Kloga(Kは増幅器特性で決まる定数)が得られ
るもので、特殊なAGC増幅器と包絡線検波器を
組合わせてICとして市販されている。オフセツ
ト電圧20は、雑音時の対数検波器の平均出力電
圧よりは高く、同期が正しく取れた時の相関電圧
よりは低い範囲の電圧に設定してある。
Here, the center frequency of BPF1, 11 is the frequency difference between the received signal and the hopping oscillator 19 when the received signal is synchronized, and the center frequency of BPF2, 12 is within the hopping frequency band.
This is a frequency in an attenuation range separated by an appropriate frequency from the center frequency of No. 11. Also, anti-optical detectors 13, 14
is the detected output when the input is acosωt.
Kloga (K is a constant determined by the amplifier characteristics) is obtained, and it is commercially available as an IC that combines a special AGC amplifier and an envelope detector. The offset voltage 20 is set to a voltage range that is higher than the average output voltage of the logarithmic detector when there is noise, but lower than the correlation voltage when synchronization is properly achieved.

オフセツト電圧20に関する補足説明として、
第3図に第2図の回路の各部の信号波形を示す。
各波形a〜fはそれぞれ同期未捕捉の状態から捕
捉までの電圧の変化を示している。
As a supplementary explanation regarding the offset voltage 20,
FIG. 3 shows signal waveforms at various parts of the circuit shown in FIG. 2.
Each of the waveforms a to f shows a change in voltage from a state in which synchronization is not captured to a state in which synchronization is not captured.

a,bはそれぞれ対数検波器13,14の出力
波形、cは加算器21へ加えるオフセツト電圧2
0の波形、dは加算器21の出力波形、eは減算
器16の出力波形、fはオフセツト電圧20を加
えなかつた時の減算器16の出力波形である。
a and b are the output waveforms of the logarithmic detectors 13 and 14, respectively, and c is the offset voltage 2 applied to the adder 21.
0 waveform, d is the output waveform of the adder 21, e is the output waveform of the subtracter 16, and f is the output waveform of the subtracter 16 when the offset voltage 20 is not applied.

図からわかる通り、同期末捕捉時には対数検波
器13,14の出力電圧a,bは小さな変動を含
んでいる。この変動は混信がある時特に大きくな
る。この電圧をそのまま比較して同期判定に使用
すると、fで示した波形でわかるように、実際に
は同期捕捉していないのに、減算器16の出力電
圧が正になつてしまうことがあり、誤つて同期捕
捉と判定してしまう。これを防ぐため、本発明で
は、対数検波器14の出力にのみオフセツト電圧
20を加え、誤同期を防いでいる。このオフセツ
ト電圧20はhの範囲で混信の程度を考慮して適
当な電圧に決める。
As can be seen from the figure, the output voltages a and b of the logarithmic detectors 13 and 14 include small fluctuations at the time of synchronization end acquisition. This fluctuation becomes especially large when there is interference. If this voltage is directly compared and used for synchronization determination, as shown in the waveform f, the output voltage of the subtracter 16 may become positive even though synchronization has not actually been acquired. It is mistakenly determined to be synchronized acquisition. In order to prevent this, in the present invention, an offset voltage 20 is applied only to the output of the logarithmic detector 14 to prevent false synchronization. This offset voltage 20 is determined to be an appropriate voltage within the range of h, taking into consideration the degree of interference.

本発明は、スライデイング相関を用いて同期制
御を行う際に、同期判定の基準となるスレツシヨ
ルド電圧の決め方と、レベル検出に対数検波器を
用いることが従来の方法と異なる重要な特徴であ
る。
The present invention differs from conventional methods in that, when performing synchronization control using sliding correlation, the method of determining a threshold voltage, which is a reference for synchronization determination, and the use of a logarithmic detector for level detection are important features that differ from conventional methods.

同期が捕捉できていない時(同期末捕捉時)
は、受信入力と、ホツピング発振器19の周波数
差はランダムに変化し一定ではないので、BPF
1,11とBPF2,12を通過する信号も共に
ランダムであり、対数検波器13,14の検波出
力a,bの電圧差はほとんどゼロとなる。次に、
対数検波器14の出力電圧bにのみ、オフセツト
電圧20cが加算器21により加算されるため、
減算器16の出力電圧eは常に負となる。この時
受信信号に混信があつても混信の成分はBPF1,
BPF2両方のフイルタを通過するため、対数検
波器13と14の両方の出力電圧が混信により変
化するので減算器16の出力電圧eは常に負であ
る。
When synchronization cannot be captured (when capturing the end of synchronization)
Since the frequency difference between the receiving input and the hopping oscillator 19 varies randomly and is not constant, the BPF
The signals passing through BPFs 1 and 11 and BPFs 2 and 12 are both random, and the voltage difference between the detection outputs a and b of logarithmic detectors 13 and 14 is almost zero. next,
Since the offset voltage 20c is added only to the output voltage b of the logarithmic detector 14 by the adder 21,
The output voltage e of the subtracter 16 is always negative. At this time, even if there is interference in the received signal, the interference component is BPF1,
Since the signal passes through both filters of the BPF 2, the output voltages of both the logarithmic detectors 13 and 14 change due to interference, so the output voltage e of the subtracter 16 is always negative.

同期捕捉時、すなわち、スライデイング相関に
よりホツピング発振器19の周波数切替のタイミ
ングをずらす制御を行つて、タイミング差が無く
なつた時、BPF1,11のみ信号成分が通過し、
BPF2,12を通過する信号成分は無くなる。
従つて、対数検波器13の検波電圧aは大きな相
関電圧となるが対数検波器14の検波電圧bはほ
とんどゼロとなる。この検波電圧bには加算器2
1によりオフセツト電圧20cが加算されるが、
このオフセツト電圧cは相関電圧よりは低い電圧
に設定定してあるので減算器16の出力eは正と
なる。
At the time of synchronization acquisition, that is, when the timing difference of the frequency switching of the hopping oscillator 19 is controlled by shifting the timing of the hopping oscillator 19 by sliding correlation, and the timing difference disappears, only the signal components of BPF 1 and 11 pass,
Signal components passing through BPF2 and BPF12 disappear.
Therefore, the detected voltage a of the logarithmic detector 13 becomes a large correlated voltage, but the detected voltage b of the logarithmic detector 14 becomes almost zero. Adder 2 is added to this detected voltage b.
1, an offset voltage 20c is added, but
Since this offset voltage c is set to a voltage lower than the correlation voltage, the output e of the subtracter 16 is positive.

従つて、減算器16からの出力電圧eが正にな
るまで、タイミング制御回路17によりホツピン
グ発振器19の周波数切替タイミングをずらすよ
うに擬似ランダムパターン発生器18を制御する
ことにより、混信のレベル,スペクトラムの形に
かかわらず同期捕捉ができる。
Therefore, by controlling the pseudo-random pattern generator 18 to shift the frequency switching timing of the hopping oscillator 19 by the timing control circuit 17 until the output voltage e from the subtracter 16 becomes positive, the level and spectrum of interference can be adjusted. Synchronous acquisition is possible regardless of the shape.

また、信号レベルの検出に対数検波器を使用し
ているので受信入力レベルの大きい変化に対して
も正しく相関電圧が出力できる。すなわち、対数
検波器を使用する効果は次の通りである。
Furthermore, since a logarithmic detector is used to detect the signal level, a correlated voltage can be output correctly even in response to large changes in the received input level. That is, the effects of using a logarithmic detector are as follows.

BPF1,11,BPF2,12の出力は受信入
力レベルに従つて変化する。送信側も受信側も移
動しない固定通信の場合は受信入力レベルの変動
幅は小さいが、送信側,受信側のどちらかあるい
は両方が移動する場合は入力信号レベルの広い範
囲にわたつてBPF1,BPF2の出力信号レベル
を比較する必要がある。この大きいレベル変化に
対して従来はAGCアンプを使用してレベル変化
の幅を抑えているが、この方法では強力な混信が
帯域内に存在するとき、AGCアンプはこの混信
に対してレベルを一定に保つように動作してしま
うので同期捕捉ができなくなつてしまう。本発明
は、対数検波器を使用しているのでこのような欠
点は生じない。
The outputs of BPF1, 11, BPF2, and 12 change according to the received input level. In the case of fixed communication where neither the transmitting side nor the receiving side moves, the fluctuation range of the received input level is small, but when either the transmitting side, the receiving side or both move, the input signal level changes over a wide range of BPF1 and BPF2. It is necessary to compare the output signal levels of the two. Conventionally, an AGC amplifier is used to suppress the width of the level change in response to this large level change, but with this method, when strong interference exists within the band, the AGC amplifier keeps the level constant against this interference. Since it operates in such a way as to keep it at a certain level, synchronized acquisition becomes impossible. Since the present invention uses a logarithmic detector, this drawback does not occur.

(発明の効果) 以上詳細に説明したように、本発明により受信
信号レベルの大きな変化に対しても、また混信の
レベルやスペクトラムの形に影響を受けずに安定
で確実な同期引き込みができるため、送信側,受
信側のいずれかあるいは両方が移動局の場合、特
に極めて大きい効果がある。
(Effects of the Invention) As explained in detail above, the present invention enables stable and reliable synchronization even in the face of large changes in the received signal level and without being affected by the level of interference or the shape of the spectrum. This is particularly effective when either or both of the transmitting and receiving sides are mobile stations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の周波数ホツピング同期回路のブ
ロツク図、第2図は本発明の実施例である周波数
ホツピング同期回路のブロツク図、第3図は第2
図の各部の信号波形図である。 1,10……ミキサ、2,11,12……
BPF、3,15……復調回路(DEM)、4……
包絡線検波器(DET)、5,16……減算器
(SUB)、6……スレツシヨルド電圧、7,17
……タイミング制御回路(CONT)、8,18…
…擬似ランダムパターン発生器(PNGE)、9,
19……ホツピング発振器(HOP LO)、13,
14……対数検波器(LOG)、20……オフセツ
ト電圧、21……加算器(ADD)。
FIG. 1 is a block diagram of a conventional frequency hopping synchronous circuit, FIG. 2 is a block diagram of a frequency hopping synchronous circuit according to an embodiment of the present invention, and FIG.
FIG. 3 is a signal waveform diagram of each part in the figure. 1, 10... mixer, 2, 11, 12...
BPF, 3, 15... Demodulation circuit (DEM), 4...
Envelope detector (DET), 5, 16...Subtractor (SUB), 6...Threshold voltage, 7, 17
...Timing control circuit (CONT), 8, 18...
...pseudo-random pattern generator (PNGE), 9,
19...Hopping oscillator (HOP LO), 13,
14... Logarithmic detector (LOG), 20... Offset voltage, 21... Adder (ADD).

Claims (1)

【特許請求の範囲】 1 周波数ホツピング発振器を有する同期回路に
おいて、 受信信号と前記周波数ホツピング発振器の出力
との乗算結果から希望信号を取り出す第1のバン
ドパスフイルタと、 該第1のバンドパスフイルタの減衰域に設定さ
れた中心周波数を有する第2のバンドパスフイル
タと、 該第1のバンドパスフイルタと第2のバンドパ
スフイルタの出力をそれぞれ入力する第1の対数
検波器と第2の対数検波器と、 該第2の対数検波器の出力と同期未捕捉時の前
記第1の対数検波器の平均雑音電圧より大きく同
期捕捉時の信号相関電圧より小さい値に設定され
たオオフセツト電圧とを加算する加算器と、 前記第1の対数検波器の出力が前記加算器の出
力より大きい時出力する減算器と、 を備えて、該減算器の出力によつて前記周波数ホ
ツピング発振器のタイミングを制御することによ
り同期を行うことを特徴とする周波数ホツピング
変調方式の受信装置における同期回路。
[Scope of Claims] 1. A synchronous circuit having a frequency hopping oscillator, comprising: a first bandpass filter that extracts a desired signal from the result of multiplying a received signal and the output of the frequency hopping oscillator; a second bandpass filter having a center frequency set in an attenuation range; a first logarithmic detector and a second logarithmic detector that receive the outputs of the first bandpass filter and the second bandpass filter, respectively; and the output of the second logarithmic detector and an off-set voltage set to a value greater than the average noise voltage of the first logarithmic detector when synchronization is not acquired and smaller than the signal correlation voltage when synchronization is acquired. and a subtracter that outputs an output when the output of the first logarithmic detector is larger than the output of the adder, the timing of the frequency hopping oscillator is controlled by the output of the subtracter. A synchronization circuit in a frequency hopping modulation receiving device characterized by performing synchronization by.
JP63222838A 1988-09-06 1988-09-06 Synchronous circuit in reception device of frequency hopping modulation system Granted JPH0270138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222838A JPH0270138A (en) 1988-09-06 1988-09-06 Synchronous circuit in reception device of frequency hopping modulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222838A JPH0270138A (en) 1988-09-06 1988-09-06 Synchronous circuit in reception device of frequency hopping modulation system

Publications (2)

Publication Number Publication Date
JPH0270138A JPH0270138A (en) 1990-03-09
JPH0570338B2 true JPH0570338B2 (en) 1993-10-04

Family

ID=16788700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222838A Granted JPH0270138A (en) 1988-09-06 1988-09-06 Synchronous circuit in reception device of frequency hopping modulation system

Country Status (1)

Country Link
JP (1) JPH0270138A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04144439A (en) * 1990-10-05 1992-05-18 Icom Inc Synchronization deciding device in frequency hopping communication
US8958455B2 (en) * 2013-03-15 2015-02-17 Qualcomm Incorporated Low energy signaling scheme for beacon fencing applications

Also Published As

Publication number Publication date
JPH0270138A (en) 1990-03-09

Similar Documents

Publication Publication Date Title
US5062122A (en) Delay-locked loop circuit in spread spectrum receiver
US5729571A (en) Non-coherent digital receiver of a spread spectrum communication system
US4860307A (en) Synchronization pulse generator in spread spectrum communication system
US5132985A (en) Spread spectrum receiver
US5029181A (en) Automatic calibration device for direct spectrum spread receiver
US4774715A (en) Device for demodulating a spread spectrum signal
US5724384A (en) PN code sync device using an adaptive threshold
KR19990087222A (en) Multi-user capture procedure for point-to-point breakpoint synchronous code division multiple access systems
WO1996042147A1 (en) Method for synchronizing spreading code and device for synchronizing spreading code
JPH0810839B2 (en) Spread spectrum communication device
US4884284A (en) Spread spectrum receiver
US4918707A (en) Spread spectrum demodulating device for spread spectrum communication system
JPH0570338B2 (en)
JP3749681B2 (en) Transmission source acquisition method and receiver
GB2313750A (en) Digital delay locked loop
JPS59169244A (en) Synchronism deciding device
US6700921B1 (en) Spread-spectrum communication apparatus
JPH08213932A (en) Receiver
JP3622895B2 (en) Spread spectrum communication equipment
JPH06104863A (en) Receiver for spread spectrum communication
JP2676241B2 (en) Spread spectrum communication equipment
JPH0563677A (en) Receiver for spread spectrum communication
JPH0783291B2 (en) Correlator
JPH0234537B2 (en)
JP3304340B2 (en) Receiver using spread spectrum

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees