JPH0566435A - Production of nonlinear optical element - Google Patents

Production of nonlinear optical element

Info

Publication number
JPH0566435A
JPH0566435A JP25435291A JP25435291A JPH0566435A JP H0566435 A JPH0566435 A JP H0566435A JP 25435291 A JP25435291 A JP 25435291A JP 25435291 A JP25435291 A JP 25435291A JP H0566435 A JPH0566435 A JP H0566435A
Authority
JP
Japan
Prior art keywords
polymer
water
resist
nonlinear
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25435291A
Other languages
Japanese (ja)
Other versions
JP3057621B2 (en
Inventor
Makoto Hikita
真 疋田
Yoshito Shudo
義人 首藤
Toshikuni Kaino
俊邦 戒能
Akira Tomaru
暁 都丸
Michiyuki Amano
道之 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25435291A priority Critical patent/JP3057621B2/en
Publication of JPH0566435A publication Critical patent/JPH0566435A/en
Application granted granted Critical
Publication of JP3057621B2 publication Critical patent/JP3057621B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the method for working a channel waveguide without deteriorating quadratic nonlinear characteristics in the production process for the channel waveguide. CONSTITUTION:The process for producing the channel type optical waveguide consisting of a high-polymer material exhibiting the nonlinear optical characteristics as a core and a high polymer having the refractive index slightly smaller than the refractive index of the core as a clad consists in producing the above-mentioned waveguide by applying a UV curing resin 2 on an arbitrary substrate 1, then applying a high polymer 3 exhibiting the nonlinear optical characteristics thereon, applying a water-soluble high polymer 4 to allow spin coating thereon, applying a UV curing resin 5 or providing a metallic film, further, applying a resist 6, subjecting the resist to exposing and developing to arbitrary patterns by using UV rays, etching the layers down to the nonlinear high-polymer layer by reactive ion etching using the patterned resist as a mask, lifting off the layers upper than the water-soluble high polymer 4 with water and applying a UV curing resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非線形性を有する
高分子をコアとした光非線形チャネル導波路の作製方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical nonlinear channel waveguide having a polymer having a nonlinearity as a core.

【0002】[0002]

【従来の技術及び問題点】光非線形材料を用いた代表的
な応用として、2次非線形感受率の大きな材料を用いた
電気光学素子があり、能動素子として光集積回路に組み
入れられることが期待されている。2次の非線形性に起
因する1次電気光学効果(ポッケルス効果)を示す材料
としては、燐酸2水素カリウム(KH2PO4)やニオブ
酸リチウム(LiNbO3)などの無機物が知られてい
たが、近年、これらの材料に比べ大きな電気光学定数
や、より速い応答性を示す有機結晶材料が見いだされて
きた。しかし、有機結晶材料は、一般に脆く、加工性に
劣るため電気光学素子作製には困難さが伴っていた。
2. Description of the Related Art A typical application using an optical nonlinear material is an electro-optical element using a material having a large second-order nonlinear susceptibility, which is expected to be incorporated into an optical integrated circuit as an active element. ing. Inorganic substances such as potassium dihydrogen phosphate (KH 2 PO 4 ) and lithium niobate (LiNbO 3 ) have been known as materials exhibiting the first-order electro-optical effect (Pockels effect) due to the second-order nonlinearity. In recent years, organic crystal materials exhibiting a larger electro-optic constant and faster response than these materials have been found. However, organic crystal materials are generally fragile and inferior in workability, so that it is difficult to manufacture an electro-optical element.

【0003】これに対し、成形加工性に優れた高分子材
料の主鎖に2次非線形材料を結合させ、スピンコート法
などにより容易に薄膜作製を可能にすることができる材
料が開発された。代表的な材料としてポリメチルメタク
リレート(PMMA)の主鎖にアゾ色素を結合したもの
が知られている。これらの材料を電気光学素子として使
用する場合、上記材料をコアとし、上記材料より屈折率
の僅かに小さな材料をクラッドとしたチャネル型導波路
にして使用すると様々な応用展開がはかれ、さらに有利
である。
On the other hand, a material has been developed in which a second-order nonlinear material is bonded to the main chain of a polymer material having excellent moldability so that a thin film can be easily formed by a spin coating method or the like. As a typical material, a material in which an azo dye is bonded to the main chain of polymethylmethacrylate (PMMA) is known. When these materials are used as an electro-optical element, various applications can be developed by using the above-mentioned material as a core, and a channel type waveguide with a material having a slightly smaller refractive index than the above-mentioned material as a clad, which is further advantageous. Is.

【0004】従来行なわれていた非線形高分子チャネル
導波路の作製工程を図3に示す。ここでは、光透過性が
優れていることで知られているPMMAをクラッドとし
て使用した場合について図3に従って従来技術を説明す
る。まず、任意の基板15上((1)工程)にクラッド
となるPMMA16をスピンコートにより塗布し、充分
乾燥する。次に、コアとなる2次非線形材料を含む高分
子層17をスピンコートする((2)工程)。
FIG. 3 shows a conventional manufacturing process of a nonlinear polymer channel waveguide. Here, a conventional technique will be described with reference to FIG. 3 in the case where PMMA, which is known to have excellent light transmittance, is used as a clad. First, PMMA 16 to be a clad is applied onto an arbitrary substrate 15 (step (1)) by spin coating and sufficiently dried. Next, the polymer layer 17 containing the second-order nonlinear material to be the core is spin-coated (step (2)).

【0005】このとき、下層のPMMA16と非線形高
分子17がインターミキシングしないようにする必要が
ある。しかし、非線形高分子17の溶媒がPMMA16
の良溶媒のときは、非線形高分子17とPMMA16の
インターミキシングが起こり、境界が明瞭でなくなり問
題点となっていた。
At this time, it is necessary to prevent the lower layer PMMA 16 and the non-linear polymer 17 from intermixing. However, the solvent of the nonlinear polymer 17 is PMMA16.
In the case of the good solvent of No. 2, intermixing of the non-linear polymer 17 and PMMA 16 occurred, and the boundary became unclear, which was a problem.

【0006】次に、上部クラッド層としてPMMA18
をスピンコートする。この場合にも、非線形高分子17
の溶媒がPMMA18の良溶媒であれば、インターミキ
シングの問題が起こる。次に熱硬化樹脂19をスピンコ
ートし、200℃程度でベーキングをし、次に、シリコ
ン系フォトレジスト20をスピンコートし、マスクを介
して紫外線露光し、レジスト20を任意のパタンに現像
する((3)工程)。このレジストパタンをマスクとし
て、反応性リアクティブイオンエッチング(酸素イオン
21)によりコア層17まで高分子層をエッチングする
((4)工程)。次に、エッチングによりむき出しにな
ったコア層の側璧をクラッド材料で覆うため、PMMA
16をスピンコートする((5)工程)。
Next, PMMA 18 is formed as an upper clad layer.
Spin coat. Also in this case, the nonlinear polymer 17
If the solvent is a good solvent for PMMA18, the problem of intermixing occurs. Next, the thermosetting resin 19 is spin-coated, baked at about 200 ° C., then the silicon-based photoresist 20 is spin-coated, exposed to ultraviolet rays through a mask, and the resist 20 is developed into an arbitrary pattern ( (3) step). Using this resist pattern as a mask, the polymer layer up to the core layer 17 is etched by reactive reactive ion etching (oxygen ions 21) (step (4)). Next, in order to cover the side wall of the core layer exposed by etching with the cladding material, PMMA is used.
16 is spin-coated (step (5)).

【0007】最後にPMMAをスピンコートする工程の
前にレジスト20や熱硬化樹脂19を取り除くことが望
ましいが、レジスト20を剥離する工程で、形成したチ
ャネル導波路の側面を強アルカリ溶液か強酸溶液に浸す
ことが必要になる。このときアゾ色素が酸またはアルカ
リに犯され、2次の非線形特性が著しく劣化するため、
従来は、レジスト20の剥離ができなかった。従って、
従来は、レジスト20を剥離しないまま、チャネル導波
路を作製していた。
Although it is desirable to remove the resist 20 and the thermosetting resin 19 before the step of finally spin-coating PMMA, the side surface of the channel waveguide formed in the step of removing the resist 20 is a strong alkaline solution or a strong acid solution. You will need to soak it in. At this time, the azo dye is violated by acid or alkali, and the second-order nonlinear characteristic is significantly deteriorated.
Conventionally, the resist 20 could not be peeled off. Therefore,
Conventionally, a channel waveguide has been manufactured without removing the resist 20.

【0008】[0008]

【発明の目的】本発明の目的は、チャネル導波路の作製
プロセスにおいて、レジストを剥離する工程で、酸やア
ルカリを用いず、中性の水のみでレジストの剥離を行な
う方法により、2次の非線形特性を劣化させることなし
にチャネル導波路の加工を行なう方法を提供することに
ある。
It is an object of the present invention to use a method of removing a resist with neutral water only in a step of removing a resist in a channel waveguide manufacturing process without using acid or alkali. It is an object of the present invention to provide a method for processing a channel waveguide without deteriorating the nonlinear characteristic.

【0009】[0009]

【問題点を解決するための手段】上記問題点を解決する
ため、本発明による非線形光学素子の作製方法は、非線
形光学特性を示す高分子材料をコアとし、コアより僅か
に屈折率の小さな高分子をクラッドとするチャネル型光
導波路を作製する工程において、任意の基板上に紫外線
硬化樹脂を塗布し、次に非線形光学特性を示す高分子を
塗布し、次に水溶性高分子を塗布し、次に紫外線硬化樹
脂を塗布し、さらに、レジストを塗布し、紫外線を用い
て任意のパタンに露光現像し、パタン化されたレジスト
をマスクとして、反応性イオンエッチングにより非線形
高分子の層までエッチングし、その後、水溶性高分子よ
り上の層を水でリフトオフし、その後、紫外線硬化樹脂
を塗布して作製することを特徴とする。
In order to solve the above problems, a method of manufacturing a nonlinear optical element according to the present invention uses a polymer material exhibiting nonlinear optical characteristics as a core, and a high refractive index slightly smaller than the core. In the step of producing a channel type optical waveguide having a molecule as a clad, an ultraviolet curable resin is applied on an arbitrary substrate, then a polymer showing nonlinear optical characteristics is applied, and then a water-soluble polymer is applied, Next, an ultraviolet curable resin is applied, a resist is further applied, and an arbitrary pattern is exposed and developed by using ultraviolet rays, and the non-linear polymer layer is etched by reactive ion etching using the patterned resist as a mask. After that, the layer above the water-soluble polymer is lifted off with water, and then an ultraviolet curable resin is applied to manufacture.

【0010】また本発明の第二の非線形光学素子の作製
方法によれば、非線形光学特性を示す高分子材料をコア
とし、コアより僅かに屈折率の小さな高分子をクラッド
とするチャネル型光導波路を作製する工程において、任
意の基板上に紫外線硬化樹脂を塗布し、次に非線形光学
特性を示す高分子を塗布し、次に水溶性高分子を塗布
し、次にアルミニウムなどの金属を蒸着あるいはスパッ
タリングなどにより積層し、さらに、レジストを塗布
し、紫外線を用いて任意のパタンに露光現像し、パタン
化されたレジストをマスクとして、反応性イオンエッチ
ングにより非線形高分子の層までエッチングし、その
後、水溶性高分子より上の層を水でリフトオフし、その
後、紫外線硬化樹脂を塗布して作製することを特徴とす
る。
According to the second method for producing a nonlinear optical element of the present invention, a channel type optical waveguide having a core made of a polymer material exhibiting nonlinear optical characteristics and a cladding made of a polymer having a refractive index slightly smaller than that of the core is used. In the step of producing, a UV curable resin is applied on any substrate, then a polymer exhibiting nonlinear optical characteristics is applied, then a water-soluble polymer is applied, and then a metal such as aluminum is vapor-deposited or Laminated by sputtering or the like, further, a resist is applied, exposed and developed to an arbitrary pattern using ultraviolet rays, the patterned resist is used as a mask to etch the layer of the non-linear polymer by reactive ion etching, and then, It is characterized in that the layer above the water-soluble polymer is lifted off with water and then an ultraviolet curable resin is applied to produce the layer.

【0011】本発明を図面に基づき、さらに詳しく説明
する。
The present invention will be described in more detail with reference to the drawings.

【0012】図1は本発明の第一の作製方法を示す工程
図であるが、この図より明らかなように、基板1
((1)工程)の上に、クラッド材となる紫外線(U
V)硬化樹脂2をスピンコートし、UVを照射し硬化さ
せ、次に、有機溶媒に溶かした2次非線形高分子3をス
ピンコートし乾燥する((2)工程)。次に例えば、水
に溶かしたポリビニルアルコール(PVA)4をスピン
コートし、さらに、UV硬化樹脂5をスピンコートし、
UVを照射し樹脂を硬化した後、シリコーン系ポジレジ
スト6をスピンコートで塗布し、任意のパタンに露光現
像をする((3)工程)。このとき、現像液は、アルカ
リ溶液を用いるが、非線形高分子と直接接触することは
ないため、非線形高分子に影響は与えない。
FIG. 1 is a process diagram showing the first manufacturing method of the present invention. As is clear from this diagram, the substrate 1
On top of ((1) step), ultraviolet rays (U
V) The cured resin 2 is spin-coated, irradiated with UV to be cured, and then the secondary nonlinear polymer 3 dissolved in an organic solvent is spin-coated and dried (step (2)). Next, for example, polyvinyl alcohol (PVA) 4 dissolved in water is spin-coated, and further UV-curable resin 5 is spin-coated,
After irradiating with UV to cure the resin, the silicone-based positive resist 6 is applied by spin coating, and the desired pattern is exposed and developed (step (3)). At this time, an alkaline solution is used as the developing solution, but since it does not come into direct contact with the nonlinear polymer, it does not affect the nonlinear polymer.

【0013】次に、レジストをマスクとして、酸素雰囲
気中で、反応性リアクティブイオンエッチングを行な
い、酸素イオン7により、非線形高分子3の層までエッ
チングする((4)工程)。比較的圧力の低い領域で酸
素ガス7による反応性リアクティブイオンエッチングを
行なうことにより基板面に対しほぼ垂直のエッチングが
可能である。次に、エッチング後の基板1を蒸留水に浸
すとPVA4が水に溶けるため、PVA4から上の部分
が剥離される((5)工程)。すなわち、リフトオフさ
れる。この基板を乾燥し、UV樹脂2をスピンコートす
ると非線形高分子は単一の高分子クラッド材に覆われる
ことになる。
Next, using the resist as a mask, reactive reactive ion etching is performed in an oxygen atmosphere to etch the layer of the nonlinear polymer 3 with oxygen ions 7 (step (4)). By performing reactive reactive ion etching with oxygen gas 7 in a region where the pressure is relatively low, etching can be performed substantially perpendicular to the substrate surface. Next, when the substrate 1 after etching is immersed in distilled water, the PVA 4 dissolves in water, so the upper portion is peeled off from the PVA 4 (step (5)). That is, it is lifted off. When this substrate is dried and the UV resin 2 is spin-coated, the non-linear polymer is covered with a single polymer clad material.

【0014】ここでは、レジストを塗布する前に、水溶
性のPVAを塗布することにより、レジストを剥離する
際、酸やアルカリを使用せずに水のみでレジストを剥離
することができる。上述の例ではPVAを用いている
が、薄膜化が容易な、すなわち、水溶液がスピンコート
可能な水溶性高分子を使用することが望ましい。このよ
うな水溶性高分子としては、PVA以外にもポリメタク
リル酸があり、PVAと同様に使用できる。
Here, by applying water-soluble PVA before applying the resist, it is possible to remove the resist only with water without using an acid or an alkali when the resist is removed. Although PVA is used in the above example, it is desirable to use a water-soluble polymer that can be easily thinned, that is, an aqueous solution can be spin-coated. As such a water-soluble polymer, there is polymethacrylic acid in addition to PVA, which can be used in the same manner as PVA.

【0015】また、水溶性高分子の上に直接レジストを
塗布すると現像の際、水溶性高分子も同時に溶けてしま
うため、水に不溶でしかも、レジスト溶媒にも不溶の層
が必要になる。第一の作製方法では、この条件を満足す
る高分子として、有機溶媒に溶解したUV硬化樹脂を用
いた。UV硬化樹脂のかわりに、図2に示すようにアル
ミニウムなどの金属層12を蒸着などにより積層して使
用してもよい。この場合、レジストをマスクとしてアル
ミニウムをエッチングし、続いて、水溶性高分子、非線
形高分子とエッチングすることが必要になるが、非線形
高分子の層までエッチングした後に、水溶性高分子から
上の層を水でリフトオフできることに変わりはない。
Further, when the resist is directly applied on the water-soluble polymer, the water-soluble polymer is also dissolved at the time of development, so that a layer which is insoluble in water and insoluble in the resist solvent is required. In the first manufacturing method, a UV curable resin dissolved in an organic solvent was used as a polymer satisfying this condition. Instead of the UV curable resin, a metal layer 12 such as aluminum may be laminated by vapor deposition or the like as shown in FIG. In this case, it is necessary to etch aluminum using the resist as a mask, and then to etch the water-soluble polymer and the non-linear polymer. The layers can still be lifted off with water.

【0016】アゾ色素などの色素分子を側鎖に結合した
高分子は、モノクロルベンゼン、メチルエチルケトン、
トルエンなどの有機溶媒に溶け易く、水には不溶のもの
が多い。従って、水溶性高分子は、非線形高分子の上に
塗布しても非線形高分子とインターミキシングすること
がないという利点もある。このように、非線形高分子の
すぐ上にPVAなど水溶性高分子を塗布する工程を用い
れば、非線形高分子のチャネル導波路を作製する上で有
利である。
Polymers in which dye molecules such as azo dyes are bound to side chains include monochlorobenzene, methyl ethyl ketone,
It is easily soluble in organic solvents such as toluene, and often insoluble in water. Therefore, the water-soluble polymer also has an advantage that it does not intermix with the nonlinear polymer even when applied on the nonlinear polymer. As described above, the use of the step of coating the water-soluble polymer such as PVA directly on the nonlinear polymer is advantageous in producing the channel waveguide of the nonlinear polymer.

【0017】以下、実施例に基づいて説明を行なう。Hereinafter, description will be given based on an embodiment.

【0018】[0018]

【実施例1】図1に、本発明の第一の実施例の工程図を
示す。
[Embodiment 1] FIG. 1 shows a process chart of a first embodiment of the present invention.

【0019】まずシリコン基板1上に((1)工程)、
アクリル系UV硬化樹脂2をスピンコート法により15
μmの厚さに塗布し、紫外線を15分照射した。次に、
非線形高分子3して、アゾ色素を5×1020cm-3含む
PMMA(M. AMANO and T.Kaino, J. Appl. Phys.、Vo
l. 68、p. 6024 (1990) )をモノクロルベンゼンに溶か
した溶液をスピンコートにより、5μm塗布した
((2)工程)。次に、5%PVA4水溶液をスピンコ
ートにより、0.5μmの厚さに塗布し、エチルアルコ
ールに溶かしたUV硬化樹脂5を0.5μmの厚さに塗
布し、15分間紫外線7を照射した。次に、シリコーン
系フォトレジスト6を厚さ0.3μmの厚さにスピンコ
ートした。この基板を紫外線露光器を用い、露光し、現
像し、幅5μmの線に加工した((3)工程)。このレ
ジストパタンをマスクとして、反応性リアクティブイオ
ンエッチング装置内で、酸素雰囲気中で酸素イオン7に
より、60分反応性リアクティブイオンエッチングを行
ない、3の非線形高分子層までエッチングしたところ、
ほぼ図1工程(4)のようなパタンが得られた。次に、
蒸留水中に浸し、PVA4より上の部分をリフトオフし
た。次に、その上から、アクリル系硬化樹脂2を15μ
mスピンコートし、図1工程(6)のような構造の素子
を作製した。
First, on the silicon substrate 1 ((1) step),
Acrylic UV curable resin 2 is applied by spin coating 15
It was applied to a thickness of μm and irradiated with ultraviolet rays for 15 minutes. next,
PMMA (M. AMANO and T. Kaino, J. Appl. Phys., Vo containing 5 × 10 20 cm −3 of azo dye as a non-linear polymer 3)
(1. 68, p. 6024 (1990)) was dissolved in monochlorobenzene to give a solution of 5 μm by spin coating ((2) step). Next, a 5% PVA4 aqueous solution was applied by spin coating to a thickness of 0.5 μm, a UV curable resin 5 dissolved in ethyl alcohol was applied to a thickness of 0.5 μm, and UV rays 7 were irradiated for 15 minutes. Next, a silicone photoresist 6 was spin-coated to a thickness of 0.3 μm. This substrate was exposed using an ultraviolet exposure device, developed, and processed into a line having a width of 5 μm (step (3)). Using this resist pattern as a mask, reactive reactive ion etching was performed for 60 minutes with oxygen ions 7 in an oxygen atmosphere in a reactive reactive ion etching apparatus to etch up to the nonlinear polymer layer 3
A pattern almost like the step (4) in FIG. 1 was obtained. next,
It was immersed in distilled water and the portion above PVA4 was lifted off. Next, from above, add 15μ of acrylic curing resin 2
m spin coating was performed to prepare an element having a structure as shown in step (6) of FIG.

【0020】作製された素子を長さ10mmにカット
し、ポーリング装置にいれ、140℃に加熱し、2MV
/cmの電圧を加え、1分/℃で室温まで冷却した。次
に、1.06μmのレーザーからファイバーを用いて1
00mWの光を導入して、第2高調波(SHG)の出力
を測定し、SHGの変換効率η(=SHG強度/入射パ
ワー)を求めたところ、0.3%となり、高い値を得
た。これは、水を用いたリフトオフにより非線形高分子
材料にダメージを与えることなく、また、UV樹脂をク
ラッドに使用することによりコアとインターミキシング
を起こさないチャネル型導波路を作製したからに他なら
ない。
The manufactured element was cut into a length of 10 mm, put in a poling device, heated to 140 ° C., and then heated to 2 MV.
/ Cm voltage was applied and the mixture was cooled to room temperature at 1 minute / ° C. Next, using a fiber from a 1.06 μm laser, 1
The output of the second harmonic (SHG) was measured by introducing light of 00 mW, and the conversion efficiency η of the SHG (= SHG intensity / incident power) was determined to be 0.3%, which was a high value. .. This is due to the fact that a channel-type waveguide that does not cause intermixing with the core is produced by using lift-off with water without damaging the nonlinear polymer material and by using UV resin for the cladding.

【0021】[0021]

【実施例2】図2に、本発明の第二の実施例の工程図を
示す。
[Embodiment 2] FIG. 2 shows a process chart of a second embodiment of the present invention.

【0022】シリコン基板8((1)工程)上に、アク
リル系UV硬化樹脂9をスピンコート法により15μm
の厚さに塗布し、紫外線を15分照射した。次に、非線
形高分子10して、アゾ色素を5×1020cm-3含むP
MMAをモノクロルベンゼンに溶かした溶液をスピンコ
ートにより、5μm塗布した。次に、5%PVA11水
溶液をスピンコートにより、0.5μmの厚さに塗布し
た。次に、真空蒸着装置内に基板を入れてアルミニウム
12を0.1μm積層した。次に、シリコーン系フォト
レジスト13を厚さ0.3μmの厚さにスピンコートし
た。この基板を紫外線露光器を用い、露光し、現像し、
幅5μmの線に加工した((3)工程)。このレジスト
パタンをマスクとして、反応性リアクティブイオンエッ
チング装置内で、四塩化炭素中で3分、次に酸素雰囲気
中で55分反応性リアクティブイオンエッチングを行な
い、四塩化炭素イオン又は酸素イオン14で、線形高分
子層10までエッチングしたところ、ほぼ図2(4)工
程のようなパタンが得られた。次に、蒸留水中に浸し、
PVA11より上の部分をリフトオフした((5)工
程)。次に、その上から、アクリル系硬化樹脂を15μ
mスピンコートし、図2工程(6)のような構造の素子
を作製した。
On the silicon substrate 8 (step (1)), the acrylic UV curing resin 9 is spin-coated to 15 μm.
And was irradiated with ultraviolet rays for 15 minutes. Next, a non-linear polymer 10 containing P containing an azo dye of 5 × 10 20 cm -3 was added.
A solution of MMA in monochlorobenzene was applied by spin coating to a thickness of 5 μm. Next, a 5% PVA11 aqueous solution was applied by spin coating to a thickness of 0.5 μm. Next, the substrate was placed in a vacuum vapor deposition apparatus and aluminum 12 was laminated to a thickness of 0.1 μm. Next, the silicone photoresist 13 was spin-coated to a thickness of 0.3 μm. This substrate is exposed and developed using an ultraviolet exposure device,
A line having a width of 5 μm was processed ((3) step). Using this resist pattern as a mask, in the reactive reactive ion etching apparatus, reactive reactive ion etching was performed for 3 minutes in carbon tetrachloride and then for 55 minutes in an oxygen atmosphere. Then, when the linear polymer layer 10 was etched, a pattern similar to that in the step (4) in FIG. 2 was obtained. Next, soak in distilled water,
The portion above the PVA 11 was lifted off (step (5)). Next, from above, add 15μ of acrylic curing resin.
m spin coating was performed to fabricate a device having a structure as shown in step (6) of FIG.

【0023】作製された素子を長さ10mmにカット
し、ポーリング装置にいれ、140℃に加熱し、2MV
/cmの電圧を加え、1分/℃で室温まで冷却した。次
に、1.06μmのレーザーからファイバーを用いて1
00mWの光を導入して、第2高調波(SHG)の出力
を測定し、SHGの変換効率η(=SHG強度/入射パ
ワー)を求めたところ、実施例1と同様に0.25%と
なり、高い値を得た。これは、水を用いたリフトオフに
より非線形高分子材料にダメージを与えることなく、ま
た、UV樹脂をクラッドに使用することによりコアとイ
ンターミキシングを起こさないチャネル型導波路を作製
したからに他ならない。
The produced element was cut into a length of 10 mm, put in a poling device, heated to 140 ° C., and then heated to 2 MV.
/ Cm voltage was applied and the mixture was cooled to room temperature at 1 minute / ° C. Next, using a fiber from a 1.06 μm laser, 1
When the output of the second harmonic (SHG) was measured by introducing light of 00 mW and the conversion efficiency η (= SHG intensity / incident power) of SHG was obtained, it was 0.25% as in Example 1. , Got a high value. This is due to the fact that a channel-type waveguide that does not cause intermixing with the core is produced by using lift-off with water without damaging the nonlinear polymer material and by using UV resin for the cladding.

【0024】[0024]

【発明の効果】以上説明したように、非線形高分子のチ
ャネル導波路を作製するにあたって、PVA等の水溶性
高分子を非線形高分子の上に積層する工程を挿入するこ
とにより、非線形高分子層にダメージを与えずに、非線
形素子を作製できる。
As described above, when a channel waveguide of a non-linear polymer is produced, a step of laminating a water-soluble polymer such as PVA on the non-linear polymer is inserted to obtain a non-linear polymer layer. A non-linear element can be manufactured without damaging the.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1、および、本発明の実施例1
を示すものであって、非線形高分子を用いたチャネル導
波路の作製工程図。
FIG. 1 is a first embodiment of the present invention and claim 1 of the present invention.
FIG. 9B is a manufacturing process diagram of a channel waveguide using a nonlinear polymer.

【図2】本発明の請求項2、および本発明の実施例2を
示すものであって、非線形高分子を用いたチャネル導波
路の作製工程図。
FIG. 2 shows Claim 2 of the present invention and Example 2 of the present invention, and is a step of manufacturing a channel waveguide using a nonlinear polymer.

【図3】従来の非線形高分子を用いたチャネル導波路の
作製工程図。
FIG. 3 is a process drawing of a conventional channel waveguide using a nonlinear polymer.

【符号の説明】[Explanation of symbols]

1 基板 2 UV硬化樹脂 3 非線形高分子 4 水溶性高分子 5 UV硬化樹脂 6 フォトレジスト 7 酸素イオン 8 基板 9 UV硬化樹脂 10 非線形高分子 11 水溶性高分子 12 金属膜 13 フォトレジスト 14 四塩化炭素イオンまたは酸素イオン 15 基板 16 ポリメチルメタクリレート(PMMA) 17 非線形高分子 18 PMMA 19 熱硬化樹脂 20 フォトレジスト 21 酸素イオン 1 Substrate 2 UV Curing Resin 3 Nonlinear Polymer 4 Water-Soluble Polymer 5 UV Curing Resin 6 Photoresist 7 Oxygen Ion 8 Substrate 9 UV Curing Resin 10 Nonlinear Polymer 11 Water-Soluble Polymer 12 Metal Film 13 Photoresist 14 Carbon Tetrachloride Ions or oxygen ions 15 Substrate 16 Polymethylmethacrylate (PMMA) 17 Non-linear polymer 18 PMMA 19 Thermosetting resin 20 Photoresist 21 Oxygen ion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 都丸 暁 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 天野 道之 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Tomaru, 1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Inventor Michiyuki Amano 1-1-1, Uchisaiwaicho, Chiyoda-ku, Tokyo No. 6 Nippon Telegraph and Telephone Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】非線形光学特性を示す高分子材料をコアと
し、コアより僅かに屈折率の小さな高分子をクラッドと
するチャネル型光導波路を作製する工程において、任意
の基板上に紫外線硬化樹脂を塗布し、次に非線形光学特
性を示す高分子を塗布し、次にスピンコート可能な水溶
性高分子を塗布し、次に紫外線硬化樹脂を塗布し、さら
に、レジストを塗布し、紫外線を用いて任意のパタンに
露光現像し、パタン化されたレジストをマスクとして、
反応性イオンエッチングにより非線形高分子の層までエ
ッチングし、その後、前記水溶性高分子より上の層を水
でリフトオフし、その後、紫外線硬化樹脂を塗布して作
製することを特徴とする非線形光学素子の作製方法。
1. A process for producing a channel type optical waveguide having a core made of a polymer material exhibiting non-linear optical characteristics and a clad made of a polymer having a refractive index slightly smaller than that of the core, in which an ultraviolet curable resin is coated on an arbitrary substrate. Coating, then coating a polymer showing non-linear optical characteristics, then coating a spin-coatable water-soluble polymer, then coating a UV curable resin, further coating a resist, using UV light After exposure and development to any pattern, using the patterned resist as a mask,
A non-linear optical element, characterized in that a layer of a non-linear polymer is etched by reactive ion etching, a layer above the water-soluble polymer is lifted off with water, and then an ultraviolet curable resin is applied. Of manufacturing.
【請求項2】非線形光学特性を示す高分子材料をコアと
し、コアより僅かに屈折率の小さな高分子をクラッドと
するチャネル型光導波路を作製する工程において、任意
の基板上に紫外線硬化樹脂を塗布し、次に非線形光学特
性を示す高分子を塗布し、次にスピンコート可能な水溶
性高分子を塗布し、次にアルミニウムなどの金属を蒸着
あるいはスパッタリングなどにより積層し、さらに、レ
ジストを塗布し、紫外線を用いて任意のパタンに露光現
像し、パタン化されたレジストをマスクとして、反応性
イオンエッチングにより非線形高分子の層までエッチン
グし、その後、前記水溶性高分子より上の層を水でリフ
トオフし、その後、紫外線硬化樹脂を塗布して作製する
ことを特徴とする非線形光学素子の作製方法。
2. A process for producing a channel type optical waveguide having a core made of a polymer material exhibiting non-linear optical characteristics and a clad made of a polymer having a refractive index slightly smaller than that of the core. Coating, then polymer with non-linear optical characteristics, then spin-coatable water-soluble polymer, then metal such as aluminum is laminated by vapor deposition or sputtering, and then resist is coated. Then, the layer is exposed to light and developed using UV light, and the non-linear polymer layer is etched by reactive ion etching using the patterned resist as a mask. A method for manufacturing a non-linear optical element, characterized in that it is lifted off by (1), and then an ultraviolet curable resin is applied to manufacture it.
JP25435291A 1991-09-06 1991-09-06 Manufacturing method of nonlinear optical element Expired - Fee Related JP3057621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25435291A JP3057621B2 (en) 1991-09-06 1991-09-06 Manufacturing method of nonlinear optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25435291A JP3057621B2 (en) 1991-09-06 1991-09-06 Manufacturing method of nonlinear optical element

Publications (2)

Publication Number Publication Date
JPH0566435A true JPH0566435A (en) 1993-03-19
JP3057621B2 JP3057621B2 (en) 2000-07-04

Family

ID=17263802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25435291A Expired - Fee Related JP3057621B2 (en) 1991-09-06 1991-09-06 Manufacturing method of nonlinear optical element

Country Status (1)

Country Link
JP (1) JP3057621B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007116A3 (en) * 1994-08-26 1996-05-23 Akzo Nobel Nv A method of making an optical waveguide to fibre convector using a free-standing, flexible waveguide sheet
JPH095550A (en) * 1995-06-21 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> Production of optical waveguide
US6160945A (en) * 1997-09-12 2000-12-12 Samsung Electronics Co., Ltd. Optical waveguide device for loss absorption and fabrication method thereof
KR100415625B1 (en) * 2001-08-06 2004-01-24 한국전자통신연구원 Method for manufacturing a planar type waveguide using an ion exchange method
JP2006501523A (en) * 2002-10-03 2006-01-12 ルーメラ・コーポレーション Polymer microstructure and method of manufacturing polymer waveguide
US7317861B2 (en) * 2004-01-16 2008-01-08 Fuji Xerox Co., Ltd. Method of producing polymer optical waveguide
US7569168B2 (en) 2004-01-23 2009-08-04 Fuji Xerox Co., Ltd. Method of producing polymer optical waveguide
US7582234B2 (en) 2003-06-04 2009-09-01 Fuji Xerox Co., Ltd. Producing method of polymer optical waveguide
US7867956B2 (en) 2004-12-27 2011-01-11 Shell Oil Company Urea-based lubricating grease composition
CN115016063A (en) * 2022-05-26 2022-09-06 天津华慧芯科技集团有限公司 Sub-nanometer precision waveguide process for step-by-step etching by double-layer glue mask

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007116A3 (en) * 1994-08-26 1996-05-23 Akzo Nobel Nv A method of making an optical waveguide to fibre convector using a free-standing, flexible waveguide sheet
US6549709B1 (en) 1994-08-26 2003-04-15 Jds Uniphase Inc. Method of making a polymeric optical waveguide device provided with fibre ends, and free-standing, flexible waveguide sheets used therein
JPH095550A (en) * 1995-06-21 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> Production of optical waveguide
US6160945A (en) * 1997-09-12 2000-12-12 Samsung Electronics Co., Ltd. Optical waveguide device for loss absorption and fabrication method thereof
KR100415625B1 (en) * 2001-08-06 2004-01-24 한국전자통신연구원 Method for manufacturing a planar type waveguide using an ion exchange method
US6769274B2 (en) 2001-08-06 2004-08-03 Electronics And Telecommunications Research Institute Method of manufacturing a planar waveguide using ion exchange method
JP2006501523A (en) * 2002-10-03 2006-01-12 ルーメラ・コーポレーション Polymer microstructure and method of manufacturing polymer waveguide
US7582234B2 (en) 2003-06-04 2009-09-01 Fuji Xerox Co., Ltd. Producing method of polymer optical waveguide
US7317861B2 (en) * 2004-01-16 2008-01-08 Fuji Xerox Co., Ltd. Method of producing polymer optical waveguide
US7569168B2 (en) 2004-01-23 2009-08-04 Fuji Xerox Co., Ltd. Method of producing polymer optical waveguide
US7867956B2 (en) 2004-12-27 2011-01-11 Shell Oil Company Urea-based lubricating grease composition
CN115016063A (en) * 2022-05-26 2022-09-06 天津华慧芯科技集团有限公司 Sub-nanometer precision waveguide process for step-by-step etching by double-layer glue mask
CN115016063B (en) * 2022-05-26 2024-04-12 天津华慧芯科技集团有限公司 Step-by-step etching sub-nanometer precision waveguide process for double-layer adhesive mask

Also Published As

Publication number Publication date
JP3057621B2 (en) 2000-07-04

Similar Documents

Publication Publication Date Title
KR100219712B1 (en) Low loss active optical element and manufacturing method thereof
US5265185A (en) Optical waveguides in electro-optical polymers and method
KR100288742B1 (en) Fabrication method for optical waveguide
JP3057621B2 (en) Manufacturing method of nonlinear optical element
EP0687925A2 (en) Method of forming an optical coupling waveguide and a lightguide device having the optical coupling waveguide
Shi et al. Double-end crosslinked electro-optic polymer modulators with high optical power handling capability
US4834480A (en) Composite channel waveguides
Moshrezadeh et al. Efficient grating couplers for polymer waveguides
KR101789026B1 (en) Method of manufacturing of LiNbO3 substrate for optical modulator
US5356523A (en) Method of making LiNbO3 channel optical guides
JPH06214274A (en) Waveguide type optical element
JPH0675255A (en) Organic function type optical waveguide
KR20000011817A (en) Optical waveguide and manufacture thereof
JP2002277663A (en) Method for manufacturing optical waveguide
JPH10170738A (en) Polymer optical waveguide and its production
CN115016063B (en) Step-by-step etching sub-nanometer precision waveguide process for double-layer adhesive mask
JPH0743511A (en) Production of diffraction grating and production of optical wavelength converter element
Nam et al. Direct pattering of polymer optical waveguide using liquid state UV-curable polymer
JP2005010355A (en) Manufacturing method of waveguide type optical device, and waveguide type optical device
JPH06148701A (en) Waveguide type wavelengh conversion element
KR100311461B1 (en) Method for fabricating blue laser device
JPH05107577A (en) Waveguide-type nonlinear optical element and its production
JPS63261234A (en) Nonlinear optical waveguide
Vannucci et al. Method of making LiNbO 3 channel optical guides
Sugihara et al. Polymeric waveguide fabrication based on mold technology

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees