JPH0566297A - Shape stabilization of optical element and optical apparatus using same - Google Patents

Shape stabilization of optical element and optical apparatus using same

Info

Publication number
JPH0566297A
JPH0566297A JP25580091A JP25580091A JPH0566297A JP H0566297 A JPH0566297 A JP H0566297A JP 25580091 A JP25580091 A JP 25580091A JP 25580091 A JP25580091 A JP 25580091A JP H0566297 A JPH0566297 A JP H0566297A
Authority
JP
Japan
Prior art keywords
optical element
temperature distribution
optical
heating
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25580091A
Other languages
Japanese (ja)
Other versions
JP3132086B2 (en
Inventor
Masato Niibe
正人 新部
Yoshiaki Fukuda
恵明 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03255800A priority Critical patent/JP3132086B2/en
Priority to DE69220868T priority patent/DE69220868T2/en
Priority to EP92308030A priority patent/EP0532236B1/en
Priority to CA002077572A priority patent/CA2077572C/en
Publication of JPH0566297A publication Critical patent/JPH0566297A/en
Priority to US08/270,794 priority patent/US5390228A/en
Application granted granted Critical
Publication of JP3132086B2 publication Critical patent/JP3132086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Particle Accelerators (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To suppress deformation of an optical element resulted from thermal strain thereof and to prevent deterioration of optical performance by measuring temperature distribution of the optical element using a measurement means of temperature distribution, and by heating up the optical element partially using a heating means, based upon signal from the measurement means. CONSTITUTION:The title optical apparatus reflects a synchrotron radiation beam 1 by the use of a multilayered converging mirror 2 and makes the beam converge to a pin spot. The converging mirror 2 is provided with a holder 3 which has a chilling function from both side surface and rear surface thereof by means of a water chilling mechanism. First of all, temperature distribution of the mirror 2 is measured using an infrared measuring means 4 of temperature distribution. Temperature distribution on the rear side of the mirror 2 is also measured using another measuring means 8 of temperature distribution. Surface temperature distribution of the mirror 2 is driven and controlled by a controlling means 9 using a heating means 5 consisting of infra-red lumps 5a, and converging plates 5b, so as to get uniform temperature distribution of an optical element 2 and to eliminate any shape deformation thereof, and moreover the temperature distribution is driven and controlled by a heating means 7 having a heating part 7a by a resisting wire, and a driving part 7b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学素子の形状安定化法
及びそれを用いた光学装置に関し、特に理化学研究、分
析装置、製造装置等に広く利用されるシンクロトロン放
射光または高強度のレーザー光を対象とした光学素子の
部分的な温度変化より生ずる形状変化を防止した光学素
子の形状安定化法及びそれを用いた光学装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stabilizing the shape of an optical element and an optical device using the same, and particularly to a synchrotron radiation light or a high intensity laser widely used in physics and chemistry research, analysis equipment, manufacturing equipment and the like. The present invention relates to a method for stabilizing the shape of an optical element in which the shape change caused by a partial temperature change of an optical element for light is prevented, and an optical device using the same.

【0002】[0002]

【従来の技術】近年シンクロトロン放射(SR)光やエ
キシマレーザー等の高強度の光束を放射する光源が開発
され、これを用いた理化学研究、分析装置、製造技術等
の光学装置が注目され、それらの研究開発が盛んになっ
てきている。
2. Description of the Related Art In recent years, a light source that emits a high-intensity light beam such as synchrotron radiation (SR) light or excimer laser has been developed, and optical devices such as physics and chemistry research, analysis equipment, and manufacturing technology have been attracting attention. Research and development of them has become popular.

【0003】一般に光学装置では、反射、透過、集光、
発散、回折、分光、偏光、結像等の、目的の為に種々の
光学素子を必要とする。このうち特に高強度の光源を用
いた光学装置では使用される光線強度が高いため、多大
な熱負荷による光学素子の変形、性能劣化、照射損傷、
破壊等が問題となってくる。
Generally, in an optical device, reflection, transmission, light collection,
Various optical elements are needed for purposes such as divergence, diffraction, spectroscopy, polarization, imaging. Among them, since the light intensity used is particularly high in an optical device using a high-intensity light source, deformation of the optical element due to a large heat load, performance deterioration, irradiation damage,
Destruction becomes a problem.

【0004】例えばSR光技術の分野では近年マルチポ
ールウィグラーやアンジュレータといった所謂挿入型光
源の技術の進歩により光源からの放射パワーはキロワッ
トのオーダーに達している。
For example, in the field of SR light technology, the radiation power from the light source has reached the order of kilowatts due to the progress of the so-called insertion type light source technology such as multi-pole wiggler and undulator in recent years.

【0005】更に光源からの放射波長としてはX線から
真空紫外線領域の電磁波の場合が多く、大気中での減衰
を防ぐため、多くの場合真空槽や真空ビームライン中で
光学要素が組まれている。このため真空中に置かれた光
学素子では大気への伝導、対流による熱放散が起こら
ず、光学素子の温度が大気中に置かれた場合に比べ、大
幅に上昇する傾向があった。
Further, the radiation wavelength from the light source is often an electromagnetic wave in the X-ray to vacuum ultraviolet region, and in order to prevent attenuation in the atmosphere, optical elements are often assembled in a vacuum chamber or vacuum beam line. There is. Therefore, in an optical element placed in a vacuum, heat conduction to the atmosphere and heat dissipation due to convection do not occur, and the temperature of the optical element tends to be significantly higher than that in the case where the optical element is placed in the atmosphere.

【0006】このような大きな熱負荷を受けると光学素
子は熱歪みのために変形し光学性能が著しく低下したり
極端な場合には光学素子自体の破壊も起こってくる(塚
本他、1990年秋委応用物理学会講演会予稿集P2−
501)。
When such a large heat load is applied, the optical element is deformed due to thermal strain, and the optical performance remarkably deteriorates. In an extreme case, the optical element itself may be destroyed (Tsukamoto et al., Autumn 1990 Committee). Proceedings of Japan Society of Applied Physics P2-
501).

【0007】光学素子の温度上昇による性能劣化を防ぐ
ため、光学素子の冷却法が種々工夫されてきており種々
と実施されている。これにより冷却法を実施しない場合
に比べ光学素子の温度上昇が大幅に抑制されるようにな
ってきている(例えばT.Oversluizen e
t al.,Rev.Sci.Instrum.601
493(1989))。
In order to prevent the performance deterioration of the optical element due to the temperature rise, various methods of cooling the optical element have been devised and implemented variously. As a result, the temperature rise of the optical element is largely suppressed as compared with the case where the cooling method is not performed (for example, T. Oversluizen e.
t al. Rev. Sci. Instrum. 601
493 (1989)).

【0008】[0008]

【発明が解決しようとする課題】しかしながら高強度の
光束を放射する光源を利用した光学装置においては光学
素子の冷却を行っても、一般には光学素子の表面には通
常数〜数10度の温度むらが残ってくる。この結果、光
学素子の形状が変形し、光学装置の光学性能が低下して
くる場合があった。
However, in an optical device using a light source that emits a high-intensity luminous flux, even if the optical element is cooled, the surface of the optical element generally has a temperature of several to several tens of degrees. The unevenness remains. As a result, the shape of the optical element may be deformed and the optical performance of the optical device may be deteriorated.

【0009】例えば前述したSR光を用いた分光装置で
は本来完全な平面であるべき分光結晶の表面が、素子の
冷却後も部分的に曲率半径が100m以下程度の凸面又
は凹面に変形し、この結果光源の強度に比例した分光光
の強度が得られないという問題点があった。
For example, in the above-mentioned spectroscopic device using SR light, the surface of the dispersive crystal, which should be a perfect flat surface, is partially deformed to a convex or concave surface with a radius of curvature of 100 m or less even after cooling the element. As a result, there is a problem that the intensity of the spectral light proportional to the intensity of the light source cannot be obtained.

【0010】また例えば特開昭63−18626号公報
に示されるような半導体素子の製造用の微細パターン転
写用の投影露光装置においてはミラー等の光学素子の温
度むらを1/100℃程度に制御することが要求され
る。しかしながら光学素子の冷却のみではこれに十分対
応することができないという問題点があった。
Further, in a projection exposure apparatus for transferring a fine pattern for manufacturing a semiconductor device as disclosed in, for example, Japanese Patent Laid-Open No. 63-18626, temperature unevenness of optical elements such as mirrors is controlled to about 1/100 ° C. Required to do so. However, there is a problem that this cannot be sufficiently dealt with only by cooling the optical element.

【0011】本発明は高強度の光束を放射する光源を用
いたときの光学素子の温度むらを効果的に補正し、光学
素子の熱歪みによる変形を防止し、光学性能の低下を容
易に防止することができる光学素子の形状安定化法及び
それを用いた光学装置の提供を目的とする。
The present invention effectively corrects the temperature unevenness of the optical element when a light source that emits a high-intensity luminous flux is used, prevents deformation of the optical element due to thermal distortion, and easily prevents deterioration of optical performance. An object of the present invention is to provide a method for stabilizing the shape of an optical element and an optical device using the method.

【0012】[0012]

【課題を解決するための手段】本発明の光学素子の形状
安定化法としては、光学素子の温度分布を温度分布測定
手段で測定し、該温度分布測定手段からの信号に基づい
て加熱手段により該光学素子を部分的に加熱して該光学
素子の形状変化を制御したことを特徴としている。
As a method for stabilizing the shape of an optical element of the present invention, the temperature distribution of the optical element is measured by a temperature distribution measuring means, and the heating means is operated based on a signal from the temperature distribution measuring means. It is characterized in that the optical element is partially heated to control the shape change of the optical element.

【0013】特に前記加熱手段は前記光学素子の表面又
は/及び裏面に設けられており、該表面又は/及び裏面
より該光学素子を加熱していることを特徴としている。
In particular, the heating means is provided on the front surface and / or the back surface of the optical element, and the optical element is heated from the front surface and / or the back surface.

【0014】光学素子の形状安定化法及びそれを用いた
光学装置としては、光源からの光束を光学素子に入射さ
せ、該光学素子を介した光束を利用するようにした光学
装置において、該光学素子の温度分布を測定する温度分
布測定手段と、該温度分布測定手段からの信号に基づい
て該光学素子を部分的に加熱し、該光学素子の熱歪みに
よる形状を制御する加熱手段とを設けたことを特徴とし
ている。
A method for stabilizing the shape of an optical element and an optical apparatus using the method include an optical apparatus in which a light beam from a light source is incident on the optical element and the light beam through the optical element is utilized. Provided are temperature distribution measuring means for measuring the temperature distribution of the element and heating means for partially heating the optical element based on a signal from the temperature distribution measuring means and controlling the shape of the optical element due to thermal strain. It is characterized by that.

【0015】又本発明では、光源からの光束で照明した
反射型マスク面のパターンを反射手段を介してウエハ面
上に投影する際、該反射型マスク面の温度分布を温度分
布測定手段により測定し、該温度分布測定手段からの信
号に基づいて加熱手段により該反射型マスクを加熱し、
該反射型マスクの温度分布が均一となるようにしたこと
を特徴としている。
Further, according to the present invention, when the pattern of the reflective mask surface illuminated by the light beam from the light source is projected onto the wafer surface through the reflecting means, the temperature distribution of the reflective mask surface is measured by the temperature distribution measuring means. Then, the reflective mask is heated by the heating means based on the signal from the temperature distribution measuring means,
It is characterized in that the temperature distribution of the reflective mask is made uniform.

【0016】[0016]

【実施例】図1は本発明をシンクロトロン放射光を対象
とした光学素子として集光鏡を用いた光学装置に適用し
たときの実施例1の一部分の要部概略図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main part of a first embodiment when the present invention is applied to an optical device using a condenser mirror as an optical element for synchrotron radiation.

【0017】同図において1はシンクロトロン放射光で
ある。2は光学素子であり、集光鏡より成り、例えば炭
化ケイ素、SiC材料の表面をトロイダル形状に研磨
し、軟X線反射用の多層膜を表面に形成してありシンク
ロトロン放射光1を反射し点状に集光する光学作用を有
している。
In the figure, reference numeral 1 denotes synchrotron radiation light. Reference numeral 2 denotes an optical element, which is composed of a condenser mirror, for example, a surface of silicon carbide or SiC material is polished into a toroidal shape, a multilayer film for soft X-ray reflection is formed on the surface, and synchrotron radiation 1 is reflected. It has an optical effect of condensing in a dot shape.

【0018】3はホルダーであり、集光鏡を支持してお
り水冷機構(不図示)により集光鏡2を側面および裏面
から冷却する冷却機能を兼ねている。4は温度分布測定
手段であり、例えばInSbをセンサーとした赤外線カ
メラより成っている。
Reference numeral 3 denotes a holder, which supports the condenser mirror and also has a cooling function of cooling the condenser mirror 2 from the side surface and the back surface by a water cooling mechanism (not shown). Reference numeral 4 denotes a temperature distribution measuring means, which is composed of, for example, an infrared camera using InSb as a sensor.

【0019】5は加熱手段であり、赤外線ランプ5aと
集光板(凹面鏡)5bを有している。加熱手段5は光学
素子2の表面側より光学素子の温度分布を制御してい
る。集光板5bは赤外線ランプ5aより放射した赤外線
の指向性を高めている。
A heating means 5 has an infrared lamp 5a and a condenser plate (concave mirror) 5b. The heating means 5 controls the temperature distribution of the optical element from the surface side of the optical element 2. The light collector 5b enhances the directivity of infrared rays emitted from the infrared lamp 5a.

【0020】7は他方の加熱手段であり、抵抗線を網状
に配置した発熱部7aと発熱部7aを駆動制御する駆動
部7bとを有しており光学素子2の裏面側より光学素子
の温度分布を制御している。
Reference numeral 7 denotes the other heating means, which has a heating portion 7a having resistance wires arranged in a mesh and a driving portion 7b for driving and controlling the heating portion 7a. It controls the distribution.

【0021】8は他方の温度分布測定手段としての熱電
対であり、光学素子2の裏面側の温度分布を測定してい
る。9は制御手段であり、2つの温度分布測定手段5,
8からの信号に基づいて光学素子2の温度分布が均一と
なり、光学素子に形状変化がなくなり安定するように2
つの加熱手段5,7を駆動制御している。
A thermocouple 8 as the other temperature distribution measuring means measures the temperature distribution on the back surface side of the optical element 2. Reference numeral 9 is a control means, and two temperature distribution measuring means 5,
The temperature distribution of the optical element 2 becomes uniform on the basis of the signal from 8, so that the optical element does not change its shape and becomes stable.
The two heating means 5 and 7 are drive-controlled.

【0022】本実施例において放射光1の集光鏡2の入
射位置での放射光1に垂直な断面のビーム形状は約80
mm×8mmであり集光鏡2に対して10度の視斜角
(入射角80度)で入射している。入射光のパワー(光
強度)は断熱された銅ブロックに一定時間照射した時の
ブロックの温度上昇を参照して求めると約120wであ
った。放射光1は集光鏡2に斜めに入射しており、この
結果集光鏡2面上での照射面積は大きくなり、本実施例
では熱負荷密度は約33mW/mm2となっている。
In this embodiment, the beam shape of the cross section of the emitted light 1 at the incident position of the condenser mirror 2 perpendicular to the emitted light 1 is about 80.
The size is 8 mm × 8 mm, and the light is incident on the condenser mirror 2 at a viewing angle of 10 ° (incident angle of 80 °). The power (light intensity) of the incident light was about 120 w as determined by referring to the temperature rise of the heat-insulated copper block when the block was irradiated for a certain period of time. The radiated light 1 is obliquely incident on the condenser mirror 2. As a result, the irradiation area on the surface of the condenser mirror 2 is increased, and the heat load density is about 33 mW / mm 2 in this embodiment.

【0023】集光鏡2の大きさは放射光1の入射方向に
200mm,それに垂直方向に100mmである。集光
鏡2の表面を赤外線カメラ4で温度分布を測定したとき
集光鏡2の長手方向には図2の曲線aで示す温度分布が
あり、これに垂直方向にはほぼ均一な温度分布であっ
た。
The size of the condenser mirror 2 is 200 mm in the incident direction of the emitted light 1 and 100 mm in the direction perpendicular thereto. When the temperature distribution on the surface of the condenser mirror 2 is measured by the infrared camera 4, there is a temperature distribution indicated by the curve a in FIG. 2 in the longitudinal direction of the condenser mirror 2, and the temperature distribution is almost uniform in the vertical direction. there were.

【0024】この時、集光鏡2からの反射光1が集束す
る焦点位置でのスポットの大きさを写真フィルムの感光
法により評価すると直径約7mmとなっている。
At this time, when the size of the spot at the focus position where the reflected light 1 from the condenser mirror 2 is focused is evaluated by a photographic film exposure method, the diameter is about 7 mm.

【0025】次に長尺型の赤外線ランプ5aを有する加
熱手段5を図1に示すような位置に配置し、赤外線の集
光板5bと照射パワーを調整して集光鏡2の表面の温度
ができるだけ均一になる様に加熱放射した。この調整後
の集光鏡2の表面の温度分布は図2の曲線bに示すよう
に温度35℃のほぼ均一な温度分布となった。この時放
射光1の焦点位置での反射光ビームのスポットの大きさ
は直径約4mmであった。
Next, the heating means 5 having the elongated infrared lamp 5a is arranged at the position shown in FIG. 1, and the infrared condenser plate 5b and the irradiation power are adjusted to adjust the temperature of the surface of the condenser mirror 2. It was heated and radiated so as to be as uniform as possible. The temperature distribution on the surface of the condenser mirror 2 after this adjustment was a substantially uniform temperature distribution at a temperature of 35 ° C. as shown by the curve b in FIG. At this time, the size of the spot of the reflected light beam at the focal position of the emitted light 1 was about 4 mm in diameter.

【0026】さらに集光鏡2の裏面の加熱手段7に通電
して熱電対7aで裏面の温度をモニターしながら制御部
9によりその温度が集光鏡2の表面の温度と同一になる
様に加熱手段7の通電量を調整した。この時、集光鏡2
の表面および裏面の温度は約40℃となった。この状態
で集光鏡2の焦点位置での反射ビームのスポットの大き
さを評価すると直径が約2mmとなり、ほぼ設計値の集
光能が得られた。
Further, while the heating means 7 on the rear surface of the condenser mirror 2 is energized and the temperature of the rear surface is monitored by the thermocouple 7a, the temperature is made equal to the surface temperature of the condenser mirror 2 by the control unit 9. The energization amount of the heating means 7 was adjusted. At this time, the condenser mirror 2
The temperature of the front surface and the back surface was about 40 ° C. When the size of the spot of the reflected beam at the focus position of the condenser mirror 2 was evaluated in this state, the diameter was about 2 mm, and the condensing ability of almost the designed value was obtained.

【0027】このように本実施例では光学素子2の温度
分布を適切に制御し、これにより光学素子の形状変化を
防止し、良好なる光学性能を容易に得ることができるよ
うにしている。尚本実施例では光学素子として集光鏡
(凹面鏡)を用いた場合を示したが本発明に適用するこ
とができる光学素子としてはレンズ,反射鏡,ビームス
プリッター,偏光板,分光結晶,回折格子,光学フィル
ター,エタロン,多層膜鏡,露光装置用マスク,レチク
ル等がある。いずれの光学素子もSR光やエキシマレー
ザー等の高強度の光源とともに使用される光学装置にお
いて適用可能である。
As described above, in this embodiment, the temperature distribution of the optical element 2 is appropriately controlled, whereby the shape change of the optical element is prevented, and good optical performance can be easily obtained. In this embodiment, a case where a condenser mirror (concave mirror) is used as an optical element is shown, but as an optical element applicable to the present invention, a lens, a reflecting mirror, a beam splitter, a polarizing plate, a dispersive crystal, a diffraction grating. , Optical filters, etalons, multilayer mirrors, masks for exposure equipment, reticles, etc. Any of the optical elements can be applied to an optical device used with a high intensity light source such as SR light or excimer laser.

【0028】光学素子の温度分布測定手段としては赤外
線カメラの他に1次元または2次元の赤外線センサーア
レイ等が適用可能である。また前記光学素子内および表
面又は裏面に熱電対や白金抵抗体等の温度測定素子を埋
設あるいは付着可能な場合にはこれらの温度測定素子を
複数設置しても良い。これによれば光学素子の温度分布
を良好に求めることもできるので好ましい。
As the temperature distribution measuring means of the optical element, a one-dimensional or two-dimensional infrared sensor array or the like can be applied in addition to the infrared camera. If temperature measuring elements such as thermocouples and platinum resistors can be embedded or attached to the inside and the front surface or the back surface of the optical element, a plurality of these temperature measuring elements may be installed. This is preferable because the temperature distribution of the optical element can be satisfactorily obtained.

【0029】光学素子の加熱手段として用いた赤外線ラ
ンプは、光学素子の温度分布の形状に応じて、ランプの
形状を選択し、また集光鏡やアパチャー等を利用して、
効率よく部分加熱できるようにしている。赤外線ランプ
の照射波長幅は、その光学装置で使用する光の波長が含
まれないように選択するのがノイズ光の入射を防止する
ことができるので良い。また照射方向は光学装置の光学
系を乱さないように選択し、これにより光学性能の低下
を防止している。
The infrared lamp used as the heating means for the optical element is selected in accordance with the shape of the temperature distribution of the optical element, and a condenser mirror or an aperture is used.
It enables efficient partial heating. It is preferable that the irradiation wavelength width of the infrared lamp is selected so as not to include the wavelength of the light used in the optical device, because noise light can be prevented from entering. Further, the irradiation direction is selected so as not to disturb the optical system of the optical device, thereby preventing deterioration of optical performance.

【0030】また前記光学素子内および表面又は裏面に
電熱線等の加熱素子を埋設あるいは付着可能な場合は、
前記加熱素子を光学素子の所定部分に複数設置しても良
い。これによれば光学素子を部分可熱でき温度分布を均
一に制御することができるので好ましい。
When a heating element such as a heating wire can be embedded or attached in the optical element and on the front surface or the back surface,
A plurality of the heating elements may be installed in a predetermined portion of the optical element. This is preferable because the optical element can be partially heated and the temperature distribution can be uniformly controlled.

【0031】本実施例においては光学素子への放射光の
照射時には、まず温度分布測定手段を用いて光学素子の
温度分布を計測している。そして次にこの温度分布が均
一となる様に加熱手段を用いて光学素子の所定部分を加
熱し、光学素子の熱歪みによる形状変化が最小となるよ
うにしている。加熱の量は温度分布計測をくり返し行
い、そのデータを制御手段で分析し、加熱手段にフィー
ドバックすることにより適宣調整している。
In this embodiment, when the optical element is irradiated with the radiation light, the temperature distribution measuring means is used to measure the temperature distribution of the optical element. Then, a predetermined portion of the optical element is heated by using a heating means so that the temperature distribution becomes uniform so that the shape change due to the thermal strain of the optical element is minimized. The amount of heating is appropriately adjusted by repeatedly measuring the temperature distribution, analyzing the data by the control means, and feeding it back to the heating means.

【0032】また温度分布データの制御手段から加熱手
段へのフィードバックにあたっては有限要素法などの計
算手段により温度分布による光学素子の変形量を計算
し、光学素子の形状が装置の目的に対して最適なものと
なる様な加熱方法を求めて、加熱手段にフィードバック
するようにしても良い。
When the temperature distribution data is fed back from the control means to the heating means, the deformation amount of the optical element due to the temperature distribution is calculated by a calculation means such as the finite element method, and the shape of the optical element is optimized for the purpose of the apparatus. It is also possible to obtain a suitable heating method and feed it back to the heating means.

【0033】特に反射型の光学素子においては光源から
の放射光の照射により熱は表面から流入し、光学素子の
裏面との間に温度分布を生じる。このため光学素子の表
面の温度分布を均一にしただけでは光学素子の変形をな
くすることが難しい。そこで本発明では反射型の光学素
子においては前述の如く光学素子の表面および裏面の両
方に加熱手段を設けるのが良い。これによれば光学素子
の表面と裏面での温度分布がより均一となり光学素子の
変形をより少なくすることができる。
Particularly in a reflection type optical element, heat is introduced from the front surface by the irradiation of the radiation light from the light source, and a temperature distribution is generated between the heat and the back surface of the optical element. Therefore, it is difficult to eliminate the deformation of the optical element only by making the temperature distribution on the surface of the optical element uniform. Therefore, in the present invention, in the reflection type optical element, it is preferable to provide the heating means on both the front surface and the back surface of the optical element as described above. According to this, the temperature distribution on the front surface and the back surface of the optical element becomes more uniform, and the deformation of the optical element can be further reduced.

【0034】図3は本発明をレーザプラズマX線源を光
源とした軟X線用の半導体素子製造用の縮小投影露光装
置に適用した時の実施例2の模式図である。
FIG. 3 is a schematic diagram of a second embodiment when the present invention is applied to a reduction projection exposure apparatus for manufacturing a semiconductor element for soft X-rays using a laser plasma X-ray source as a light source.

【0035】11はエキシマレーザである。エキシマレ
ーザ11からの光束11aはレンズ12で集光し、サマ
リウムSm材料のターゲット13に照射している。これ
よりターゲット13よりレーザプラズマX線14を発生
させている。ターゲット13から発生したX線14はベ
リリウムのフィルタ15およびアパチャー16を通過さ
せ、光学素子としての反射型マスク17を照射してい
る。反射型マスク17から反射したX線は縮小ミラー1
9で反射し、ウェハ位置20にマスク17の像を形成す
る。18はホルダーであり反射型マスク17を支持する
と共にマスク17を冷却する機能を兼ねている。21は
加熱手段でありマスク17の表面に輪帯状に蒸着された
白金抵抗線を有し、マスク17の表面を加熱している。
22は赤外線カメラ、23は他方の加熱手段であり反射
型マスク17の裏面を加熱している。
Reference numeral 11 is an excimer laser. The light beam 11a from the excimer laser 11 is condensed by the lens 12 and is applied to the target 13 made of samarium Sm material. As a result, laser plasma X-rays 14 are generated from the target 13. The X-ray 14 generated from the target 13 passes through a beryllium filter 15 and an aperture 16 and irradiates a reflection type mask 17 as an optical element. X-rays reflected from the reflective mask 17 are reduction mirrors 1.
9 and forms an image of the mask 17 on the wafer position 20. Reference numeral 18 denotes a holder, which also has a function of supporting the reflective mask 17 and cooling the mask 17. A heating means 21 has a platinum resistance wire vapor-deposited in a ring shape on the surface of the mask 17, and heats the surface of the mask 17.
Reference numeral 22 is an infrared camera, and 23 is the other heating means for heating the back surface of the reflective mask 17.

【0036】本実施例における反射型マスク17の表面
には特開平1−175731号公報で提案している方法
で多層膜を施した軟X線反射パターンが形成してある。
On the surface of the reflective mask 17 in this embodiment, a soft X-ray reflection pattern having a multilayer film formed by the method proposed in JP-A-1-175731 is formed.

【0037】また表面形状は光学的収差を少なくするた
め、曲面形状に加工している。縮小ミラー19は複数個
のミラーを用いた縮小光学系を用いることも可能であ
り、縮小ミラー19の表面は反射型マスク17で反射さ
れる軟X線と同じ波長を反射するように多層膜をコート
している。縮小ミラー19の縮小率は1/5である。本
実施例ではレーザープラズマX線源から発生する種々の
波長のX線のうち中心波長130Åの軟X線を用いてい
る。
The surface shape is processed into a curved shape in order to reduce optical aberrations. The reduction mirror 19 can also use a reduction optical system using a plurality of mirrors, and the surface of the reduction mirror 19 is formed of a multilayer film so as to reflect the same wavelength as the soft X-ray reflected by the reflective mask 17. I have a coat. The reduction ratio of the reduction mirror 19 is ⅕. In this embodiment, among the X-rays of various wavelengths generated from the laser plasma X-ray source, soft X-rays having a central wavelength of 130Å are used.

【0038】エキシマレーザーのエネルギーを50mJ
/パルス、繰り返し周波数を300Hzとしてサマリウ
ムターゲット13よりX線を発生させ反射型マスク17
の表面にX線を照射した。図4の曲線Cはこの時の赤外
線カメラ22で測定したマスク表面の温度分布である。
同図に示すように温度分布はほぼ点対称型であり、中心
部分では周囲に比べ約1.2℃の温度上昇が見られた。
The energy of the excimer laser is 50 mJ
/ Pulse, the repetition frequency is set to 300 Hz, X-rays are generated from the samarium target 13, and the reflection type mask 17 is used.
The surface of the was irradiated with X-rays. A curve C in FIG. 4 is the temperature distribution on the mask surface measured by the infrared camera 22 at this time.
As shown in the figure, the temperature distribution is almost point-symmetrical, and a temperature rise of about 1.2 ° C. was observed in the central portion compared to the surroundings.

【0039】この時ウェハ位置20の前後の位置でレジ
ストを塗布したウェハ上にマスクの像を結像して評価し
たところ、約10μmの焦点面のずれがあり、また最大
0.01%の像の歪曲があった。
At this time, when an image of the mask was formed on the wafer coated with the resist at a position before and after the wafer position 20 and evaluated, there was a focal plane shift of about 10 μm and an image of 0.01% at maximum. There was a distortion of.

【0040】次に反射型マスク17上の白金抵抗線21
および裏面の加熱手段23の加熱用ヒーター23aに通
電し、赤外線カメラ22でモニターしながら加熱量を調
整したところ、図4の曲線dに示すようなほぼ均一の温
度分布となった。この時前記と同様の方法で結像状態を
評価したところ焦点面のずれは2μm以下となり、また
像の歪曲は0.002%以下となった。
Next, the platinum resistance wire 21 on the reflective mask 17
When the heating heater 23a of the heating means 23 on the back surface was energized and the heating amount was adjusted while monitoring with the infrared camera 22, a substantially uniform temperature distribution as shown by the curve d in FIG. 4 was obtained. At this time, when the image formation state was evaluated by the same method as described above, the deviation of the focal plane was 2 μm or less, and the image distortion was 0.002% or less.

【0041】[0041]

【発明の効果】本発明によれば前述の如く光学素子の温
度分布測定手段および光学素子の加熱手段を設け、光学
素子への光照射時の温度分布を均一化することにより、
光学素子の不均一な温度上昇による形状変型の量を低く
おさえ、光学素子および光学系全体の光学性能の低下を
防止するというすぐれた効果を有した光学素子の形状安
定化法及びそれを用いた光学装置を達成することができ
る。
According to the present invention, the temperature distribution measuring means for the optical element and the heating means for the optical element are provided as described above, and the temperature distribution at the time of irradiating the optical element with light is made uniform.
A method for stabilizing the shape of an optical element, which has the excellent effect of suppressing the deterioration of the optical performance of the optical element and the optical system as a whole by suppressing the amount of the shape deformation of the optical element caused by the uneven temperature rise, and using the method. An optical device can be achieved.

【0042】特に本発明の光学素子の形状安定化法は近
年その技術開発の進歩のめざましい、シンクロトロン放
射光やレーザープラズマX線源等の高強度の光源を持つ
光学装置において有効であり、光学素子の熱ひずみによ
る破壊も効果的に防止することができる等の特長を有し
ている。
In particular, the method for stabilizing the shape of an optical element of the present invention is effective in an optical device having a high intensity light source such as synchrotron radiation or laser plasma X-ray source, which has been remarkably advanced in technological development in recent years. It has features such as the ability to effectively prevent damage due to thermal strain of the element.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.

【図2】 図1の光学素子の表面温度分布を示す説明図FIG. 2 is an explanatory diagram showing a surface temperature distribution of the optical element of FIG.

【図3】 本発明の実施例2の要部概略図FIG. 3 is a schematic view of the essential portions of Embodiment 2 of the present invention.

【図4】 図3の反射型マスクの表面温度分布を示す説
明図
FIG. 4 is an explanatory diagram showing a surface temperature distribution of the reflective mask of FIG.

【符号の説明】[Explanation of symbols]

1 シンクロトロン放射光 2 集光鏡 3,18 ホルダー 4,22 赤外線カメラ 5,7,21,23 加熱手段 8 温度分布測定手段 9,24 制御手段 11 エキシマレーザ 11a エキシマレーザ光線 12 集光レンズ 13 ターゲット 15 ベリリウムフィルター 17 反射型マスク 19 縮小ミラー 20 ウェハ位置 1 Synchrotron radiation 2 Condenser Mirror 3,18 Holder 4,22 Infrared Camera 5,7,21,23 Heating Means 8 Temperature Distribution Measuring Means 9,24 Control Means 11 Excimer Laser 11a Excimer Laser Beam 12 Condenser Lens 13 Target 15 Beryllium filter 17 Reflective mask 19 Reduction mirror 20 Wafer position

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光学素子の温度分布を温度分布測定手段
で測定し、該温度分布測定手段からの信号に基づいて加
熱手段により該光学素子を部分的に加熱して該光学素子
の形状変化を制御したことを特徴とする光学素子の形状
安定化法。
1. The temperature distribution of an optical element is measured by a temperature distribution measuring means, and the optical element is partially heated by a heating means based on a signal from the temperature distribution measuring means to change the shape of the optical element. A method for stabilizing the shape of an optical element characterized by being controlled.
【請求項2】 前記加熱手段は前記光学素子の表面又は
/及び裏面に設けられており、該表面又は/及び裏面よ
り該光学素子を加熱していることを特徴とする請求項1
の光学素子の形状安定化法。
2. The heating means is provided on the front surface and / or the back surface of the optical element, and the optical element is heated from the front surface and / or the back surface.
Method for stabilizing the shape of optical elements.
【請求項3】 光源からの光束を光学素子に入射させ、
該光学素子を介した光束を利用するようにした光学装置
において、該光学素子の温度分布を測定する温度分布測
定手段と、該温度分布測定手段からの信号に基づいて該
光学素子を部分的に加熱し、該光学素子の熱歪みによる
形状を制御する加熱手段とを設けたことを特徴とする光
学装置。
3. A light beam from a light source is incident on an optical element,
In an optical device adapted to utilize a light flux passing through the optical element, a temperature distribution measuring means for measuring a temperature distribution of the optical element, and a part of the optical element based on a signal from the temperature distribution measuring means. An optical device comprising: heating means for heating and controlling a shape of the optical element due to thermal strain.
【請求項4】 光源からの光束で照明した反射型マスク
面のパターンを反射手段を介してウエハ面上に投影する
際、該反射型マスク面の温度分布を温度分布測定手段に
より測定し、該温度分布測定手段からの信号に基づいて
加熱手段により該反射型マスクを加熱し、該反射型マス
クの温度分布が均一となるようにしたことを特徴とする
半導体素子製造用の光学装置。
4. When a pattern of a reflective mask surface illuminated by a light beam from a light source is projected onto a wafer surface through a reflecting means, a temperature distribution of the reflective mask surface is measured by a temperature distribution measuring means, An optical device for manufacturing a semiconductor device, wherein the heating means heats the reflective mask based on a signal from the temperature distribution measuring means so that the temperature distribution of the reflective mask becomes uniform.
JP03255800A 1991-09-07 1991-09-07 Optical element shape control method and exposure apparatus Expired - Fee Related JP3132086B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP03255800A JP3132086B2 (en) 1991-09-07 1991-09-07 Optical element shape control method and exposure apparatus
DE69220868T DE69220868T2 (en) 1991-09-07 1992-09-04 System for stabilizing the shapes of optical elements, exposure device using this system and method for manufacturing semiconductor devices
EP92308030A EP0532236B1 (en) 1991-09-07 1992-09-04 System for stabilizing the shapes of optical elements, exposure apparatus using this system and method of manufacturing semiconductor devices
CA002077572A CA2077572C (en) 1991-09-07 1992-09-04 Method of and apparatus for stabilizing shapes of objects, such as optical elements, as well as exposure apparatus using same and method of manufacturing semiconductr devices
US08/270,794 US5390228A (en) 1991-09-07 1994-07-05 Method of and apparatus for stabilizing shapes of objects, such as optical elements, as well as exposure apparatus using same and method of manufacturing semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03255800A JP3132086B2 (en) 1991-09-07 1991-09-07 Optical element shape control method and exposure apparatus

Publications (2)

Publication Number Publication Date
JPH0566297A true JPH0566297A (en) 1993-03-19
JP3132086B2 JP3132086B2 (en) 2001-02-05

Family

ID=17283813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03255800A Expired - Fee Related JP3132086B2 (en) 1991-09-07 1991-09-07 Optical element shape control method and exposure apparatus

Country Status (1)

Country Link
JP (1) JP3132086B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6065842A (en) * 1998-05-22 2000-05-23 Raytheon Company Heat maps for controlling deformations in optical components
JP2005217398A (en) * 2004-01-16 2005-08-11 Asml Netherlands Bv Lithography apparatus, device manufacturing method, and device manufactured by same
JP2006049909A (en) * 2004-08-04 2006-02-16 Asml Netherlands Bv Lithographic apparatus, apparatus having illumination system, apparatus having projection system, optical elements of lithographic apparatus, and device manufacturing method
JP2009081419A (en) * 2007-08-14 2009-04-16 Asml Netherlands Bv Lithographic equipment and control method of thermal optical manipulator
JP2012527099A (en) * 2009-05-16 2012-11-01 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure apparatus for semiconductor lithography comprising an optical correction structure
JP2013536988A (en) * 2010-08-30 2013-09-26 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure equipment
JP2014137528A (en) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp Laser processing device and curvature variable reflection mirror unit
JP2015529351A (en) * 2012-09-25 2015-10-05 エーエスエムエル ネザーランズ ビー.ブイ. Reticle heater that keeps reticle heating uniform

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6065842A (en) * 1998-05-22 2000-05-23 Raytheon Company Heat maps for controlling deformations in optical components
JP4639092B2 (en) * 2004-01-16 2011-02-23 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2005217398A (en) * 2004-01-16 2005-08-11 Asml Netherlands Bv Lithography apparatus, device manufacturing method, and device manufactured by same
JP2006049909A (en) * 2004-08-04 2006-02-16 Asml Netherlands Bv Lithographic apparatus, apparatus having illumination system, apparatus having projection system, optical elements of lithographic apparatus, and device manufacturing method
JP2009272649A (en) * 2004-08-04 2009-11-19 Asml Netherlands Bv Lithographic apparatus, apparatus including illumination system, apparatus including projection system, optical element for lithographic apparatus, and device manufacturing method
JP4495046B2 (en) * 2004-08-04 2010-06-30 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus, apparatus with illumination system, apparatus with projection system, optical element of lithographic apparatus and device manufacturing method
JP2009081419A (en) * 2007-08-14 2009-04-16 Asml Netherlands Bv Lithographic equipment and control method of thermal optical manipulator
JP2011211237A (en) * 2007-08-14 2011-10-20 Asml Netherlands Bv Lithographic projection apparatus
US8064151B2 (en) 2007-08-14 2011-11-22 Asml Netherlands B.V. Lithographic apparatus and thermal optical manipulator control method
US8861102B2 (en) 2007-08-14 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and thermal optical manipulator control method
JP2012527099A (en) * 2009-05-16 2012-11-01 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure apparatus for semiconductor lithography comprising an optical correction structure
US9366977B2 (en) 2009-05-16 2016-06-14 Carl Zeiss Smt Gmbh Semiconductor microlithography projection exposure apparatus
JP2013536988A (en) * 2010-08-30 2013-09-26 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection exposure equipment
JP2015529351A (en) * 2012-09-25 2015-10-05 エーエスエムエル ネザーランズ ビー.ブイ. Reticle heater that keeps reticle heating uniform
JP2014137528A (en) * 2013-01-18 2014-07-28 Mitsubishi Electric Corp Laser processing device and curvature variable reflection mirror unit

Also Published As

Publication number Publication date
JP3132086B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US5390228A (en) Method of and apparatus for stabilizing shapes of objects, such as optical elements, as well as exposure apparatus using same and method of manufacturing semiconductor devices
US20210053147A1 (en) Annealing apparatus using two wavelengths of radiation
US6366308B1 (en) Laser thermal processing apparatus and method
TW538480B (en) Heating configuration for use in thermal processing chambers
JP5103186B2 (en) Multi-band pass filtering for high temperature measurements in laser-based annealing systems
JP4639092B2 (en) Lithographic apparatus and device manufacturing method
JP3017475B2 (en) Stepper or scanner with two energy monitors for the laser
US6339634B1 (en) Soft x-ray light source device
EP3330036B1 (en) Pyrometer for laser annealing system compatible with amorphous carbon optical absorber layer
KR20010067473A (en) Euv reticle thermal management
JP3132086B2 (en) Optical element shape control method and exposure apparatus
JP2000299197A (en) X-ray generator
JP3238737B2 (en) Method and apparatus for controlling temperature of illuminated member
JP3452057B2 (en) Laser beam harmonic generation apparatus, exposure apparatus using the same, laser beam harmonic generation method, exposure method using the same, and device manufacturing method using the same
JP5087002B2 (en) Beam separation optics
US20230018331A1 (en) Device for detecting a temperature, installation for producing an optical element and method for producing an optical element
JP2001176774A (en) Laser and aligner
JP3287334B2 (en) Laser beam harmonic generator, exposure apparatus, laser beam harmonic generation method, exposure method using the same, and device manufacturing method using the same
Rieger Laser produced x-ray by high brightness and power diode pumped Nd: YAG laser for compact x-ray lithography and microscopy
Yu A et al. A study of time spatial IR laser radiation characteristics by high speed photography techniques

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees